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Abstract: Sustainable supply chain management is important for most firms in today’s competitive
environment. This study considers a supply chain environment under which the firm needs to
make decisions regarding from which supplier and what quantity of parts should be purchased,
which vehicle with a certain emissions amount and transportation capacity should be assigned, and
what kind of production mode should be used. The integrated replenishment, transportation, and
production problem is concerned with coordinating replenishment, transportation, and production
operations to meet customer demand with the objective of minimizing the cost. The problem
considered in this study involves heterogeneous vehicles with different emission costs, various
materials with dissimilar emission costs, and distinct production modes, each with their own
emission costs. In addition, multiple suppliers with different quantity discount schemes are
considered, different kinds of vehicles with different loading capacities and traveling distance limits
are present, and different production modes with different production capacities and production
costs are included. A mixed integer programming model is proposed first to minimize the total cost,
which includes the ordering cost, purchase cost, transportation cost, emission cost, production cost,
inventory-holding cost, and backlogging cost, while satisfying various constraints in replenishment,
transportation, and production. A particle swarm optimization model is constructed next to deal
with large-scale problems that are too complicated to solve by the mixed integer programming.
The main advantage of the proposed models lies in their ability to simultaneously coordinate the
replenishment, transportation, and production operations in a planning horizon. The proposed
particle swarm optimization model could further identify a near-optimal solution to the complex
problem in a very short computational time. To the best of the authors’ knowledge, this is the first
paper that considers the sustainable supply chain management problem with multiple suppliers,
multiple vehicles, and multiple production modes simultaneously. Case studies are presented to
examine the practicality of the mixed integer programming and the particle swarm optimization
models. The proposed models can be adopted by the management to make relevant supply chain
management decisions.

Keywords: sustainable supply chain; replenishment; transportation; production; quantity discounts;
backlogging; mixed integer programming; particle swarm optimization

1. Introduction

Good supply chain management (SCM) is important for firms to provide low-cost and high-quality
products with greater flexibility in today’s competitive market, and as a result, to survive and attain a

Sustainability 2018, 10, 3887; doi:10.3390/su10113887 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0001-6799-0860
http://www.mdpi.com/2071-1050/10/11/3887?type=check_update&version=1
http://dx.doi.org/10.3390/su10113887
http://www.mdpi.com/journal/sustainability


Sustainability 2018, 10, 3887 2 of 21

reasonable profit. SCM should cover the management of business activities and relationships within a
firm, with immediate suppliers, with the first and second-tier suppliers and customers along the supply
chain, and with the entire supply chain [1]. Coordination among location, inventory, transportation,
and production in a firm and with other partners in a supply chain is necessary [2]. Studies of
individual topics in SCM have been done abundantly. Among them, inventory management has
caught the most attention, and various inventory models and methodologies have been proposed.
Transportation problems, such as the vehicle-routing problem, have also been studied, and problems
that consider both the production and the transportation aspects have also been found.

In order to confront competition in most industries, firms today often need to satisfy dynamic
customer demand spontaneously. As people are becoming more aware of environmental protection,
firms also need to consider the greenhouse gas emission of the products. Thus, devising an appropriate
integrated plan for replenishment, transportation, and production is essential. To the best of our
knowledge, there is no paper that considers the sustainable supply chain management problem with
multiple suppliers, multiple vehicles, and multiple production modes concurrently. In this study,
an integrated decision-making model is proposed to study the replenishment, transportation, and
production problems simultaneously. The materials that are needed by a factory are purchased from
multiple suppliers, each with its own ordering cost, unit-purchase cost under different quantity
discounts, and carbon emission cost. The plant needs to produce multiple products under different
production modes, each with its own production capacity, unit-production cost, and carbon-emission
cost. The inventory-holding cost of parts and finished goods, as well as the backlogging cost of parts
and finished goods, are considered. Associated with the plant is a heterogeneous fleet of vehicles, each
with its own fixed transportation cost, variable transportation cost, and carbon-emission cost. The
problem is to determine the operation schedules to coordinate the replenishment, transportation, and
production operations so that the customer demand, vehicle travel length, and loading constraints,
plant production, and inventory and backlogging constraints are all satisfied, while the total cost (i.e.,
the sum of the replenishment, transportation, production, and emission costs) over a given planning
horizon is minimized.

In this study, a mixed integer programming (MIP) model is first constructed to solve the
sustainable supply chain management problem with multiple suppliers, multiple vehicles, and
multiple production modes, and optimal solutions can be obtained. Particle swarm optimization (PSO)
is proposed next to solve large problems by generating near-optimal solutions. The results show that
the MIP model can obtain the optimal solution in a short computational time when the problem is
small. However, when the problem becomes relatively large, the MIP may no longer solve the problem
in a limited time frame. On the other hand, particle swarm optimization can obtain a near-optimal
solution in a short computational time. By applying the proposed models, managers can make relevant
supply chain decisions in replenishment, transportation, and production efficiently.

The rest of this paper is organized as follows. Some related works are reviewed in Section 2.
The notations and assumptions are presented, and a mixed integer programming (MIP) model and a
PSO model are constructed to solve the problem in Section 3. Some case studies are demonstrated in
Section 4, and the conclusions are presented in the last section.

2. Literature Review

Many production management and logistics problems have considered the greenhouse effects
and costs related to the environmental impact of operations and transportation activities [3]. Reduction
in transportation implies that less fossil fuel is burned, and hence a smaller carbon footprint is
incurred. Some recent works are as follows. Kannan et al. [4] studied a location/transportation
decision problem for reverse logistics activities and constructed a mixed integer linear model for a
carbon footprint-based reverse logistics network. Pan et al. [5] studied a freight consolidation to reduce
greenhouse gas emissions. The problem considered the pooling of suppliers or retailers with similar
flows in similar geographical areas using different transportation modes, such as road and rail, to
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reduce CO2 emissions from freight transport. The authors studied the dependency of the emissions
produced by the mode of transport on their loads, and defined the emissions function as a piecewise
linear and discontinuous function. An optimization model with a piecewise linear objective function
was used to calculate the reduction of emissions. Sarkar et al. [6] studied a sustainable integrated
inventory problem that considered the unequal power between a vendor and a buyer, a discrete
investment that could reduce the setup cost, fixed and variable transportation, and carbon emission
costs. A Stackelberg game approach was applied to obtain the global optimum solution over a finite
planning horizon. Sarkar et al. [7] studied a three-echelon supply chain problem that comprised a
supplier, a manufacturer, and multiple retailers with variable transportation and carbon emission
costs. An algebraic approach was applied to solve the problem of minimizing the joint total cost of
the supply chain. Toro et al. [3] studied a green capacitated location-routing problem that considered
greenhouse gas emissions. A mixed integer linear model was developed to solve the bi-objective
problem so that the operational costs and the environmental effects could be minimized. Yuan et al. [8]
compared the performances between the supply chain members and designed a contract to make
the manufacturer disclose the carbon information. The effects of carbon price, carbon emissions,
and carbon quota are quantified in the supply chain model for improving the green supply chain
performance. Salehi et al. [9] studied a problem that considered green truck transportation scheduling
and driver assignment. A bi-objective mixed integer nonlinear programming model was proposed to
minimize the total transportation-related costs and total carbon emissions. A linearization technique
was adopted, and a constructive heuristic approach was proposed to solve the problem efficiently.
Soysal et al. [10] improved the traditional models for the one-to-one pickup and delivery problem with
the consideration of sustainable logistics. Factors, including fuel consumption, variable vehicle speed,
and road categorization were considered, and a mixed integer programming model was constructed.
Table 1 compares and contrasts the reviewed works with this research.

Table 1. Comparison of relevant works.

Author (s) Green Supply
Chain

Transportation
Problem

Emission
Issue

Mathematical
Model Algorithm Global

Optimum

Toro et al. [3] ∨ ∨ ∨ ∨ ∨
Kannan et al. [4] ∨ ∨ ∨ ∨ ∨

Pan et al. [5] ∨ ∨ ∨ ∨ ∨
Sarkar et al. [6] ∨ ∨ ∨ ∨ ∨
Sarkar et al. [7] ∨ ∨ ∨ ∨ ∨
Yuan et al. [8] ∨ ∨ ∨ ∨ ∨
Salehi et al. [9] ∨ ∨ ∨ ∨ ∨

Soysal et al. [10] ∨ ∨ ∨ ∨ ∨
This research ∨ ∨ ∨ ∨ ∨ ∨

The inventory-routing problem (IRP) integrates transportation activities with inventory
management, and it basically considers the decisions regarding the replenishment quantities and the
vehicle routes to visit all of the customers concurrently [11]. In the past, such a problem was usually
solved by breaking it into an inventory sub-problem and a vehicle routing sub-problem, and then
solving each sub-problem independently [3]. For example, Juan et al. [12] proposed a simheuristic
algorithm for a single-period stochastic inventory-routing problem with stock-outs. The algorithm
combined simulation with a randomized heuristics to solve the inventory-routing problem with several
stochastic demand inventory problems. The goal was to determine the refill policies and routing plan
that minimized the total costs of the system. Ghaniabadi and Mazinani [13] studied a dynamic lot
sizing problem (DLSP) with multiple suppliers, backlogging, and quantity discounts by proposing a
mixed integer linear programming (MILP) model and a forward dynamic programming (FDP) model.
The execution times of the MILP models and FDP models obtained from the recursive formulations
are presented and compared. The results demonstrate the efficiency of the FDP models, as they can
solve even large-sized instances quite timely.
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Particle swarm optimization (PSO) [14] has become one of the popular heuristics for solving
production management problems in recent years. Modified versions of PSO have been introduced
to attain different objectives. Jordehi and Jasni [15] analyzed existing strategies for setting PSO
parameters and provided guidelines for setting parameters in research. Adewumi and Arasomwan [16]
proposed two inertia weight strategies, called the swarm success rate descending inertia weight and
the swarm success rate random inertia weight, to improve the convergence speed, global search
ability, and solution accuracy of the algorithm. Aminbakhsh and Sonmez [17] studied the discrete
time–cost trade-off problem by developing a discrete PSO based on the principles for representation,
initialization, and position updating of the particles. Liu et al. [18] proposed a hybrid non-parametric
PSO algorithm for selecting suitable parameters. Operations, including a multi-crossover operation, a
vertical crossover, and an exemplar-based learning strategy, were combined to improve the global and
the local exploration capabilities.

3. Model Development

In this section, assumptions and notations are introduced first, various costs for determining
the total cost in a system are presented next, an MIP model is constructed, and the PSO procedure is
described last.

3.1. Assumptions

The research proposes a decision model for the replenishment of multiple parts from multiple
suppliers using multiple vehicles and the production of multiple products using multiple production
modes in multiple periods. The assumptions are as follows [19–23]:

1. Demand of each part in each period is known. The production is based on make-to-order.
2. There is no beginning inventory in the first period.
3. Ordering lead time, purchase lead time, transportation lead time, and production lead time are

known and set to zero.
4. Transportation distance and the transportation loading size of each vehicle are fixed and known.
5. A larger vehicle produces a higher amount of emissions.
6. Each kind of part can be purchased from at least two suppliers and can be purchased from only

one supplier in a period.
7. Quantity discount is available. The unit-purchase cost of each kind of part is determined by the

quantity of the part purchased in that period.
8. The purchased amount of each kind of part must be delivered in a single batch in a period.
9. The transportation of the ordered parts in a period must be complete in that period.
10. At most, one vehicle can travel to and out of a shipment point (supplier) in each period.
11. Products can be produced in advance, and backlogging is allowed.
12. Different materials incur different amounts of emissions depending on when they were made.
13. Different production modes incur different amounts of emissions.

3.2. Various Costs

Equation (1) shows the ordering cost, where ovr is the ordering cost of part r from supplier v for
each purchase, and αtvr indicates whether an order of part r from supplier v in period t is placed [19]:

Ordering cost = ∑ T
t=1 ∑ V

v=1 ∑ R
r=1ovr × αtvr (1)

Equation (2) is the purchase cost. Based on the all-units discount brackets from suppliers and
the purchase quantity in each period, the total purchase cost of the parts over the horizon can be
calculated [19]:

Purchase cost = ∑ T
t=1 ∑ V

v=1 ∑ R
r=1P(Qtvr)×Qtvr × αtvr. (2)
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where P(Qtvr) is the unit purchase cost of part r from supplier v in period t, Qtvr is the quantity of part
r purchased from supplier v in period t, and αtvr indicates whether an order of part r from supplier v
in period t is placed.

Equation (3) calculates the transportation cost, which comprises the fixed cost and variable cost.
The fixed cost incurs whenever a vehicle is dispatched, and the variable cost depends on the distance
the vehicle travels [21]:

Transportation cost = ∑ T
t=1 ∑ J

j=0 ∑ E
e=1 ϕe

t0jFCe + ∑ T
t=1 ∑ I

i=0 ∑ J
j=0 ∑ E

e=1cij ϕ
e
tij (3)

where FCe is the fixed cost of vehicle e, ϕe
t0j indicates whether vehicle e is dispatched from shipment

point 0 (the factory) to shipment point j in period t, cij is the transportation cost from shipment point
i to shipment point j, and ϕe

tij indicates whether vehicle e travels from shipment point i to shipment
point j in period t.

Equation (4) calculates the production cost. Based on the production quantity of the finished good
g in a period, the production cost in a different production mode s can be calculated [22]:

Production cost = ∑ T
t=1 ∑ S

s=1P
(
ϑtgs

)
× ϑtgs ×ωtgs (4)

where P
(
ϑtgs

)
is the unit-production cost of finished good g under production mode s in period t, ϑtgs

is the production quantity of finished good g under production mode s in period t, and ωtgs indicates
whether finished good g is manufactured under production mode s in period t.

Equation (5) calculates the carbon emission cost, which comprises the carbon-emission cost of the
vehicle during transportation, the carbon-emission cost of the material, and the carbon-emission cost
during production [23].

Emission cost = ∑T
t=1 ∑I

i=0 ∑J
j=0 ∑E

e=1 uij × ϕe
tij × θe

1

+∑T
t=1 ∑V

v=1 ∑R
r=1 Qtvr × αtvr × θr

2
+∑T

t=1 ∑G
g=1 ∑S

s=1 ϑtgs ×ωtgs × θs
3

(5)

where uij is the distance from shipment point i to shipment point j, ϕe
tij indicates whether vehicle e

travels from shipment point i to shipment point j in period t, θe
1 is the carbon-emission cost of vehicle e

per distance, Qtvr is the quantity of part r purchased from supplier v in period t, αtvr indicates whether
an order of part r from supplier v in period t is placed, θr

2 is the carbon-emission cost per unit of
material r, ϑtgs is the production quantity of finished good g under production mode s in period t, ωtgs

indicates whether finished good g is manufactured under production mode s in period t, and θs
3 is the

carbon-emission cost per unit of product under production mode s.
Equation (6) calculates the inventory-holding cost of parts and finished goods. The ending

inventory of part r in a period is the sum of the beginning inventory of part r in the period and the
purchase quantity of part r in the period, minus the quantity of part r that was used in production in
the period. The ending inventory of finished good g in a period is the sum of the beginning inventory
of good g in the period and the production quantity of good g in the period, minus the quantity of
good g demanded in the period. The inventory-holding cost is as follows [22]:

Holding cost = ∑ T
t=1 ∑ R

r=1F+
tr × hr + ∑ T

t=1 ∑ R
r=1FG+

tg × hg (6)

where F+
tr is the ending inventory of part r in period t, hr is the unit-holding cost of part r per period,

FG+
tg is the ending inventory of finished good g in period t, and hg is the unit-holding cost of finished

good g per period.
Equation (7) calculates the backlogging cost of parts and finished goods [20]:

Backlogging cost = ∑ T
t=1 ∑ R

r=1F−tr × εr + ∑ T
t=1 ∑ R

r=1FG−tg × εg (7)
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where F−tr is the backlogging of part r in period t, εr is the unit-backlogging cost of part r per period,
FG−tg is the backlogging of finished good g in period t, and εg is the unit-backlogging cost of finished
good g per period.

3.3. Mixed Integer Programming (MIP)

In this sub-section, a mixed integer programming (MIP) model is developed to solve the
multiple-supplier, multiple-product replenishment problem, and devise the replenishment plan and
production mode in each period in the planning horizon. The MIP model is as follows:

Minimize TC = ∑T
t=1 ∑V

v=1 ovr × αtvr

+∑T
t=1 ∑V

v=1 ∑R
r=1 P(Qtvr)×Qtvr × αtvr

+∑T
t=1 ∑I

i=0 ∑J
j=0 ∑E

e=1 cij × ϕe
tij + ∑T

t=1 ∑J
j=0 ∑E

e=1 ϕe
t0j × FCe

+∑T
t=1 ∑S

s=1 P
(
ϑtgs

)
× ϑtgs ×ωtgs

+∑T
t=1 ∑I

i=0 ∑J
j=0 ∑E

e=1 uij × ϕe
tij × θe

1

+∑T
t=1 ∑V

v=1 ∑R
r=1 Qtvr × αtvr × θr

2
+∑T

t=1 ∑G
g=1 ∑S

s=1 ϑtgs ×ωtgs × θs
3

+∑T
t=1 ∑R

r=1 F+
tr × hr + ∑T

t=1 ∑G
g=1 FG+

tg × hg

+∑T
t=1 ∑R

r=1 F−tr × εr + ∑T
t=1 ∑R

r=1 FG−tg × εg

(8)

Subject to
Str = ∑ V

v=1Qtvr × αtvr, for all t, r (9)

Qtvr ≤ M× αtvr, for all t, v, r (10)

P(Qtvr) = ∑ X
x=1(atvrx × βtvrx), for all t, v, r (11)

∑ X
x=1βtvrx = 1, for all t, v, r (12)

lvrx−1 + M× (βtvrx − 1) ≤ Qtvr < lvrx + M× (1− βtvrx), for all t, v, r, x (13)

∑ R
r=1Qtvr = Yti, for all t, v = i (14)

∑ I
i=0 ∑ E

e=1 ϕe
tij ≤ 1, for all t, j = 1, 2 . . . , J (15)

∑ J
j=0 ∑ E

e=1 ϕe
tij ≤ 1, for all t, i = 1, 2 . . . , I (16)

∑ J
j=1 ϕe

t0j ≤ 1, for all t, e (17)

∑ I
i=0 ϕe

tij −∑ I
i=0 ϕe

tji = 0, for all t, e, j = 1, 2 . . . , J, j 6= i (18)

∑ J
j=1 ϕe

tij = φe
ti, for all t, e, i = 1, 2 . . . , I, i 6= j (19)

∑ E
e=1φe

ti ≤ 1, for all t, i = 1, 2 . . . , I (20)

∑ J
j=0δe

tij −∑ J
j=0δe

tji = Yti × φe
ti, for all t, i (21)

∑ I
i=1Yti × φe

ti −∑ I
i=1δe

ti0 = 0, for all t, e (22)

∑ I
i=1 ∑ E

e=1δe
ti0 = ∑ I

i=1Yti, for all t (23)

∑ I
i=1δe

ti0 ≤ we, for all t, e (24)

∑ I
i=0 ∑ J

j=0 ϕe
tijuij ≤ ke, for all t, e (25)

ϑtgs ×ωtgs ≤ zgs − zgs−1, for all t, g, s (26)

FG+
tg − FG−tg = ∑ t

t′=1St′g −∑ t
t′=1dt′g, for all t, g (27)
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Stg = ∑ S
s=1ϑtgs ×ωtgs, for all t, g (28)

F+
tr − F−tr = ∑ t

t′=1St′r −∑ t
t′=1dt′r, for all t, r (29)

dtr = Stg × ρgr, for all t, r (30)

αtvr ∈ {0, 1}, for all t, v, r (31)

βtvrx ∈ {0, 1}, for all t, v, r, x (32)

ϕe
tij ∈ {0, 1}, for all t, i, j, e (33)

φe
ti ∈ {0, 1}, for all t, i, e (34)

ωtgs ∈ {0, 1}, for all t, g, s (35)

Objective function (8) is to minimize the total cost (TC) in the planning horizon. The costs include
nine kinds of costs: ordering cost, purchase cost, transportation cost, production cost, three types of
carbon-emission costs, holding cost, and backlogging cost. Equation (9) calculates the total quantity of
part r purchased in period t, Str, where Qtvr is the quantity of part r purchased from supplier v in period
t, and αtvr indicates whether an order of part r from supplier v in period t is placed. Equation (10)
makes sure that an order of part r from supplier v in period t must be placed so that the parts can
be purchased from that supplier in that period. Equation (11) determines the unit-purchase cost of
part r from supplier v in period t, P(Qtvr), which is based on the quantity discount brackets from
that supplier and whether an order is placed from that supplier. Equation (12) ensures that only one
quantity discount bracket can be applied for an order of part r from supplier v in period t. Equation
(13) makes sure that the quantity of part r purchased from supplier v in period t is in the correct
quantity discount bracket x. Equation (14) ensures that the quantity of all of the parts purchased from
a supplier in a period must be the purchase size of the shipment from that supplier in that period.
Equation (15) shows that only one vehicle can travel to shipment point j (excluding the factory, i.e.,
j = 0) in period t. Equation (16) makes sure that at most, one vehicle can travel from shipment point i
(excluding the factory, i.e., i = 0) to one single shipment point in period t. Equation (17) ensures that
each vehicle, if dispatched, can only travel starting from the factory (i = 0) in each period. Equation
(18) shows that all of the vehicles that travel from the factory (i = 0) will go back to the factory in each
period. Equation (19) ensures that if vehicle e travels from shipment point i (excluding the factory, i.e.,
i = 0) it will travel to only one shipment point j directly in each period. Equation (20) ensures that in
each period, at most, one vehicle can travel from shipment point i (excluding the factory, i.e., i = 0).
Equation (21) calculates the loading size from shipment point i in period t, Yti, which is the added
loading of vehicle e in that shipment point. That is, it measures the difference in the loading sizes of
the vehicle between the departure and arrival. Equation (22) ensures that for each vehicle e in each
period, the sum of the purchase sizes from all of the shipment points must be equal to the loading size
of vehicle e from all of the shipment points back to the factory. Equation (23) ensures that for each
period, the loading size of all of the vehicles from all of the shipment points back to the factory must
be equal to the sum of the purchase sizes from all of the shipment points. Equation (24) states that the
total loading of vehicle e back to the factory in period t must be less than or equal to the maximum
loading size of that vehicle. Equation (25) states that the total traveling length of vehicle e in period
t must be less than or equal to the maximum traveling length of that vehicle. Equation (26) ensures
that the production quantity of finished good g under production mode s in period t must be less than
or equal to the quantity that can be produced under production mode s. Equation (27) calculates the
ending inventory (FG+

tg) or the backlogging (FG−tg) of finished good g in period t by deducting the
accumulated demand of that good from the first period to period t from the accumulated production
quantity of that good from the first period to period t. Equation (28) calculates the total quantity of
finished good g that was produced in period t (Stg) by summing up the production quantity of that
good under all of the production modes in that period. Equation (29) calculates the ending inventory
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(F+
tr ) or the backlogging (F−tr ) of part r in period t by deducting the accumulated demand of that part

from the first period to period t from the accumulated purchase quantity of that part from the first
period to period t. Equation (30) calculates the demand of part r in period t (dtr) by multiplying the
total quantity of finished good g produced in period t (Stg) by the units of material r that are required to
produce product g (ρgr). Equations (31) to (35) define some variables as binary variables. Equation (31)
is to set αtvr, which indicates whether an order of part r from supplier v in period t is placed, as a binary
variable. Equation (32) is to set βtvrx, which indicates whether an order of part r under a quantity
discount bracket x from supplier v in period t is placed, as a binary variable. Equation (33) is to set ϕe

tij,
which indicates whether vehicle e travels from shipment point i to shipment point j in period t, as a
binary variable. Equation (34) is to set φe

ti, which indicates whether vehicle e travels from shipment
point i in period t, as a binary variable. Equation (35) is to set ωtgs, which indicates whether finished
good g is manufactured under production mode s in period t, as a binary variable.

3.4. Particle Swarm Optimization (PSO)

In this research, the PSO procedure is developed based on the constriction factor proposed by
Kennedy and Eberhart [14] and linear decreasing inertia weight proposed by Shi and Eberhart [24].
Based on the procedure, the speed of convergence can be increased and the local and global search
capabilities can be improved. The steps are as follows [25,26]:

• Step 1. Initialize particles with random positions and velocities. With a search space of
d-dimensions, a set of random particles (solutions) is first initialized. Let the lower and the
upper bounds on the variables’ values be λmin and λmax. We can randomly generate the positions,
λτ

n (the superscript denotes the τth particle, and the subscript denotes the nth iteration), and the
exploration velocities, µτ

n, of the initial swarm of particles:

λτ
0 = λmin + rand(λmax − λmin) (36)

µτ
0 =

λmin + rand(λmax − λmin)

∆
=

Position
∆

(37)

where the positions and exploration velocities are in a vector format, rand is a random number
between 0 and 1, and ∆ is the constant time increment, and is assumed to be 1.

• Step 2. Evaluate the fitness of all of the particles. The performance of each solution is evaluated
with the fitness function.

• Step 3. Generate initial feasible solutions.
• Step 4. Keep track of the locations where each individual has its highest fitness.
• Step 5. Keep track of the position with the global best fitness.
• Step 6. Update the velocity of each particle:

µτ
n+1 = ωn × µτ

n + ϕ1 × rand1 × (pbestτ
n − λτ

n) + ϕ2 × rand2 × (gbestn − λτ
n) (38)

where ωn is the inertia factor, µτ
n is the velocity of the τth particle at the nth iteration, ϕ1 and ϕ2 are

the acceleration constants toward pbest and gbest, rand1 and rand2 are random numbers between 0
and 1, pbeste

n is the best searching experience of the τth particle so far at the nth iteration, gbestn is
the best result obtained among all of the particles at the nth iteration, λτ

n is the current position of
the τth particle, and ωn can be set as a constant value or a variable changing in all of the iterations.

• Step 7. Update the position of each particle:

λτ
n+1 = λτ

n + µτ
n+1 · ∆ (39)

• Step 8. Perform production planning and generate new feasible solutions
(αtvr, Qtvr, ϑtgs, ϕe

tij, δe
tij, δe

tij, etc.).
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• Step 9. Terminate the process if a maximum number of iterations is attained. Otherwise, go to
Step 2.

4. Case Studies

The proposed MIP and PSO models for joint replenishment, transportation, and production
planning are applied in case studies here. The MIP model is implemented using the software LINGO
10, and the PSO is implemented using the software MATLAB. The proposed models aim to determine
the most appropriate replenishment amounts of the parts from various suppliers in different periods,
the routing and loading of vehicles in different periods, and the amount of each kind of product
manufactured under different production modes in different periods.

4.1. Data

In the case studies, a machine tool manufacturer in Taichung, Taiwan, is used as an example. The
manufacturer is selected because its production environment is suitable to the proposed model, and
the data is collected and revised based on the assumptions of the problem setting. The manufacturer
needs to devise its integrated replenishment, transportation, and production plan for spindles. Three
major parts need to be purchased: spindle shaft, shaft sleeve, and bearing. Each part can be purchased
from two suppliers. The information of the cases is as follows. Table 2 shows the ordering cost from
each supplier. Table 3 shows the unit cost under various quantity discounts from each supplier. Table 4
shows the inventory-holding cost of each material and finished good. Table 5 shows the fixed cost,
maximum loading size, and maximum traveling length of each vehicle. Table 6 shows the distance
and transportation cost matrix among the factory and the suppliers. Table 7 shows the production cost
of spindles under different production modes. Table 8 shows the part requirements for the finished
goods. In addition, the carbon emission costs of a small vehicle (e = 1) and large vehicle (e = 2) are $90
and $100 per kilometer, respectively. The carbon emission costs per unit of spindle shaft (r = 1), shaft
sleeve (r = 2), and bearing (r = 3) are $10, $11, and $12, respectively. The carbon emission costs per
unit of product under normal production (s = 1), overtime production (s = 2), and outsourcing (s = 3)
are $20, $20, and $30, respectively. The unit backlogging cost of a part was $50 per period, and for a
finished good was $400 per period.

Table 2. Ordering cost (ovr ) from each supplier.

Part (r) Spindle Shaft
(r = 1)

Shaft Sleeve
(r = 2) Bearing (r = 3)

Supplier 1 (v = 1) 200 Supplier 3 (v = 3) 170 Supplier 5 (v = 5) 80
Supplier 2 (v = 2) 230 Supplier 4 (v = 4) 150 Supplier 6 (v = 6) 100

Table 3. Unit cost under quantity discount from each supplier.

Spindle
Shaft
(r = 1)

Purchase
Quantity

Unit
Cost

(atv1x)

Shaft
Sleeve
(r = 2)

Purchase
Quantity

Unit
Cost

(atv2x)

Bearing
(r = 3)

Purchase
Quantity

Unit
Cost

(atv3x)

Supplier
1 (v = 1)

1–120 14,000
Supplier
3 (v = 3)

1–150 9500
Supplier
5 (v = 5)

1–100 4500
121–220 13,000 151–250 9000 101–200 4300

221–1000 12,000 251–1000 8500 201–1000 4000

Supplier
2 (v = 2)

1–100 13,800
Supplier
4 (v = 4)

1–110 9400
Supplier
6 (v = 6)

1–130 4400
101–150 13,200 111–210 8900 131–230 4200

151–1000 12,600 211–1000 8600 230–1000 3900
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Table 4. Inventory-holding cost for each part and finished product.

Part (r) Unit-Holding Cost (hr) Finished Good (g) Unit-Holding Cost (hg)

Spindle shaft (r = 1) 180 Basic spindle (g = 1) 300
Shaft sleeve (r = 2) 160 Hybrid spindle (g = 2) 300

Bearing (r = 3) 70

Table 5. Data for each vehicle.

Vehicle Type (e) Fixed Cost
(FCe) ($)

Maximum Loading Size
(we) (Unit)

Maximum Traveling Length
(ke) (Km)

Small vehicle (e = 1) 1500 500 100

Large vehicle (e = 2) 2000 1000 150

Table 6. Distance (uij) and transportation cost (cij) for vehicles.

Unit
(km/$) Factory Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5 Supplier 6

Factory 0 25/4450 30/4800 15/3500 12/3000 32/5000 20/4050
Supplier 1 25/4450 0 23/4200 27/4600 17/3600 24/4250 26/4500
Supplier 2 30/4800 23/4200 0 18/4000 25/4300 35/5600 16/3550
Supplier 3 15/3500 27/4600 18/4000 0 28/4700 15/3500 29/4700
Supplier 4 12/3000 17/3600 25/4300 28/4700 0 30/4800 18/3650
Supplier 5 32/5000 24/4250 35/5600 15/3500 30/4800 0 12/3000
Supplier 6 20/4050 26/4500 16/3550 29/4700 18/3650 12/3000 0

Table 7. Production cost under different production modes.

Production Mode (s) Production Quantity Unit Production Cost P(ϑtgs)

Normal (s = 1) 1–100 1000
Overtime (s = 2) 101–130 1900

Outsourcing (s = 3) 131– 2600

Table 8. Part requirements for finished good.

Spindle Shaft (r = 1) Shaft Sleeve (r = 2) Bearing (r = 3)

Basic spindle (g = 1) 1 1
Hybrid spindle (g = 2) 1 1 2

4.2. Case I

A simplified case is presented here. The planning horizon contains three periods, and the demand
of the finished good in each period is shown in Table 9 Case I. Assume that the firm only produces
one kind of product, a basic spindle (g = 1), which require two kinds of parts: the spindle shaft
(r = 1) and the shaft sleeve (r = 2). The spindle shaft (r = 1) can be purchased from supplier 1
(v = 1) or supplier 2 (v = 2), and the shaft sleeve (r = 2) can be purchased from supplier 3 (v = 3) or
supplier 4 (v = 4). For the transportation, a small vehicle and a large vehicle can be assigned. Three
production modes are available: normal (s = 1), overtime (s = 2), and outsourcing (s = 3). For the PSO,
the number of particles is set to be 150, and the number of iterations is set to be 1000. The results from
the MIP and the PSO are the same, as shown in Table 10. Table 10 shows that an order of spindle shaft
(r = 1) from supplier 1 (v = 1) in period 1 (t = 1) is placed, i.e., α111 = 1, and 360 units of spindle shaft
(r = 1) are purchased from supplier 1 in period 1, i.e., Q111 = 360. A quantity discount can be obtained,
and the ordering cost and transportation cost can be reduced as a result. In addition, an order of
shaft sleeve (r = 2) from supplier 3 (v = 1) in period 1 (t = 1) is placed, and 360 units of shaft sleeve
(r = 2) are purchased from supplier 3 in period 1. In period 1, 100 units of basic spindle (g = 1) are
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produced under normal production (ϑ111 = 100), and 30 units of basic spindle (g = 1) are produced
under overtime production (ϑ112 = 30). The same applies to period 2; that is, ϑ211 = 100, ϑ212 = 30. In
period 3, 100 units of basic spindle (g = 1) are produced under normal production, i.e., ϑ311 = 100. A
large vehicle (v = 2) travels from the factory to supplier 3, then to supplier 1, and back to the factory in
period 1, i.e., ϕ2

103 = 1, ϕ2
131 = 1, ϕ2

110 = 1. In addition, the loading size of the large vehicle from the
factory to supplier 3 is 0, from supplier 3 to supplier 1 is 360 units, and from supplier 1 to the factory is
720, i.e., δ2

103 = 0, δ2
131 = 360, δ2

110 = 720. The ending inventory of the spindle shaft (r = 1) at the end
of period 1 is 230 units, i.e., F+

11 = 230, and that of shaft sleeve (r = 2) is also 230, i.e., F+
12 = 230. The

ending inventory of the spindle shaft and shaft sleeve at the end of period 2 are both 100 units. Finally,
the ending inventory (FG+

11) of finished good 1 in period 1 is 18 units, and the backlogging (FG−21) of
the finished good in period 2 is 13 units.

Table 9. Demand of finished good (dtg).

Period (t) 1 2 3 4 5 6 7 8 9

Case I d11 = 112 d21 = 161 d31 = 87

Case II d12 = 90 d22 = 130 d32 = 115 d42 = 70 d52 = 95

Case III d11 = 52
d12 = 71 d21 = 138 d31 = 47

d32 = 77
d41 = 95
d42 = 25

d51 = 17
d52 = 101 d62 = 91 d71 = 27

d72 = 89
d81 = 41
d82 = 75

d91 = 78
d92 = 23

Table 10. Relevant results in each period under Case I using the mixed integer programming (MIP)
and the particle swarm optimization (PSO) models.

Decision Variables t = 1 t = 2 t = 3

αtvr α111 = 1, α132 = 1

Qtvr Q111 = 360, Q132 = 360

ϑtgs ϑ111 = 100, ϑ112 = 30 ϑ211 = 100, ϑ212 = 30 ϑ311 = 100

ϕe
tij

ϕ2
103 = 1, ϕ2

131 = 1,
ϕ2

110 = 1

δe
tij

δ2
103 = 0, δ2

131 = 360,
δ2

110 = 720

F+
tr F+

11 = 230, F+
12 = 230 F+

21 = 100, F+
22 = 100

FG+
tg FG+

11 = 18

FG−tg FG−21 = 13

Ordering
cost

Purchase
cost

Transportation
cost

Production
cost

Emission
cost

Holding
cost

Backlogging
cost Total cost

$370 $7,380,000 $15,550 $414,000 $21,460 $117,600 $5200 $7,954,180

Table 10 also shows each kind of cost and the total cost of the firm in the horizon. Since both the
MIP and the PSO models lead to the same results, the total cost is the same, i.e., $7,954,180. Figure 1
shows the vehicle routing under Case I. The computational time for the MIP is 21 seconds.

The PSO model is implemented using the software MATLAB (2015). The variant is distinguished
in the literature due to its theoretical properties that imply the following explicit selection of the
parameters by Clerc and Kennedy [27]. The criteria for a performance evaluation of the PSO algorithm
include: minimize the computational time; minimize the error; and reduce the use of variables,
such as the decision variable, auxiliary variables, and 0–1 variables. A penalty term is added to the
objective function, and infeasible solutions will be penalized. In this case, the settings ωn = 0.729 and
ϕ1 = ϕ2 = 2.05 are currently considered as the default parameter set of the constriction coefficients of
the variant. The initialized particle swarm size is selected as 50, and the maximum evolution number
of the particle swarm is 1000. The PSO converges after the 19th generation. The computational time for
the PSO is 227 s.
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Figure 1. Vehicle routing under Case I using the MIP and the PSO models.

4.3. Case II

In Case II, the planning horizon contains five periods, and the hybrid spindle (g = 2) is produced.
The demand of the finished good in each period is shown in Table 9. The firm needs to purchase
three kinds of material, i.e., spindle shaft (r = 1), shaft sleeve (r = 2), and bearing (r = 3). Each kind
of material can be purchased from two suppliers, that is, supplier 1 (v = 1) and supplier 2 (v = 2) for
spindle shaft (r = 1), supplier 3 (v = 3) and supplier 4 (v = 4) for shaft sleeve (r = 2), and supplier 5
(v = 5) and supplier 6 (v = 6) for bearing (r = 3). For the transportation, a small vehicle and a large
vehicle can be assigned. Three production modes are available. For the PSO, the number of particles
is set to be 200, and the number of iterations is set to be 1000. The results from the MIP and the PSO
models are different. The results from the MIP are shown in Table 11, and those from the PSO are
shown in Table 12. For example, an order of spindle shaft (r = 1) from supplier 1 (v = 1) in period 1
(t = 1) is placed with an amount of 121 units under the MIP model; however, the order is placed from
supplier 2 (v = 1) with an amount of 100 units under the PSO model. Nevertheless, the production
quantities of the finished good under different production modes in different periods, i.e., Qtvr, are
the same under the MIP model and the PSO model. The selection of the vehicle type, the routings of
the vehicles, and the loading of the vehicles in various periods are different under the two models.
The ending inventories of various parts in various periods are different under the two models, too.
The ending inventories or backlogging of the finished good in various periods are the same under the
two models.
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Table 11. Relevant results in each period under Case II using the MIP model.

Decision Variables t = 1 t = 2 t = 3 t = 4 t = 5

αtvr
α111 = 1, α142 = 1,

α163 = 1
α211 = 1, α242 = 1,

α253 = 1 α342 = 1, α363 = 1

Qtvr
Q111 = 121, Q142 = 111,

Q163 = 231
Q211 = 379, Q242 = 111,

Q253 = 201 Q342 = 278, Q363 = 568

ϑtgs ϑ111 = 100 ϑ211 = 100, ϑ212 = 5 ϑ311 = 100 ϑ411 = 100 ϑ311 = 95

ϕe
tij

ϕ1
106 = 1, ϕ1

164 = 1,
ϕ1

141 = 1, ϕ1
110 = 1

ϕ2
204 = 1, ϕ2

241 = 1,
ϕ2

215 = 1, ϕ2
250 = 1

ϕ2
306 = 1, ϕ2

364 = 1,
ϕ2

340 = 1

δe
tij

δ1
106 = 0, δ1

164 = 231,
δ1

141 = 342, δ1
110 = 463

δ2
204 = 0, δ2

241 = 111,
δ2

215 = 490, δ2
250 = 691

δ2
306 = 0, δ2

364 = 568,
δ2

340 = 846

F+
tr

F+
11 = 21, F+

12 = 11,
F+

13 = 31
F+

21 = 295, F+
22 = 17,

F+
23 = 22

F+
31 = 195, F+

32 = 195,
F+

33 = 390
F+

41 = 95, F+
42 = 95,

F+
43 = 190

FG+
tg FG+

11 = 10

FG−tg FG−21 = 15 FG−31 = 30

Ordering cost Purchase cost Transportation cost Production
cost

Emission
cost

Holding
cost

Backlogging
cost Total cost

$1130 $14,407,700 $52,800 $504,500 $53,200 $207,270 $18,000 $15,244,600

Table 12. Relevant results in each period under Case II using the PSO.

Decision Variables t = 1 t = 2 t = 3 t = 4 t = 5

αtvr
α121 = 1, α142 = 1,

α163 = 1
α221 = 1, α242 = 1,

α253 = 1
α311 = 1, α332 = 1,

α363 = 1 α442 = 1

Qtvr
Q121 = 100, Q142 = 100,

Q163 = 200
Q221 = 105, Q242 = 105,

Q253 = 210
Q311 = 295, Q332 = 100,

Q363 = 590 Q442 = 195

ϑtgs ϑ111 = 100 ϑ211 = 100, ϑ212 = 5 ϑ311 = 100 ϑ411 = 100 ϑ311 = 95

ϕe
tij

ϕ1
104 = 1, ϕ1

142 = 1,
ϕ1

126 = 1, ϕ1
160 = 1

ϕ1
205 = 1, ϕ1

254 = 1,
ϕ1

242 = 1, ϕ1
220 = 1

ϕ2
306 = 1, ϕ2

363 = 1,
ϕ2

331 = 1, ϕ2
310 = 1

ϕ1
404 = 1, ϕ1

440 = 1

δe
tij

δ1
104 = 0, δ1

142 = 100,
δ1

126 = 200, δ1
160 = 400

δ1
205 = 0, δ1

254 = 210,
δ1

242 = 315, δ1
220 = 420

δ2
306 = 0, δ2

363 = 590,
δ2

331 = 690, δ2
310 = 985

δ1
404 = 0, δ1

440 = 195

F+
tr F+

31 = 195, F+
33 = 390

F+
41 = 95, F+

42 = 95,
F+

43 = 190

FG+
tg FG+

11 = 10

FG−tg FG−21 = 15 FG−31 = 30

Ordering cost Purchase cost Transportation cost Production
cost

Emission
cost

Holding
cost

Backlogging
cost Total cost

$1560 $14,899,500 $68,100 $504,500 $60,850 $111,000 $18,000 $15,663,510

The total cost under the MIP model is $15,244,600. The total cost under the PSO model is
$15,663,510, which is 2.75% higher than that under the MIP model. The vehicle-routing results from
the MIP and the PSO models are also shown in Figures 2 and 3. The computational time for the MIP
model is 417 seconds. In addition, Figure 4 shows the PSO result generated from MATLAB; the optimal
solution is obtained at the 113th generation, and the computational time is 325 s.
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4.4. Case III

The planning horizon contains nine periods. The firm produces two products, a basic spindle
(g = 1) and a hybrid spindle (g = 2), and the demand of the finished good in each period is shown in
Table 9. The firm needs to purchase three kinds of material: spindle shaft (r = 1), shaft sleeve (r = 2),
and bearing (r = 3). Each kind of material can be purchased from two suppliers, that is, supplier 1
(v = 1) and supplier 2 (v = 2) for the spindle shaft (r = 1), supplier 3 (v = 3) and supplier 4
(v = 4) for the shaft sleeve (r = 2), and supplier 5 (v = 5) and supplier 6 (v = 6) for the bearing
(r = 3). For the transportation, one small vehicle and one large vehicles can be assigned. Three
production modes are available. Due to the increasing number of variables and constraints, the
problem becomes non-deterministic polynomial hard (NP-hard), and the MIP cannot obtain the
optimal solutions. Therefore, only the PSO is applied in Case III. The number of particles is set to be
250, and the number of iterations is set to be 1000. The results from the PSO are shown in Table 13
and Figure 5. The execution result from the PSO shows that the best generation occurs at the 213th

generation. The computational time for the PSO is 471 s.
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Table 13. Relevant results in each period under Case III using the PSO model.

Decision
Variables t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9

αtvr
α111 = 1, α132 = 1,

α163 = 1 α211 = 1 α332 = 1, α363 = 1 α463 = 1 α842 = 1 α921 = 1, α942 = 1

Qtvr
Q111 = 130, Q132 = 260,

Q163 = 142 Q211 = 816 Q332 = 570, Q363 = 154 Q463 = 808 Q842 = 116 Q921 = 101, Q942 = 101

ϑtgs ϑ111 = 100, ϑ112 = 30 ϑ211 = 100, ϑ212 = 30 ϑ311 = 100, ϑ312 = 25 ϑ411 = 100, ϑ412 = 20 ϑ511 = 100, ϑ512 = 18 ϑ611 = 100 ϑ711 = 100, ϑ712 = 7 ϑ811 = 100, ϑ812 = 16 ϑ911 = 100, ϑ912 = 1

ϕe
tij

ϕ2
106 = 1, ϕ2

163 = 1,
ϕ2

131 = 1, ϕ2
110 = 1

ϕ2
201 = 1, ϕ2

210 = 1
ϕ2

306 = 1, ϕ2
163 = 1,

ϕ2
130 = 1

ϕ2
406 = 1, ϕ2

460 = 1 ϕ2
804 = 1, ϕ2

840 = 1
ϕ1

904 = 1, ϕ1
942 = 1,

ϕ1
920 = 1

δe
tij

δ2
106 = 0, δ2

163 = 142,
δ2

131 = 402, δ2
110 = 532

δ2
201 = 0, δ2

210 = 816
δ2

306 = 0, δ2
163 = 154,

δ2
130 = 724

δ2
406 = 0, δ2

460 = 808 δ2
804 = 0, δ2

840 = 116
δ1

904 = 0, δ1
942 = 101,

δ1
920 = 202

F+
tr F+

12 = 130 F+
21 = 686 F+

31 = 561, F+
32 = 445

F+
41 = 441, F+

42 = 325,
F+

43 = 758
F+

51 = 323, F+
52 = 207,

F+
53 = 556

F+
61 = 232, F+

62 = 116,
F+

63 = 374
F+

71 = 116, F+
73 = 196 F+

83 = 46

FG+
tg FG+

11 = 7 FG+
61 = 9

FG−tg FG−21 = 1

Ordering cost Purchase cost Transportation cost Production
cost Emission cost Holding cost Backlogging cost Total cost

$1570 $26,246,400 $80,150 $1,179,300 $89,205 $760,200 $400 $28,357,225
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5. Results and Discussions

The aim of this research is to develop an integrated operations plan that minimizes the
replenishment, transportation, production, and emission costs, subject to all of the constraints involved.
In the past, only several kinds of costs were considered in relevant problems [19–23]. However, in
this study, we take seven different kinds of costs into consideration, i.e., ordering cost, purchase cost,
transportation cost, production cost, carbon-emission cost, holding cost, and backlogging cost. As
shown in Table 1, this research is more comprehensive compared to other works. It considers the
green supply chain, the transportation problem, and the emission issue, and constructs a mathematical
model and an algorithm aiming to find the global optimum. Therefore, integrated models for a
sustainable supply chain are developed in this study. For small to medium-scale problems, the MIP
models are constructed to solve the problem using the software LINGO. The solutions are the global
optimums. However, when the scale of the problem increases, the problem becomes NP-hard. Thus,
for medium to large-scale problems, the PSO can be applied to solve the problems efficiently and find
near-optimal solutions.

Sensitivity analysis is applied to Case II to show the robustness of the proposed MIP model.
Table 14 shows the effects of parameter changes on the total cost of the system. When the value of
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FCe, the fixed cost of vehicle e per trip, changes, the assignment of different vehicles in each period
changes. Thus, when FCe increases by 50%, the total cost increases from $15,244,600 to $15,249,250.
When the value of θe

1, θr
2, θs

3, cij, ovr, hr or hg increases (decreases) by up to 50% individually, the values
for the decision variables do not change, and the total cost changes due to the changes in the specific
parameter. When the value of εr, the unit-backlogging cost of part r per period, changes, the total
cost does not change. This is because there is no backlogging of parts in all of the periods. When the
value of εg, the unit-backlogging cost of finished good g per period, changes, the production quantity,
production mode, and backlogging of finished goods in different periods change, too.

Table 14. Effects of parameter changes on the system under Case II.

Parameters Changes
(in %) Total Cost Parameters Changes

(in %) Total Cost

+50% $15,249,250 +50% $15,245,160
FCe +25% $15,247,220 ovr +25% $15,244,880

−25% $15,241,980 −25% $15,244,320
−50% $15,239,050 −50% $15,244,040

+50% $15,254,950 +50% $15,346,740
θe

1 +25% $15,249,780 hr +25% $15,295,670
−25% $15,239,420 −25% $15,193,530
−50% $15,234,200 −50% $15,142,460

+50% $15,255,850 +50% $15,246,100
θr

2 +25% $15,250,225 hg +25% $15,245,350
−25% $15,238,975 −25% $15,243,850
−50% $15,233,350 −50% $15,243,100

+50% $15,249,600 +50% $15,244,600
θs

3 +25% $15,247,100 εr +25% $15,244,600
−25% $15,242,100 −25% $15,244,600
−50% $15,239,600 −50% $15,244,600

+50% $15,265,750 +50% $15,249,100
cij +25% $15,255,180 εg +25% $15,247,600

−25% $15,233,980 −25% $15,240,100
−50% $15,223,350 −50% $15,234,100

Based on the proposed models, managers can devise their supply chain plans. For the
replenishment decisions, the managers can determine when the firm should purchase their parts, from
which supplier(s), with what quantity, and at what unit-purchase cost. For the production decisions,
the managers can determine when and how many units the firm should produce of their products,
what kind of production mode to use, and at what unit-production cost. For the transportation
decisions, the managers can determine when and which vehicle(s) should be assigned to certain
shipment points. The solutions can enable managers to minimize the total costs of the firm.

6. Conclusions

This research proposes two models to the replenishment, transportation, and production
problem where the vehicle routing must be optimized together with the production modes and the
replenishment policies. This research aims to reflect the production environment in real practice,
including quantity discounts from different suppliers, different sizes of vehicles with different
emissions, and production-capacity constraints. Through the proposed models, operation schedules
are devised to coordinate the replenishment, transportation, and production activities and minimize
the total cost (i.e., the sum of replenishment, transportation, production, and emission cost) over a
given planning horizon, while the customer demand, vehicle travel length, and loading constraints,
plant production, and inventory and backlogging constraints are all satisfied. Both a mixed integer
programming (MIP) model and a particle swarm optimization (PSO) model are constructed to solve
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this sustainable supply chain management problem to minimize the total cost in the system during a
planning horizon. When the problem scale is small, both the MIP and the PSO can lead to optimal
solutions within a reasonable time. However, when the problem becomes complicated and reflects real
application more, the MIP model may require a long computational time and may still not obtain the
optimal solution. On the other hand, the PSO can be an efficient model for obtaining a near-optimal
solution. Based on the results of the models, managers can devise their supply chain plans, including
the purchase, production, and transportation decisions, efficiently.

In this research, a lot of aspects are presumed to be known and fixed. For example, the demand,
lead time, quantity discount information, and transportation issues are known. However, in practice, a
supply chain environment usually consists of uncertain demand, variable lead time, different ranks of
orders, different quantity discounts under different situations, uncertain transportation conditions,
etc. Additional cost and time issues can be considered to meet the practical requirements; these
could include for example, the lead-time constraint for part procurement, crashing cost for shipment,
limited storage capacity, and fixed setup cost under different production modes. Thus, some of the
assumptions that were made in the study can be relaxed to consider these issues and better represent a
real sustainable supply chain setting. The problem can be constructed as a multi-objective problem to
consider multiple objectives, such as decreasing the monetary cost, increasing the sustainability, and
increasing the social responsibility of the system. Both a multi-objective programming model and a
PSO model may be constructed to solve the problem. In addition, other heuristics, such as a genetic
algorithm, ant colony system, and artificial immune system may be applied, and a comparison of the
methods can be performed to examine which method is more suitable for solving the problem.
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Abbreviations

Notations for the MIPIndices:
v Supplier (v = 1, 2, 3, . . . , V)
r Part (r = 1, 2, 3, . . . , R)
g Finished good (g = 1, 2, 3, . . . , G)
t Period (t = 1, 2, 3, . . . , T)
s Production mode (s = 1, 2, 3, . . . , S)
x Quantity discount bracket for parts (x = 1, 2, 3, . . . , X)
i, j Shipment point, 0 indicates factory (i = 1, 2, 3, . . . , I; j = 1, 2, 3, . . . , J)
e Vehicle (e = 1, 2, 3, . . . , E)

Parameters:

dtr Demand of part r in period t
dtg Demand of finished good g in period t
ovr Ordering cost of part r from supplier v for each purchase
hr Unit holding cost of part r per period
hg Unit holding cost of finished good g per period
εr Unit backlogging cost of part r per period
εg Unit backlogging cost of finished good g per period



Sustainability 2018, 10, 3887 20 of 21

M A large number
atvrx Unit purchase cost of part r under quantity discount bracket x from supplier v in period t
lvrx Maximum quantity of part r under quantity discount bracket x from supplier v

zgs
Maximum accumulated quantity of finished good g that can be produced from production mode 1
to s

ke Maximum travelling length of vehicle e
uij Distance from shipment point i to shipment point j
we Maximum loading size of vehicle e
ρgr Units of material r required to produce product g.
cij Transportation cost from shipment point i to shipment point j
FCe Fixed cost of vehicle e per trip
θe

1 Carbon emission cost of vehicle e per distance
θr

2 Carbon emission cost per unit of material r
θs

3 Carbon emission cost per unit of product under production mode s

Decision variables:

P(Qtvr) Unit purchase cost of part r from supplier v in period t
Qtvr Quantity of part r purchased from supplier v in period t
Str Total quantity of part r purchased in period t

P
(
ϑtgs

) Unit production cost of finished good g under production mode s in period t. Depending
on the quantity manufactured, the unit production cost will be based on the production
mode.

P
(
ϑtgs

)
Production quantity of finished good g under production mode s in period t

Stg Total quantity of finished good g produced in period t
Yti Purchase size from shipment point i in period t
δe

tij Loading size of vehicle e from shipment point i to shipment point j in period t
F+

tr Ending inventory of part r in period t
FG+

tg Ending inventory of finished good g in period t
F−tr Backlogging of part r in period t
FG−tg Backlogging of finished good g in period t

αtvr
Binary variable, 1 indicates that an order of part r from supplier v in period t is placed, and
0 indicates that no order is placed

βtvrx
Binary variable, 1 indicates that an order of part r under quantity discount bracket x from
supplier v in period t is placed, and 0 indicates that no order is placed

ϕe
tij

Binary variable, 1 indicates that vehicle e travels from shipment point i to shipment point j
in period t, and 0 indicates that no travel is incurred

φe
ti

Binary variable, 1 indicates that vehicle e travels from shipment point i in period t, and 0
indicates that no travel is incurred

ωtgs
Binary variable, 1 indicates that finished good g is manufactured under production mode s
in period t, and 0 indicates that no product is manufactured
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