OpenZmeter: An Efficient Low-Cost Energy Smart Meter and Power Quality Analyzer
Abstract
:1. Introduction
2. An Overview of Electric Energy Metering
3. The openZmeter (oZm)
3.1. Physical Layout
3.2. Technical Specifications
- Free and open system: open source software and hardware;
- Electrical measurements: effective voltage and current values, active, reactive, apparent and distortion power, power factor, harmonics (up to order 50), active and reactive energy, frequency, voltage events (gaps, over-voltages, interruptions) in real-time and stored in database;
- Measurement in four quadrants to measure consumption and generation of energy. Valid for renewable energy systems (e.g., photovoltaic, wind, etc.);
- Testing according to the international standards IEC 61000-4-30 and EN 50160. Voltage measurement with precision of 0.1% for raw values. Frequency measurement with precision of 10 mHz (in the range 42.5–57.5 Hz). Current measurement up to 50 A (integrated Hall-effect sensor). Current clamp or Rogowsky coil as an option;
- Sampling frequency of 15,625 Hz (64 s between samples). Frequency measurement is performed using a digital input filter to minimize noise and interharmonic components. According to IEC61000-4-30, 10 s of signal are taken and the zero crossing method is applied;
- Aggregation in the voltage channel of 10 cycles, 3 s, 10 min according to standard and one hour as extra aggregation for energy;
- Cutting-edge web based on HTML5, CSS3, and JavaScript for data analysis and SCADA;
- Alert system and event management (ITIC/CBEMA, frequency, over/under-voltage, interruptions, etc.);
- FFT integration, zero crossing, and RVC from scratch (Rapid Voltage Changes according to IEC61000-4-30 with 5% threshold);
- Time synchronization based on NTP time service. Time error less than 20 ms using Chronyd daemon.
- User-friendly and powerful interface;
- Modular, with the possibility of adding new capture modules;
- Connectivity: USB ports (Wi-Fi dongle, 3G/LTE/4G, etc.), Ethernet port, and Wi-Fi. SPI, I2C, UART and PWM are also available;
- Connection to the grid operator’s information system (eSios) to get daily energy prices and calculate the cost of energy in real-time;
- Integration with Telegram applications for the generation of periodic reports and alerts in real time. Remote access to relevant information;
- Specific API for third-party integration based on JSON.
3.3. Building Configuration and Setup
4. Usage Analysis in a Real Environment
4.1. Description of the Environment
4.2. Data Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pritoni, M.; Salmon, K.; Sanguinetti, A.; Morejohn, J.; Modera, M. Occupant thermal feedback for improved efficiency in university buildings. Energy Build. 2017, 144, 241–250. [Google Scholar] [CrossRef]
- Torrent-Fontbona, F.; Lopez, B. Power re-allocation for reducing contracted electric power costs. Energy Build. 2015, 89, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Perez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Aiad, M.; Lee, P.H. Unsupervised approach for load disaggregation with devices interactions. Energy Build. 2016, 116, 96–103. [Google Scholar] [CrossRef]
- Morales-Velazquez, L.; de Jesus Romero-Troncoso, R.; Herrera-Ruiz, G.; Morinigo-Sotelo, D.; Osornio-Rios, R.A. Smart sensor network for power quality monitoring in electrical installations. Measurement 2017, 2017 103, 133–142. [Google Scholar] [CrossRef]
- Muñoz, D.R.; Pérez, D.M.; Moreno, J.S.; Berga, S.C.; Montero, E.C. Design and experimental verification of a smart sensor to measure the energy and power consumption in a one-phase AC line. Measurement 2009, 2009 42, 412–419. [Google Scholar] [CrossRef]
- Kabalci, Y. A survey on smart metering and smart grid communication. Renew. Sustain. Energy Rev. 2016, 2016 57, 302–318. [Google Scholar] [CrossRef]
- Bayram, I.S.; Ustun, T.S. A survey on behind the meter energy management systems in smart grid. Renew. Sustain. Energy Rev. 2017, 72, 1208–1232. [Google Scholar] [CrossRef]
- Stephen, B.; Mutanen, A.J.; Galloway, S.; Burt, G.; Järventausta, P. Enhanced Load Profiling for Residential Network Customers. IEEE Trans. Power Deliv. 2014, 29, 88–96. [Google Scholar] [CrossRef] [Green Version]
- O’Driscoll, E.; O’Donnell, G.E. Industrial power and energy metering—A state-of-the-art review. J. Clean. Prod. 2013, 41, 53–64. [Google Scholar] [CrossRef]
- Lanziser, S.; Dawson-Haggerty, S.; Cheung, H.Y.I.; Taneja, Y.; Culler, D.; Brown, R. Building and Environment Methods for detailed energy data collection of miscellaneous and electronic loads in a commercial office building. Build. Environ. 2013, 65, 170–177. [Google Scholar] [CrossRef]
- Seo, Y.-K.; Hong, W.-H. Constructing electricity load profile and formulating load pattern for urban apartment in Korea. Energy Build. 2014, 78, 222–230. [Google Scholar] [CrossRef]
- Ahmadi-Karvigh, S.; Ghahramani, A.; Becerik-Gerber, B.; Soibelman, L. Real-time activity recognition for energy efficiency in buildings. Appl. Energy 2018, 211, 146–160. [Google Scholar] [CrossRef]
- Montoya, F.G.; García-Cruz, A.; Montoya, M.G.; Manzano-Agugliaro, F. Power quality techniques research worldwide: A review. Renew. Sustain. Energy Rev. 2016, 54, 846–856. [Google Scholar] [CrossRef]
- Miller, C.; Meggers, F. Mining electrical meter data to predict principal building use, performance class, and operations strategy for hundreds of non-residential buildings. Energy Build. 2017, 156, 360–373. [Google Scholar] [CrossRef]
- Kluczek, A.; Olszewski, P. Energy audits in industrial processes Research article. J. Clean. Prod. 2017, 142, 3437–3453. [Google Scholar] [CrossRef]
- Pellegrinelli, G.; Baù, M.; Cerini, F.; Dalola, S.; Ferrari, V. Portable energy-logger circuit for the experimental evaluation of energy harvesting solutions from motion for wearable autonomous sensors. Procedia Eng. 2014, 87, 1230–1233. [Google Scholar] [CrossRef]
- Atalik, T.; Čadirci, I.; Demirci, T.; Ermis, M.; Inan, T.; Kalaycioglu, A.S.; Salor, Ö. Multipurpose platform for power system monitoring and analysis with sample grid applications. IEEE Trans. Instrum. Meas. 2014, 63, 566–582. [Google Scholar] [CrossRef]
- Rodrigues, E.M.G.; Godina, R.; Shafie-Khah, M.; Catalão, J.P.S. Experimental results on a wireless wattmeter device for the integration in home energy management systems. Energies 2017, 10, 398. [Google Scholar] [CrossRef]
- Tomesc, L.; Dobra, P.; Abrudean, M. Low-cost power quality analyzer. IFAC Proc. Vol. 2007, 40, 157–162. [Google Scholar] [CrossRef]
- OpenEnergyMonitor. Available online: https://openenergymonitor.org/ (accessed on 26 February 2018).
- Pereira, R.; Figueiredo, J.; Melicio, R.; Mendes, V.M.F.; Martins, J.; Quadrado, J.C. Consumer energy management system with integration of smart meters. Energy Rep. 2015, 1, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Mumtaz, Z.; Ullah, S.; Ilyas, Z.; Aslam, N.; Iqbal, S.; Liu, S.; Madni, H. An automation system for controlling streetlights and monitoring objects using Arduino. Sensors 2018, 18, 3178. [Google Scholar] [CrossRef] [PubMed]
- Martinez, B.; Vilajosana, X.; Kim, I.H.; Zhou, J.; Tuset-Peiró, P.; Xhafa, A.; Lu, X. I3Mote: An open development platform for the intelligent industrial internet. Sensors 2017, 17, 986. [Google Scholar] [CrossRef] [PubMed]
- Syafrudin, M.; Fitriyani, N.L.; Li, D.; Alfian, G.; Rhee, J.; Kang, Y.S. An Open Source-Based Real-Time Data Processing Architecture Framework for Manufacturing Sustainability. Sustainability 2017, 9, 2139. [Google Scholar] [CrossRef]
- Pocero, L.; Amaxilatis, D.; Mylonas, G.; Chatzigiannakis, I. Open source IoT meter devices for smart and energy-efficient school buildings. HardwareX 2017, 1, 54–67. [Google Scholar] [CrossRef]
- Masnicki, R. Measurement characteristics in an instrument for power quality estimation—A Case Study. Energies 2017, 10, 536. [Google Scholar] [CrossRef]
- Woolley, N.C.; Avendaño-Mora, J.M.; Milanović, J.V. Methodology for robust monitoring of voltage sags based on equipment trip probabilities. Electr. Power Syst. Res. 2012, 90, 107–116. [Google Scholar] [CrossRef]
- Hernandez, W.; Calderón-Córdova, C.; Brito, E.; Campoverde, E.; González-Posada, V.; Zato, J.G. A method of verifying the statistical performance of electronic circuits designed to analyze the power quality. Measurement 2016, 93, 21–28. [Google Scholar] [CrossRef]
- Masoum, M.A.S.; Fuchs, E.F. Power Quality in Power Systems and Electrical Machines. In Impact of Poor Power Quality on Reliability, Relaying and Security, 2nd ed.; Masoum, M.A.S., Fuchs, E.F., Eds.; Academic Press/Elsevier: Amsterdam, The Netherlands, 2015; pp. 681–778. [Google Scholar]
- Few, S. Time on the Horizon. Visual Business Intelligence Newsletter, June/July 2008. Available online: http://www.perceptualedge.com/articles/visual_business_intelligence/time_on_the_horizon.pdf (accessed on 26 February 2018).
oZm (openZmeter) | Flukso | OpenEnergyMonitor | OpenPowerQuality | Geo Minim | Current Cost | Efergy | Alertme | Wibeee | Sense Energy Monitor | CURB | PQUBE3 | Smapee | Neurio | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Active Energy | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Reactive Energy | Yes | No | No | No | No | No | No | No | No | No | No | Yes | No | No |
Active Power | Yes | Yes | Yes | No | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Reactive Power | Yes | No | No | No | No | No | No | No | No | No | No | Yes | No | No |
Apparent Power | Yes | No | Yes | No | No | No | No | No | No | No | No | Yes | No | No |
Frequency | Yes | No | No | Yes | No | No | No | No | No | No | No | Yes | No | No |
RMS Voltage | Yes | No | Yes | Yes | No | No | No | No | Yes | No | No | Yes | Yes | Yes |
RMS Current | Yes | No | Yes | No | No | No | No | No | Yes | Yes | No | Yes | Yes | Yes |
Power Factor | Yes | No | No | No | No | No | No | No | No | No | No | Yes | No | No |
Angle | Yes | No | No | No | No | No | No | No | No | No | No | Yes | No | No |
Voltage Events | Yes | No | No | Yes | No | No | No | No | No | No | No | Yes | No | No |
4 Quadrant | Yes | No | No | No | No | No | No | No | No | Yes | Yes | Yes | No | Yes |
EN50160 | Yes | No | No | No | No | No | No | No | No | No | No | Yes | No | No |
IEC61000-4-30 | Yes | No | No | Yes | No | No | No | No | No | No | No | Yes | No | No |
High Samp. Rate | Yes | No | Yes | Yes | No | No | No | No | No | Yes | Yes | Yes | No | No |
Aggr. Interv. | Yes | No | No | No | No | No | No | No | No | No | No | No | No | No |
HTML5 Interface | Yes | Yes | Yes | Yes | No | No | No | Yes | Yes | Yes | Yes | No | Yes | Yes |
Alert System | Yes | No | No | Yes | No | No | No | No | Yes | Yes | Yes | No | Yes | Yes |
ITCI/CBEMA | Yes | No | No | Yes | No | No | No | No | No | No | No | No | No | No |
Zero Crossing | Yes | No | Yes | Yes | No | No | No | No | No | No | No | Yes | No | No |
FFT | Yes | No | No | Yes | No | No | No | No | No | Yes | No | Yes | No | No |
Harmonics | Yes | No | No | Yes | No | No | No | No | No | No | No | Yes | No | No |
THD | Yes | No | No | Yes | No | No | No | No | No | No | No | Yes | No | No |
4G | Yes | Yes | No | No | No | No | No | No | No | No | No | No | No | No |
Wi-Fi | Yes | Yes | Yes | No | Yes | No | No | No | Yes | Yes | Yes | No | Yes | Yes |
Ethernet | Yes | Yes | Yes | Yes | No | No | No | Yes | No | No | No | Yes | No | No |
API | Yes | Yes | Yes | No | No | No | No | No | No | No | No | No | No | No |
Realtime Pricing | Yes | No | No | No | Yes | No | No | Yes | No | No | No | No | No | No |
Phasor | Yes | No | No | No | No | No | No | No | No | No | No | No | No | No |
Telegram | Yes | No | No | No | No | No | No | No | No | No | No | No | No | No |
Open Source | Yes | Yes | Yes | Yes | No | No | No | No | No | No | No | No | No | No |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viciana, E.; Alcayde, A.; Montoya, F.G.; Baños, R.; Arrabal-Campos, F.M.; Zapata-Sierra, A.; Manzano-Agugliaro, F. OpenZmeter: An Efficient Low-Cost Energy Smart Meter and Power Quality Analyzer. Sustainability 2018, 10, 4038. https://doi.org/10.3390/su10114038
Viciana E, Alcayde A, Montoya FG, Baños R, Arrabal-Campos FM, Zapata-Sierra A, Manzano-Agugliaro F. OpenZmeter: An Efficient Low-Cost Energy Smart Meter and Power Quality Analyzer. Sustainability. 2018; 10(11):4038. https://doi.org/10.3390/su10114038
Chicago/Turabian StyleViciana, Eduardo, Alfredo Alcayde, Francisco G. Montoya, Raul Baños, Francisco M. Arrabal-Campos, Antonio Zapata-Sierra, and Francisco Manzano-Agugliaro. 2018. "OpenZmeter: An Efficient Low-Cost Energy Smart Meter and Power Quality Analyzer" Sustainability 10, no. 11: 4038. https://doi.org/10.3390/su10114038
APA StyleViciana, E., Alcayde, A., Montoya, F. G., Baños, R., Arrabal-Campos, F. M., Zapata-Sierra, A., & Manzano-Agugliaro, F. (2018). OpenZmeter: An Efficient Low-Cost Energy Smart Meter and Power Quality Analyzer. Sustainability, 10(11), 4038. https://doi.org/10.3390/su10114038