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Abstract: Metallic elements present in livestock manure as co-contaminants have the potential
to cause terrestrial ecotoxic impacts when the manure is used as fertilizer on agricultural soils.
The magnitude of this impact at country scale in Europe has, to date, not been quantified. Here,
we address this knowledge gap by combining recently developed national emission inventories
of Cd, Cu, Ni, Pb and Zn releases from manure with metal- and soil-specific comparative toxicity
potentials (CTP) calculated for cropland grid cells at 1 × 1 km resolution for 33 European countries.
The CTPs account for speciation in environmental fate, exposure and effects, including reduction in
the solid-phase reactivity of a metal when it is associated with organic carbon present in the manure.
Given the scarcity of inventory data at sub-national level, it was assumed that each unit area of
cropland within a given country has the same probability to receive manure. The resulting CTPs
span a range of several orders of magnitude reflecting the influence of soil type and properties on the
speciation patterns and resulting CTP values. However, when combined with the use of manure in
each European country, the resulting national impact scores were mainly explained by the total mass
input of metal released to soil rather than by geographic variability in the CTP values. Simple linear
regression is then sufficient to predict terrestrial ecotoxic impacts from input mass. Although some
changes in ranking of metals and countries were observed, both mass- and impact-based comparisons
between metals agreed that Zn and Cu are dominant contributors to total impacts, and that top
contributing countries were those emitting the largest amounts of metals. Our findings show that
spatially differentiated impact assessment is important for ranking of countries when differences in
national emission inventories between countries are smaller than a factor of two (Ni), a factor of three
(Cd, Cu, Zn) or a factor of four (Pb). In other cases, ranking of countries can be based on national
emission inventories.
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1. Introduction

Livestock manure is widely used by farmers to contribute to agricultural soil fertilization. Yet it
also constitutes an important source of metallic elements to agricultural soils, contributing from 25%
to 75% of the total metal inputs [1–6]. A systematic quantification of these inputs is a prerequisite for
robust estimation of their potential toxic impacts on terrestrial ecosystems. Recently, a harmonized
framework for building such emission inventories was developed and applied for 8 metallic elements
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(As, Cd, Cr, Cu, Hg, Pb, Ni, Zn) in 215 countries over the period 2000–2014 by Leclerc and Laurent [7].
Their framework and its resulting inventories enable a fair comparison of metal inputs from manure
application across all countries worldwide. It showed that total emissions of metallic elements in
Europe reached more than 70 kt in 2014, and were dominated by Zn and Cu emissions [7].

Potential ecotoxic impacts of metals in terrestrial environments stemming from manure
application on agricultural soils can be quantified employing comparative toxicity potentials, CTPs [8].
The CTP represents the potential time- and space-integrated impacts resulting from the emissions
of a metal in a given compartment. CTPs should be interpreted as relative performance indicators,
which can be used to compare systems, rather than indicators of real effects on the environment [9,10].
A system with a higher impact score has a higher potential to affect species living in the environment
and ultimately cause species loss. For metals, the CTP depends on the persistence of the metal in the
environment, the exposure to organisms living in the contaminated soil, and the inherent ecotoxic
potency of the toxic metal forms (for cationic metals typically free ions). All these factors are determined
by soil chemistry, which influences the speciation patterns of metals both in the solid phase of the soil
and in soil pore water [11].

There are currently two major challenges associated with the assessment of potential ecotoxic
impacts of metals resulting from the application of manures on agricultural soils, namely: (i) the
relatively low accessibility for uptake by biota and fate processes (like leaching and runoff) of a metal
present in manure as a co-contaminant, typically bound to organic ligands; and (ii) the large geographic
variability in soil properties (like pH), determining the speciation pattern of metals in soil and the
resulting CTP values.

The first challenge relates to the current reporting practice, where emissions of metals are reported
according to their elemental content and oxidation state (e.g., Cu(II)) [12]. This current inventory
practice has been criticized as it does not consider differences in solid-phase reactivity (accessibility)
of metals emitted from various anthropogenic sources [13]. Owsianiak et al. [13] found that the
accessibility of metals emitted from organic-related sources (including direct application of biosolids,
manure, compost, or wastewater irrigation) was smaller than the accessibility of readily soluble metal
salts, and was comparable to the reactivity of metals emitted from airborne sources (like power plants
or metal smelters) and those in geogenic contamination. This was due to either: (i) differences in
inherent reactivity of a metal in the emission source, or (ii) aging and weathering reactions occurring
in soil, which can result in the formation of new metal species of different accessibility than that of
the metal forms present originally in the emission source, or (iii) the combination of both. The second
challenge relates to the current impact assessment practice, where metal speciation in soil is generally
not considered [12,14]. Speciation is important for environmental fate, accessibility, bioavailability
and effects of metals [11]. CTPs considering speciation were calculated for common cationic metals
(with focus on Cu, Ni, and Zn) [11,15–17], but no country-scale assessment of the impacts resulting
from metal emissions associated with the application of manure to agricultural soils considering these
factors has, to date, been reported in the literature.

In this work, we address the two aforementioned challenges with the overarching objective of
assessing and comparing country-scale potential ecotoxic impacts resulting from the application of
manure to European agricultural soils. Both the accessibility of metals applied to soil as manure
co-contaminants and the geographic variability in soil properties were considered. For this purpose,
new soil-specific CTPs were calculated for cropland grid cells at 1 × 1 km resolution and applied to
the national release inventories from Leclerc and Laurent for the year 2014 [7]. The study focuses on
Cd, Cu, Ni, Pb and Zn, because these elements represent the dominant metal inputs to agricultural
soils and are known for their ecotoxic potency to soil organisms [18].
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2. Materials and Methods

2.1. Overall Assessment Methodology

The metal- and country-specific impact score (ISs, in m3
pore water·day) is a sum product of

grid-specific emissions (mi,s, in kg) and grid-specific comparative toxicity potentials (CTPi,s, in
m3

pore water·day/kgtotal emitted to soil) (Equation (1)) [11].

ISs = ∑i=n
i=1 mi,s·CTPi,s =

mtotal,s

Atotal
·∑i=n

i=1 Ai·CTPi,s = mtotal,s·CTPs (1)

where

CTPs =
∑i=n

i=1 Ai·CTPi,s

Atotal
(2)

where i indicates a grid cell, n is the number of grid cells in the country, mi,s (in kg) is the mass of
metal s emitted to agricultural soil in the grid cell i, mtotal,s (in kg) is the total emission of metal s in
the country, Ai is the area of cropland in a given grid cell i, and Atotal is the total area of cropland in
the country. The product of Atotal, Ai and CTPi,s (Equation (2)) could be considered as area-weighed,
country-specific comparative toxicity potential of metal s, CTPs. It can be combined with national
emission inventory, mtotal,s, to calculate country-specific impact score (Equation (1)).

In this study, it was assumed that manure is applied to agricultural soils classified as cropland only.
Given the scarcity of inventory data at sub-national level, it was furthermore assumed that each unit area
of cropland within a given country has the same probability to receive manure and that the associated
quantity of metals released per unit of applied manure is identical. Thus, correspondingly lower probability
of receiving emission was assigned to those grid cells which contain land use types other than cropland.

Figure 1 gives a schematic overview of the methodology used to calculate metal- and
country-specific impact scores. Details of the approach for deriving grid-specific emission inventories
and grid-specific CTPs are presented thereafter.
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Figure 1. Schematic overview of major methodological steps in the study using the example of Albania.
Section 2.4. explains calculation of grid-specific CTPs,i using Equation (3). HWSD: Harmonized World
Soil Database [19].

2.2. Countries Considered

Our goal was to consider all countries located in continental Europe for which national emission
inventories of the five elements were available (41 countries in total) [7]. However, due to computation
issues (large demand for memory when handling spatial data), impact scores could not be calculated
for 8 to 11 countries, depending on the metal. The reader is referred to Section 3.3, where the impact
scores for these countries will be discussed in detail and calculated using an alternative approach.
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2.3. Grid-Specific Emission Inventories

To calculate grid-specific emission inventories, the national emission inventories of metal releases
to agricultural soils resulting from the application of manure quantified by Leclerc and Laurent were
taken as starting point [7]. To date, these are the most robust national inventories in terms of consistency
and refinement of the methodology.

The map of manure nitrogen application rate at sub-basin level developed by Bouraoui et al.
(2011) shows that application rates may span 2 orders of magnitude within a given country (e.g., from
1 to 170 kg N/ha of total sub-basin area in Italy in 2005). Within a country, the area with the most
intensive application rates tend to correspond to areas with a large density of croplands (e.g., the valley
of the river Po in Italy), while the areas with the least intensive application rates tend to correspond to
urban areas, natural parks or mountainous areas (e.g., the Alps) [20]. Consequently, it was assumed in
this study that manure is applied to agricultural soils classified as cropland only. The application rate
of manure on a given cultivated crop is further determined by the nutrient requirements of the soil
and the economic feasibility of using manure rather than mineral fertilizer. The latter is influenced by
the distance to the livestock farm, the type of livestock manure, the type of crop, and the properties
of the soil [21,22]. However, given the scarcity of publicly available inventory data at sub-national
level on such parameters, it was furthermore assumed that each unit area of cropland within a given
country has the same probability to receive manure, and the metal releases associated with it. A similar
assumption was carried out by the US EPA to model maps displaying the application rate of livestock
manure nitrogen in EnviroAtlas [23]. Thus, correspondingly lower probability to receive emission was
assigned to those grid cells which contain land use types other than cropland. Under this assumption,
grid-specific emission inventories were derived using global maps of cropland areas retrieved at
1 × 1 km resolution using FAO Global Land Cover (GLC-SHARE) Beta-Release 1.0 Database [24].
The uncertainty associated with this simplification of regional variations in manure application rates is
further discussed in Section 3.3.2.

The inventory from Leclerc and Laurent [7] builds on the combination of (i) the mass of manure
from 16 livestock applied in each country, (ii) the share of animal effluents collected as liquid slurry or
solid manure, and (iii) the concentration of heavy metals in manures. Manure application statistics
were retrieved from FAOSTAT, which assumes that all manure that is produced in a country is reused
on agricultural crops [4]. The reuse of manure for biogas production or other end-of-life strategies
is thus neglected. A questionnaire documented the proportion of liquid slurry and solid manure
for dairy cattle, non-dairy cattle and swine in 17 European countries [3]. The geometric mean for
each livestock was assumed to be representative for other European (and non-European) countries.
For livestock not included in the questionnaire, only solid manure was considered, as no data for liquid
slurry could be retrieved. A literature review demonstrated that time- and country-differentiation of
heavy metal concentrations was not statistically significant due to the paucity of data and the variety
of measurement methodologies [7]. Average concentrations for Europe were thus used by default.
Details of the inventories are given in Appendix A.1.

2.4. Grid-Specific Comparative Toxicity Potentials

Global maps of soil properties (pH, organic carbon, etc.) were retrieved from the Harmonized
World Soil Database (version 1.2) [19] with the same spatial resolution (1 × 1 km) as the cropland
area maps, thus allowing the calculation of grid-specific CTPs that account for differences in soil
chemistry. The grid-specific CTPs were calculated as a product of a fate factor (FF), an accessibility
factor (ACF), a bioavailability factor (BF) and an effect factor (EF) using the framework proposed by
Owsianiak et al. [11,13,25] (Equation (3)). An overview of the data and models used for calculations is
presented in Table 1, while a brief explanation of the factors is given below.

CTPi,s = FFi,s·ACFs·BFi,s·EFi,s (3)
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where CTPi,s (m3
pore water·day/kgtotal emitted to soil) is the comparative toxicity potential for a metal s

in grid cell i; FFi,s (in kgtotal/kgtotal emitted to soil·day) is the fate factor of metal s in agricultural soil
in grid cell i; ACFs (kgreactive/kgtotal) is the accessibility factor of metal s in agricultural soil; BFi,s

(kgfree/kgreactive) is the bioavailability factor of metal s in grid cell i, defined as the free ion fraction of
the reactive metal in the soil; and EFi,s (m3

pore water/kgfree) is the terrestrial ecotoxicity effect factor of
metal s in grid cell i, defined as the potentially affected fraction (PAF) of species for the free ion form of
the metal [26].

The fate factor FF represents the change in the steady state amount of metal in the soil layer
that results from a unit change in the emission flow rate [27]. Grid-specific distribution coefficients
between solid-phase metal and totally dissolved metal, which are needed for modelling the fate factors,
were calculated employing empirical regression models predicting total dissolved concentration from
reactive concentration and soil properties (see Table 1). Finally, grid-specific fate factors were calculated
using the fate module of USEtox, version 2.02, for the infinite time horizon [28]. USEtox is a consensus
model developed through comparison and harmonization of seven LCIA-suited models and considers
major fate mechanisms [8,29]. Fate factors calculated using USEtox are mathematically equivalent to
time-integrated exposure over the residence time of the metal in the soil [30]. Thus, the fate factor
makes it possible to capture both short- and long-term potential ecotoxic impacts resulting from
metal emissions.

The accessibility factor ACF takes into account the role of the reactive, solid-phase metal pool in
the soil. The accessible metal pool determines which fraction of the solid metal can become available for
uptake by biota, leaching to deep soil layers or runoff to surface water [11,13]. This fraction is expected
to be smaller for manure-related metals when compared with metals from other sources [31,32].
Grid-generic accessibility factors were used, derived as geometric mean from reactive fractions
measured for “organic-related” metal sources (including biosolids, manure, compost, or wastewater
irrigation) by Owsianiak et al. [13]. For Ni, for which no organic-related ACF was available, ACFs
derived from reactive fractions measured for Ni from various anthropogenic sources had to be used [13].
Ranges of reactive fractions and ACFs are detailed in Table A3 (Appendix A.2) for all metals included
in this study.

The bioavailability factor BF represents the fraction of the accessible metal in the soil that is
present in directly bioavailable, toxic forms [11]. For the metals included in this study, the dominant
toxic metal forms are free ions. BF is greatly influenced by the metal speciation pattern in soil pore
water [11]. In this study, grid-specific BFs were derived using empirical regression models predicting
concentration of free ions from reactive concentration and soil properties (see Table 1).

The ecotoxicity effect factor EF describes the ecotoxicological response of soil organisms that
results from their exposure to directly bioavailable, toxic metal forms [33]. Grid-specific EFs of Cu
and Ni were calculated from EC50 values which were derived using terrestrial biotic ligand models
developed for terrestrial organisms (see Table 1). Grid-specific EFs of Cd, Pb and Zn were derived
using regression models predicting free ion-based EC50 from total-metal-based EC50 values and soil
pH (see Table 1).

Table 1. Summary of approaches used to calculate parameters and factors underlying the CTPs of the
metals included in this study.

Parameter Equation Unit Source

Grid-specific
distribution

coefficient between
total metal in the

solid phase and total
dissolved metal a

Ks,i
d,total =

stotal,s,i

ctotal dissolved, s, i
≈

Ks,i
d,reactive

ACFs

Lpore water/kgsolid

Total dissolved concentrations were calculated
using empirical regression models of

Groenenberg et al. [34] from total metal
concentration and soil properties. Reactive
concentrations and reactive fraction were
derived for metals from organic-related

emission sources (including manures) in a
meta-analysis study of Owsianiak et al. [13].

Background total metal concentrations are from
Kabatia-Pendias [35]

Grid-specific
distribution

coefficient between
reactive metal in the
solid phase and total

dissolved metal a

Ks,i
d,reactive =

sreactive,s,i

ctotal dissolved, s, i
≈ freactive,s·Ctotal,i,s Lpore water/kgsolid
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Table 1. Cont.

Parameter Equation Unit Source

Grid-specific fate
factor in agricultural
soil for emission to
agricultural soil b

FFi,s =
∆Ctotal,s·V·ρb

∆Mi,s
kgtotal/kgtotal emitted to soil·day Calculated using USEtox 2.02 [28] for infinite

time horizon

Spatially generic,
emission-source

specific accessibility
factor in

agricultural soil c

ACFs =
∫ T

0 freactive, s(t)dt
T ≈ ∆Creactive, s

∆Ctotal,s
kgreactive/kgtotal

Derived by Owsianiak et al. [13]. Because the
influence of aging time on freactive,s was not

consistent for five cationic metals, time-horizon
independent ACFs are used. They are in

practice equal to (time-independent) metal- and
emission-source specific reactive fraction [13]

Grid-specific
bioavailability factor
in agricultural soil d

BFs =
∆Cfree,s·θw

∆Creactive,s·ρb
kgfree/kgreactive

Free ion concentrations were calculated from
reactive concentration and soil properties using

empirical regression models developed by
Groenenberg et al. [36]

Grid-specific effect
factor in

agricultural soil e
EFs =

∆PAF
∆Cfree,s

=
0.5

HC50s
m3

pore water/kgfree

Derived using free-ion-based EC50 values
using the approach of USEtox 2.02 [28].
The EC50 values were calculated using

empirical regression models (Cd, Zn) and free
ion activity models (Pb) developed for

terrestrial earthworms and crustacea by
Sydow et al. [18], and terrestrial biotic ligand

models developed for various terrestrial
organisms (Cu and Ni) by Thakali et al. [37]

a stotal,s,i (kgtotal/kgsolid) and sreactive,s,i (kgreactive/kgsolid) are the concentrations of total metal and reactive metal s
in the solid phase in grid cell i; ctotal dissolved (kgtotal dissolved/Lpore water) is the concentration of total dissolved metal
(assumed reactive) in soil pore water; Ctotal,s,i (kgtotal/kgtotal emitted) is the concentration of total metal s in soil in
grid cell i; freactive,s, in kgreactive/kgtotal, represents the fraction of total metal s in soil that is available for solid-liquid
partitioning within a time scale of days. b ∆Ctotal,s,i (kgtotal/kgtotal emitted) is the incremental change in concentration
of total metal s in soil in grid cell i; ∆Ms,i (kgtotal emitted/day) is the incremental change in the emission of total metal
s to soil in grid cell i; V (m3

soil) is the volume of the soil compartment; and ρb (kgsoil/m3
soil) is the total (wet) bulk

density of soil. c freactive,s(t), in kgreactive/kgtotal, represents the fraction of total metal s in soil that is available for
solid-liquid partitioning within a time scale of days as it varies with the aging time t (in years) of the metal in the soil
(referred to as the reactive fraction); ∆Creactive,s (kgreactive/kgsolid) and ∆Ctotal,s (kgtotal/kgsolid) are the incremental
changes of the concentrations of reactive metal s and total metal in soil and T is the chosen time-horizon, in years.
d ∆Cfree,s,i (kgfree/m3

pore water) is the incremental change of the free ion concentration of metal s in grid cell i; θw

(m3
pore water/m3

soil) is the volumetric soil water content. e ∆PAF (dimensionless) is the incremental change in the
potentially affected fraction of biological species in the soil ecosystem due to exposure to the free ion; and HC50s
(kgfree/m3

pore water) is the hazardous free ion concentration of metal s in grid cell i affecting 50% of the species,
calculated as a geometric mean of (free-ion) EC50 values for individual species assuming a linear dose-response
function. It is assumed that each grid cell i has the same species composition and density.

3. Results and Discussion

3.1. Grid-Specific Comparative Toxicity Potentials

The CTPs of metals varied from one to four orders of magnitude among the soils in Europe
(see Figure 2). The median CTPs (95% variability intervals) were equal to 3.8 × 103 (5 × 102

to 1.2 × 105), 1.9 × 103 (4.4 × 101 to 2 × 104), 2.4 × 103 (9.1 × 102 to 9.6 × 103), 1.3 × 104

(1.6 × 101 to 5 × 105) and 1.4 × 104 (3 × 103 to 1.2 × 105) m3
pore water·day/kgtotal emitted to soil for

Cd, Cu, Ni, Pb and Zn, respectively. In comparison, the median CTPs for terrestrial ecotoxicity
calculated earlier by Owsianiak et al. [11] for Cu and Ni emitted to air were equal to 1.4 × 103 and
2.4 × 103 m3

pore water·day/kgtotal emitted to air, respectively, and ranged 3.5 and 3 orders of magnitude
(95% variability intervals). Given that the multimedia fate model USEtox predicts that approximately
half of a given metal input to air deposits on soil, our values should be roughly equal to two times the
CTPs calculated by Owsianiak et al. [11]. Our new median CTPs for Cu and Ni are, however, only
35–40% higher compared with the median values calculated by Owsianiak et al. [11]. This discrepancy
is explained by the fact that soils in our current dataset span a larger range of properties influencing
the CTPs of metals than the set of 760 soils from Owsianiak et al. [11]. In particular, the dataset in the
current study includes soils with pH above 7 (ca. 20% of all grid soils), where metal bioavailability is
lower compared to more acidic soils; such soils were not part of the dataset in Owsianiak et al. [11].
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Figure 2. Comparative toxicity potentials (log10-transformed) of Cd, Cu, Ni, Pb and Zn across all
1 × 1 km grid cells in Europe.

Multiple linear regressions identified soil pH, organic carbon (OC), and CLAY as parameters with
an important influence on FF, BF and the resulting CTP values for the studied metals (Tables A4–A6 in
Appendix A.3). Although the bioavailability of all studied metals decreased with increasing soil pH
and organic carbon content, the CTP values of Cd and Zn were observed to increase with increasing
pH. This is because the pH has a stronger influence on the fate of Cd and Zn (where there is a
positive correlation between pH and FF) than on their bioavailability. Cu and Pb are known for their
strong affinity to organic ligands. Indeed, dissolved organic carbon (DOC) influences the distribution
coefficients and resulting fate factors of these metals, both decreasing with increasing DOC. As DOC is
predicted from OC, there is a negative relationship between OC and FF for Cu and Pb.

Depending on the metal, the coefficients of variance (CV) across soils ranged 0.6–1.1 for FFs, 0.9–1.6
for BFs, 0.2–1.03 for EFs (except Pb), and 0.4–1.4 for CTPs (Table A8 in Appendix A.3). The values of
CV for CTPs ranged from 0.6 to 2.1 among metals, with median equal to 1.3. Furthermore, there is a
negative covariance (−0.2) between BF and EF for Cu. This shows that (i) the variability in the CTP
values between metals can be higher than the variability between soils; (ii) both BF and FF influence
the CTP values; and (iii) EF is particularly important for the CTP of Cu.

3.2. Country-Specific Impact Scores

The contribution of each country to total terrestrial toxic impact in Europe, quantified using
Equation (1), can be represented using a variable width bar graph (Figure 3), where impact scores are
proportional to the area of the bars and the sum of the areas represents the total impact in Europe
for the countries considered in the assessment. Country-specific contributions ranked according to
total emissions and resulting terrestrial ecotoxic impacts for top contributors are given in Table 2.
Total emissions and resulting impact scores are documented per country in Table A1 (Appendix A.1).

Overall, three major observations can be made. Firstly, the top contributors in terms of mass inputs
to soil are generally dominant contributors in terms of impact. For example, the top contributors (based
on either mass or impact) are France (Cd) and Germany (Cu, Ni and Pb). The second observation is that
the ranking of countries can change when the assessment changes from a mass perspective to an ecotoxic
impact perspective, albeit this change is relatively small. For Zn, Germany is the top contributor based
on mass, but the second top contributor based on impact, where Spain is seen as the top contributor.
The higher contribution of Spain reflects higher CTPs of Zn in Spanish soils, as soils in the eastern
part of Spain are dominated by calcareous soils with relatively high pH, explaining increasing impact
scores in Spain when compared to less basic soils in Germany. The third observation is that the ranking
of metals is relatively robust to a change of the assessment from that based on mass to that based on
impact. Zn and Cu are dominant contributors in either case. However, Ni and Pb change in ranking,
as Pb is seen to cause larger impact despite smaller emission values when compared to Ni.
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Table 2. Ranking of European countries according to their contributions to emitted mass and contributions to terrestrial ecotoxicity impact in those European countries
for which impact scores could be calculated using Equation (1) and which contribute >1% of total emission. 100% is the total emission or total impact score (per
metal) summed across all these countries. Hence the distribution of countries does not reflect the true distribution of emissions or impacts in entire Europe, and the
contribution in the table should not be understood as a share of total European emissions or impacts. The number of countries considered for emissions and impacts is
the same for each metal, thus making the country distributions comparable at metal level. Comparison can be done between the metals Cu, Ni, Pb and Zn, as the same
countries were considered for these metals. All emissions and resulting impact scores are presented in Table A1 (Appendix A.1). ISO country codes are explained in
Table A2 (Appendix A.1).

Country Contribution (in %)

Cd Cu Ni Pb Zn

Emitted
Mass of

Metal (in kg)

Impact Score (in
m3

pore water·Day)

Emitted
Mass of

Metal (in kg)

Impact Score (in
m3

pore water·Day)

Emitted
Mass of

Metal (in kg)

Impact Score (in
m3

pore water·Day)

Emitted
Mass of

Metal (in kg)

Impact Score (in
m3

pore water·Day)

Emitted
Mass of

Metal (in kg)

Impact Score (in
m3

pore water·Day)

FRA 19.9 FRA 21.5 DEU 18.1 DEU 23.9 DEU 18.5 DEU 18.9 DEU 18.2 DEU 29.4 DEU 18.5 ESP 30.1
DEU 13 ESP 20.9 ESP 18 POL 18.7 ESP 17.3 ESP 14.5 ESP 13.5 POL 12.9 ESP 17.3 DEU 14.3
ESP 9.7 ITA 8.3 POL 16.3 ESP 10.6 POL 15.1 POL 11.7 POL 11.3 NLD 9.1 POL 15.1 POL 9.1
POL 9.5 DEU 8.2 NLD 6.7 NLD 6.4 IRL 4.8 IRL 7.6 IRL 8.9 IRL 8.2 NLD 7.2 NLD 9
ITA 7.9 NLD 7.7 ROU 5.7 DNK 6.1 ROU 5.8 ROU 6.9 ROU 7.8 BLR 6.5 ROU 5.8 ROU 8.8
IRL 5.9 ROU 7.5 DNK 4.8 BEL 5.4 NLD 7.2 NLD 6 NLD 6.4 BEL 5.4 IRL 4.8 IRL 3.1

NLD 4.5 POL 4.2 IRL 4.6 BLR 4.9 BLR 4.5 BLR 6 BLR 6 ESP 4.8 DNK 4.8 DNK 3.1
ROU 4.4 IRL 2.8 BLR 4.4 IRL 4.1 DNK 4.8 BEL 3.9 BEL 3.4 AUT 4.6 BLR 4.5 AUT 2.6
BLR 4.4 AUT 2 BEL 3.6 AUT 3.6 BEL 3.7 DNK 3.2 AUT 2.8 DNK 4.5 BEL 3.7 BEL 2.6
BEL 2.5 GRC 1.9 AUT 2.7 ROU 2.8 AUT 2.7 AUT 2.8 DNK 2.8 CZE 2.1 AUT 2.7 HUN 2.5
DNK 2.1 HUN 1.6 SRB 2.4 SRB 2.5 HUN 2.2 HUN 2.4 HUN 2.2 CHE 2 SRB 2.4 SRB 2.3
AUT 2.1 BEL 1.4 HUN 2.1 CZE 2.1 SRB 2.4 SRB 2.3 SRB 2.1 SRB 2 HUN 2.2 BLR 2.1
GRC 1.6 SRB 1.3 CZE 1.5 CHE 1.3 CZE 1.6 CZE 2.1 CHE 2.1 ROU 1.6 CZE 1.6 CZE 1.3
HUN 1.5 BLR 1.2 CHE 1.4 HUN 1.2 CHE 1.5 CHE 1.9 CZE 2 BIH 1.3 CHE 1.5 CHE 1.3
SRB 1.5 DNK 1.2 BIH 1.2 BGR 1.3 BGR 1.5 BGR 1.2
CZE 1.4 ALB 1.2 HRV 1.2 ALB 1.3 ALB 1.3
CHE 1.4 CHE 1.1 BIH 1.1 LTU 1.1
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Figure 3. Terrestrial ecotoxicity impact scores as function of the contribution of each country to
total emissions of a metal and country-specific CTPs derived from grid-specific CTPi,s values, in
m3

pore water·day/kgtotal emitted to soil (Equation (2)). The country-specific impact scores are proportional
to the area of each bar in the figures (Equation (3)), and the sum of all areas represents the total impact
score in Europe for 30 (Cd) or 33 (Cu, Ni, Pb and Zn) countries. Country codes within the largest bars
emphasize top contributing countries based on emissions. Values in brackets indicate the ranking
based on impact scores. ESP: Spain; FRA: France; DEU: Germany; POL: Poland; NLD: The Netherlands;
ROU: Romania; IRL: Ireland; ITA: Italy; DNK: Denmark; BLR: Belarus.

Our results suggest that there is a correlation for each metal between the total emissions in a
country and the resulting national terrestrial ecotoxicity impact scores. Indeed, correlation coefficients
across 30 (Cd) or 33 (Cu, Ni, Pb and Zn) countries ranged from 0.86 to 0.99. Figure 4 illustrates this
correlation for the five metals. The linear regressions developed to predict impacts scores from emitted
mass were relatively strong (R2

adj ranged from 0.87 to 0.998) and statistically significant (p < 0.05)
(Table A9 in Appendix A.4). The intercepts of these regressions reflect differences in CTP values across
metals. We used these regressions to predict impact scores in those countries for which computation
of impact score could not be done using Equation (1), (and report the resulting values in Table A1,
together with impact scores calculated using Equation (1) for other metals). Although there can be
a considerable uncertainty in these predictions (95% confidence intervals ranged from 0.15 to 1.15
order of magnitude), this uncertainty should be seen in relation to the variability in emission between
countries, which is up to 4 orders of magnitude.

Total emissions and resulting impact scores calculated using Equation (1) and using regression
models in Table A9 are documented per country (all 41 countries) in Table A1 (Appendix A.1). Analysis
of these results shows that in 2014, total impact scores attributed to the five metals across 41 countries
were equal to 1.0 × 1012 (m3

pore water·day). Total impact varied by up to 5 orders of magnitude across
countries for a given metal. The top 5 countries in Europe with respect to impact scores resulting from
emissions of the five metals from manure application were Spain (18.6% of total terrestrial ecotoxic
impact), France (11.8%), Germany (9.7%), Great Britain (6.9%) and Poland (6.2%). These countries
are also the largest emitters of metals from manure (12.3, 11.5, 10.8, 9.5 and 7.5% of total releases for
France, Germany, Spain, Poland and Great Britain, respectively).

Our findings about the co-variation between emissions and impact scores across European
countries are somewhat unexpected, given the large geographic variability in the CTP values for
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individual soils across Europe (up to 4 orders of magnitude) and the similar variability in the CTPs
for soils located within individual countries (data not shown). This can be explained by the implicit
weighting of grid cell-specific CTPs that occurs when each unit of cropland area within a country is
assumed to have the same probability to receive metal emissions (Equation (2)). A similar weighting
effect was previously observed in the case of airborne emissions of metals which deposit on large areas,
where impacts are similarly a sum product of a fraction of an emission depositing on a given grid cell
and CTP of a metal assigned to that grid cell [38]. In a recent study, Santos et al. [17] also found that
the ranking of impact scores was also mainly determined by the amount of copper applied in each
wine-growing region.
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3.3. Uncertainties

3.3.1. Uncertainties in the CTPs

Below, a qualitative evaluation of model and parameter uncertainties pertaining to the
development of the CTPs is detailed. Three major sources of uncertainties have been identified:
(i) the potential use of regression models outside their application range, (ii) the dependence of the
accessibility factors on the time horizon, (iii) a bias across metals in calculation of their EFs.

First, comparative toxicity potentials were calculated using regression models (e.g., for prediction
of total dissolved concentrations or free ion concentrations for calculation of fate and exposure factors)
without considering the applicability of these underlying regression models to the soil property ranges for
the grid cells included in this study. Groenenberg et al. [34] showed that the prediction error for the metal
included in their study increases (by up to a factor of 2) if an empirical regression is used for soils with a
parameter range outside the range for which the regression was developed. This increases the overall
uncertainty in the CTP values for those soils whose properties are in lower and higher ranges of values.

Second, it was assumed that the reactive fraction in the soil does not change over time (that is,
the accessibility factor is time-horizon independent). Smolders et al. [39] already showed that the
availability of Cu after long-term (up to 112 years) applications of organic amendments to soil is
lower than that of freshly added copper ions, mainly because of a lower availability of Cu ions in the
original matrix and aging reactions in soils. However, there is too little empirical information about
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metal accessibility in manure at longer (few centuries) time horizons. It cannot be ruled out that a
metal included in manure becomes either a long-term source or sink of a metal, depending on the
soil properties and aging/weathering mechanisms that are active in the soil, at longer time scales.
Furthermore, the ACF of Ni can be improved by using reactive fractions measured for Ni in manure
rather than using average reactive fractions measured for Ni from various anthropogenic sources.

The third source of uncertainty is that we combined effect factors derived from EC50 values
calculated using terrestrial biotic ligand models for terrestrial organisms from three trophic levels (for
Cu and Ni) with those based on EC50 calculated using empirical regression equations developed for
terrestrial earthworms and crustaceans only (Cd, Pb and Zn). Although the use of a single trophic level
in calculations can still be considered an improvement on the current practice where terrestrial effect
factors are calculated using EC50 values measured for freshwater organisms, it can give a bias to metals
with full trophic level coverage. Plants are for example seen more sensitive to toxic Cu ions when
compared to crustaceans and earthworms, while microorganisms are less sensitive to this metal [37].
The sensitivity of organisms from different trophic levels is, however, comparable across organisms with
regard to ecotoxicity of Ni ions. The direction of this potential bias is, therefore, difficult to estimate.

Fourth, the effect factors of Cd and Zn were calculated using empirical regression models
considering protective effect of protons on metals’ ecotoxicity, but disregarding the influence of
base cations like Ca2+ or Mg2+. As argued by Sydow et al. [18], this limitation would give a bias
to those metals for which effect factors were derived using terrestrial biotic ligand models, which
consider these effects. This bias has not occurred here, because pore water concentrations in the HWSD
database are not given (average concentrations measured across soils had to be used) and therefore did
not influence geographic variability in the effect factor for Cu and Ni. These average concentrations are
within the range of pore water concentrations of base cations measured in soils for which the empirical
regression models were developed [18]. Thus, combining terrestrial biotic ligand models and empirical
regression models in our study allows for unbiased ranking of Cd, Cu, Ni, and Zn. Some bias could
occur for Pb in acidic soils, for which effect factor was derived using free ion activity model, where
protective effects of protons are not considered at all. All three types of free-ion-based models are
expected to be less accurate in calcareous soils [40]. Grid-cells with basic pH (>7) constitute 20% of all
cropland grid cells in Europe.

Finally, we used USEtox to calculate fate factors in agricultural soils. Although USEtox is
appropriate to rank substances according to their toxicity potential for application in life cycle impact
assessment (LCIA) in environmental impact assessment as executed here, even more site-specific fate
models could be used to (ideally) best represent conditions at a site. This is particularly relevant for
CTP calculated for a metal emitted directly to an agricultural soil, where metal removal via plant
harvest can play a role in determining metals’ fate.

3.3.2. Uncertainties in the Impact Scores

The largest source of uncertainty in country-specific impact scores is the assumption that total
manure is evenly distributed over cropland within a country, and that an average release profile of
metals is assumed for each quantity of manure applied. While it appears reasonable to assume that all
manure is applied on cropland to optimize the recycling of nutrients, the application rate may actually
vary from one crop to another depending on the properties of the soil and the manure. As such,
some grid cells are expected to receive higher metal inputs than other cells, which will increase their
contribution to total national impact, while the contribution from the cells receiving a smaller quantity
of metal will decrease. Furthermore, the dependence of the manure application rate on crop types and soil
properties may result in manure being applied in priority on croplands with high or low CTPs, meaning
that the impact of the associated metals will be strengthened or mitigated, respectively. According to
Leip et al. [41], the application of manure nitrogen vary by less than 2 orders of magnitude across 16 crop
types. Whether the net effect is small or large at country scale will depend on the CTP values in the
respective grid cells. Due to large geographic variability in the CTPs at country scale, these effects are
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expected to counteract each other to some extent. In such a case, our assumption about equal probability
to receive emission is not expected to have large consequences on the resulting national impact scores,
and our country-specific impact scores can therefore be considered sufficiently accurate at country scale.
The framework presented in this paper can readily be used to calculate terrestrial ecotoxicity impact
scores, if a higher spatial resolution of manure application to specific soils become available.

4. Conclusions

To improve current inventory and impact assessment procedures for metals, it was suggested that
inventory procedures should report emission sources to be combined with emission-source specific
ACFs. This is the first case study where this suggested procedure was tested in practice, where
grid-specific CTPs of metallic elements emitted to soils together with manure were calculated and
used to assess terrestrial ecotoxic impacts at national scale.

We showed that at country scale, under the assumption of equal probability of each unit area of
cropland to receive emission, terrestrial toxic impacts from metal emissions applied to soil, together with
manure, are mainly influenced by the total mass of metals being released rather than by the geographic
variability in the comparative toxicity potentials within the country, which was found to be relatively
small in comparison. Refining the inventories of metal emissions from manure application thus appears
to be a priority, and efforts should focus on the harmonization of the metal measurements across countries
to allow for further spatial differentiation in the modelling of the final releases. This finding implies for
policy makers that ranking and scoring of countries and policy regulation addressing metal inputs to
agricultural soils can, albeit with some uncertainty, be based on total emissions. Our regression models
can be used for this purpose. This study showed that these regressions allow distinguishing between
countries, if differences in national emission inventories between countries are higher than a factor of
two (Ni), a factor of three (Cd, Cu, Zn) or a factor of four (Pb). As variability in emission is up to four
orders of magnitude between European countries, however, in many cases, ranking and scoring of
countries can, in most cases, be done using emission inventories only. This implies that greater benefits
in improving ranking scheme can be achieved by collecting/updating national inventories rather than
by implementing spatially differentiated impact assessment methods.

Our ability to predict terrestrial toxic impacts from metal emissions using a regression model with
total metal mass as input drastically reduces the workload involved in doing spatially differentiated
impact assessment at a country scale. As the models were developed using impact scores calculated
for European soils, they are expected to perform well in those regions where soils types and properties
are similar to European soils, like in North America. In contrast, they are not expected to perform well
for very different soils, e.g., in tropical countries. Furthermore, our models are not valid in the case of
specific emissions over specific soil types.
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Appendix A

Appendix A.1. Emissions and Terrestrial Ecotoxicity Impact Scores

Table A1. National emission inventories from Leclerc and Laurent (2017) and resulting terrestrial
ecotoxicity impact scores computed using Equation (1). Numbers and corresponding values in
brackets represent impact scores and associated uncertainty intervals predicted using regression
models presented in Table A9.

Emitted Mass (in kg) Impact Score (in m3
pore water·Day)

Country Cd Cu Ni Pb Zn Cd Cu Ni Pb Zn

FRA 9.5 × 103 1.2 × 106 1.5 × 105 1.2 × 105 5.7 × 106 8.8 × 107
4.4 × 109

(1.5 × 109–
1.3 × 1010)

4.0 × 108

(3.3 × 108–
4.8 × 108)

4.4 × 109

(8.3 × 108–
2.3 × 1010)

1.1 × 1011 (5.5
× 1010–

2.2 × 1011)

DEU 6.2 × 103 1.1 × 106 1.1 × 105 7.7 × 104 5.3 × 106 3.4 × 107 5.7 × 109 3.0 × 108 4.5 × 109 8.7 × 1010

ESP 4.6 × 103 1.1 × 106 9.0 × 104 5.7 × 104 5.0 × 106 8.5 × 107 2.5 × 109 2.3 × 108 7.4 × 108 1.8 × 1011

POL 4.6 × 103 1.0 × 106 7.2 × 104 4.8 × 104 4.4 × 106 1.7 × 107 4.5 × 109 1.9 × 108 2.0 × 109 5.6 × 1010

ITA 3.8 × 103 5.5 × 105 6.6 × 104 4.8 × 104 2.7 × 106 3.4 × 107
2.0 × 109

(7.1 × 108–
5.6 × 109)

1.8 × 108

(1.5 × 108–
2.1 × 108)

1.6 × 109

(3.1 × 108–
8.1 × 109)

5.3 × 1010 (2.7
× 1010–

1.0 × 1011)

IRL 2.8 × 103 2.8 × 105 4.5 × 104 3.8 × 104 1.4 × 106 1.1 × 107 9.8 × 108 1.2 × 108 1.3 × 109 1.9 × 1010

NLD 2.1 × 103 4.1 × 105 4.1 × 104 2.7 × 104 2.1 × 106 3.1 × 107 1.5 × 109 9.7 × 107 1.4 × 109 5.5 × 1010

ROU 2.1 × 103 3.5 × 105 4.4 × 104 3.3 × 104 1.7 × 106 3.0 × 107 6.6 × 108 1.1 × 108 2.5 × 108 5.4 × 1010

BLR 2.1 × 103 2.7 × 105 3.3 × 104 2.5 × 104 1.3 × 106 5.1 × 106 1.2 × 109 9.7 × 107 1.0 × 109 1.3 × 1010

BEL 1.2 × 103 2.2 × 105 2.2 × 104 1.5 × 104 1.1 × 106 5.7 × 106 1.3 × 109 6.2 × 107 8.4 × 108 1.6 × 1010

DNK 1.0 × 103 2.9 × 105 2.2 × 104 1.2 × 104 1.4 × 106 4.9 × 106 1.4 × 109 5.2 × 107 7.0 × 108 1.9 × 1010

AUT 1.0 × 103 1.7 × 105 1.7 × 104 1.2 × 104 7.8 × 105 8.1 × 106 8.7 × 108 4.6 × 107 7.1 × 108 1.6 × 1010

GRC 7.4 × 102 1.1 × 105 1.6 × 104 1.3 × 104 5.0 × 105 7.6 × 106
3.5 × 108

(1.3 × 108–
9.6 × 108)

4.4 × 107

(3.7 × 107–
5.2 × 107)

3.6 × 108

(7.4 × 107–
1.8 × 109)

9.6 × 109 (4.9
× 109–

1.9 × 1010)

HUN 7.3 × 102 1.3 × 105 1.4 × 104 9.2 × 103 6.3 × 105 6.4 × 106 2.9 × 108 3.9 × 107 9.6 × 107 1.5 × 1010

SRB 7.2 × 102 1.5 × 105 1.3 × 104 8.9 × 103 6.9 × 105 5.5 × 106 6.0 × 108 3.7 × 107 3.1 × 108 1.4 × 1010

CZE 6.7 × 102 9.5 × 104 1.1 × 104 8.4 × 103 4.7 × 105 3.8 × 106 4.9 × 108 3.4 × 107 3.3 × 108 8.2 × 109

CHE 6.7 × 102 8.5 × 104 1.1 × 104 8.8 × 103 4.2 × 105 4.5 × 106 3.2 × 108 3.0 × 107 3.1 × 108 8.0 × 109

BGR 4.3 × 102 5.8 × 104 8.2 × 103 6.5 × 103 2.8 × 105 4.2 × 106 1.2 × 108 2.1 × 107 7.4 × 107 7.2 × 109

LTU 3.9 × 102 5.6 × 104 6.3 × 103 4.8 × 103 2.7 × 105 1.8 × 106 9.8 × 107 1.5 × 107 6.4 × 107 3.7 × 109

ALB 3.9 × 102 4.4 × 104 7.0 × 103 5.7 × 103 2.2 × 105 4.8 × 106 1.0 × 108 2.0 × 107 4.0 × 107 6.3 × 109

BIH 3.3 × 102 5.0 × 104 5.8 × 103 4.4 × 103 2.3 × 105 2.1 × 106 2.8 × 108 1.7 × 107 1.9 × 108 4.2 × 109

HRV 3.1 × 102 6.0 × 104 5.5 × 103 3.8 × 103 2.8 × 105 2.0 × 106 2.8 × 108 1.6 × 107 1.2 × 108 5.1 × 109

SVK 2.9 × 102 4.5 × 104 5.1 × 103 3.8 × 103 2.2 × 105 2.5 × 106 1.5 × 108 1.4 × 107 8.3 × 107 5.0 × 109

MDA 2.5 × 102 4.5 × 104 4.7 × 103 3.4 × 103 2.0 × 105 2.9 × 106 3.9 × 107 1.1 × 107 1.1 × 107 6.1 × 109

LVA 2.5 × 102 3.8 × 104 3.9 × 103 2.9 × 103 1.7 × 105 7.6 × 105 1.1 × 108 1.0 × 107 7.8 × 107 2.0 × 109

SVN 1.9 × 102 2.5 × 104 3.1 × 103 2.5 × 103 1.2 × 105 1.1 × 106 1.3 × 108 9.5 × 106 1.1 × 108 2.2 × 109

MKD 1.5 × 102 1.8 × 104 2.7 × 103 2.2 × 103 8.6 × 104 1.5 × 106 7.8 × 107 7.5 × 106 6.9 × 107 2.0 × 109

EST 1.4 × 102 1.8 × 104 2.3 × 103 1.8 × 103 9.0 × 104 9.7 × 105 3.7 × 107 6.4 × 106 3.0 × 107 1.7 × 109

LUX 8.0 × 101 8.9 × 103 1.2 × 103 1.0 × 103 4.3 × 104 4.1 × 105 5.0 × 107 3.9 × 106 4.6 × 107 7.5 × 108

MNE 5.5 × 101 5.4 × 103 9.3 × 102 7.9 × 102 2.8 × 104 4.6 × 105 1.9 × 107 2.5 × 106 2.0 × 107 6.2 × 108

ISL 4.7 × 101 4.9 × 103 9.3 × 102 8.1 × 102 2.4 × 104 2.3 × 105 6.3 × 106 2.5 × 106 1.2 × 107 3.4 × 108

MLT 1.3 × 101 2.7 × 103 2.3 × 102 1.5 × 102 1.2 × 104 9.6 × 104 5.5 × 106 6.3 × 105 7.8 × 105 2.9 × 108

LIE 2.9 × 100 2.9 × 102 4.5 × 101 3.8 × 101 1.4 × 103 1.6 × 104 1.0 × 106 1.3 × 105 5.8 × 105 2.4 × 107

NOR 4.7 × 102 6.4 × 104 8.5 × 103 6.7 × 103 3.1 × 105
3.3 × 106

(1.3 × 106–
8.5 × 106)

2.1 × 108

(7.6 × 107–
5.7 × 108)

2.3 × 107

(1.9 × 107–
2.7 × 107)

1.6 × 108

(3.4 × 107–
8.0 × 108)

5.9 × 109 (3.0
× 109–

1.2 × 1010)

SWE 6.6 × 102 9.1 × 104 1.1 × 104 8.5 × 103 4.4 × 105
4.7 × 106

(1.8 × 106–
1.2 × 107)

3.0 × 108

(1.1 × 108–
8.2 × 108)

3.0 × 107

(2.5 × 107–
3.5 × 107)

2.1 × 108

(4.4 × 107–
1.0 × 109)

8.5 × 109 (4.3
× 109–

1.7 × 1010)

UKR 3.5 × 103 5.7 × 105 5.9 × 104 3.9 × 104 3.0 × 106
2.6 × 107

(9.7 × 106–
6.8 × 107)

2.1 × 109

(7.5 × 108–
5.9 × 109)

1.6 × 108

(1.3 × 108–
1.9 × 108)

1.2 × 109

(2.4 × 108–
6.2 × 109)

5.8 × 1010 (2.9
× 1010–

1.2 × 1011)

PRT 9.7 × 102 1.7 × 105 1.7 × 104 1.2 × 104 7.5 × 105
6.9 × 106

(2.7 × 106–
1.8 × 107)

5.7 × 108

(2.1 × 108–
1.6 × 109)

4.5 × 107

(3.8 × 107–
5.3 × 107)

3.2 × 108

(6.5 × 107–
1.6 × 109)

1.4 × 1010 (7.3
× 109–

2.8 × 1010)

CYP 3.8 × 101 1.8 × 104 8.5 × 102 3.1 × 102 7.7 × 104
2.4 × 105

(9.1 × 104–
6.5 × 105)

5.5 × 107

(2.0 × 107–
1.5 × 108)

2.4 × 106

(2.0 × 106–
2.8 × 106)

4.8 × 106

(9.1 × 105–
2.5 × 107)

1.5 × 109 (7.5
× 108–

2.9 × 109)

FIN 5.0 × 102 8.3 × 104 8.1 × 103 5.9 × 103 3.8 × 105
3.5 × 106

(1.4 × 106–
9.1 × 106)

1.0 × 108

(1.0 × 108–
7.5 × 108)

1.9 × 107

(1.9 × 107–
2.6 × 107)

1.4 × 108

(2.9 × 107–
6.9 × 108)

7.3 × 109 (3.8
× 109–

1.4 × 1010)

FRO 3.0 × 100 2.8 × 102 7.6 × 101 7.0 × 101 1.3 × 103
1.8 × 104

(6.3 × 103–
5.4 × 104)

2.2 × 105

(2.2 × 105–
2.1 × 106)

2.2 × 105

(1.8 × 105–
2.6 × 105)

8.6 × 105

(1.5 × 105–
4.9 × 106)

2.5 × 107 (1.2
× 107–

5.3 × 107)

GBR 5.5 × 103 7.3 × 105 9.9 × 104 8.1 × 104 3.4 × 106
4.1 × 107

(1.5 × 107–
1.1 × 108)

9.6 × 108

(9.6 × 108–
7.6 × 109)

2.6 × 108

(2.2 × 108–
3.1 × 108)

2.9 × 109

(5.5 × 108–
1.5 × 1010)

6.6 × 1010 (3.3
× 1010–

1.3 × 1011)
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Table A2. ISO codes used in this study and their corresponding country names.

ISO Country Name ISO Country Name

ALB Albania ISL Iceland
AUT Austria ITA Italy
BEL Belgium LIE Liechtenstein
BGR Bulgaria LTU Lithuania
BIH Bosnia and Herzegovina LUX Luxembourg
BLR Belarus LVA Latvia
CHE Switzerland MDA Moldova
CYP Cyprus MKD Macedonia
CZE Czech Republic MLT Malta
DEU Germany MNE Montenegro
DNK Denmark NLD The Netherlands
ESP Spain NOR Norway
EST Estonia POL Poland
FIN Finland PRT Portugal
FRA France ROU Romania
FRO Faroe Islands SRB Serbia
GBR Great Britain SVK Slovakia
GRC Greece SVN Slovenia
HRV Croatia SWE Sweden
HUN Hungary UKR Ukraine
IRL Ireland

Appendix A.2. Accessibility Factors

Table A3. Reactive fractions freactive (geometric mean and range minimum-maximum), measured for
anthropogenic, organic-related emission sources (Cd, Cu, Pb and Zn) and for various anthropogenic
sources (Ni), and corresponding accessibility factors (ACF). Based on Owsianiak et al. [13] and
references therein.

Metal freactive (kgreactive/kgtotal) ACF (kgreactive/kgtotal) Source

Cd 0.47 (0.32–0.85) 0.47

Nakhone and Young [42]
Sterckeman et al. [43]

Ahnstrom and Parker [44]
Huang et al. [45]
Ayoub et al. [46]
Gray et al. [47]

Stanhope et al. [48]
Gray et al. [49]

Cu 0.19 (0.051–0.42) 0.19
Smolders et al. [39]
Biasioli et al. [50]
Nolan et al. [51]

Ni 0.064 (0.006–0.35) 0.064
Sivry et al. [52]
Nolan et al. [53]

Massoura et al. [54]

Pb 0.12 (0.10–0.13) 0.12
Huang et al. [45]

Atkinson et al. [55]

Zn 0.45 (0.22–0.71) 0.45
Ayoub et al. [46]

Sanders and El Kherbawy [56]
Diesing et al. [57]
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Appendix A.3. Analysis of CTP Values

Table A4. Linear regression coefficients, adjusted R2 values (R2
adj), and root mean square

error (rmse) of regression equations for log10(CTP) of Cd, Cu, Ni, Pb and Zn. CTP is in
m3

pore water·day/kgtotal emitted to soil. OC and CLAY are in %.

Metal Regression R2
adj rmse

Cd log10(CTP) = 1.4 + 0.36·pH − 0.39· log10(OC) + 0.19· log10(CLAY) 0.97 0.1
Cu log10(CTP) = 6.42 − 0.56·pH − 1.11· log10(OC) + 0.38· log10(CLAY) 0.93 0.12
Ni log10(CTP) = 3.39 − 0.086·pH − 0.17· log10(OC) + 0.45· log10(CLAY) 0.32 0.11
Pb log10(CTP) = 9.8 − 1.0·pH − 1.16· log10(OC) + 0.3· log10(CLAY) 0.99 0.099
Zn log10(CTP) = 2.27 + 0.23·pH − 0.2· log10(OC) + 0.39· log10(CLAY) 0.93 0.1

Table A5. Linear regression coefficients, adjusted R2 values (R2
adj), and root mean square error (rmse)

of regression equations for log10(FF) of Cd, Cu, Ni, Pb and Zn. FF is in kgtotal/kgtotal emitted to soil. OC
and CLAY are in %.

Metal Regression R2
adj rmse

Cd log10(FF) = 1.65 + 0.46·pH + 0.36· log10(OC) + 0.041· log10(CLAY) 0.997 0.025
Cu log10(FF) = 4.49 + 0.14·pH − 0.34· log10(OC) + 0.075· log10(CLAY) 0.97 0.048
Ni log10(FF) = 3.27 + 0.29·pH + 0.17· log10(OC) + 0.23· log10(CLAY) 0.98 0.41
Pb log10(FF) = 4.31 + 0.2·pH − 0.34· log10(OC) + 0.15· log10(CLAY) 0.94 0.087
Zn log10(FF) = 1.77 + 0.44·pH + 0.29· log10(OC) + 0.24· log10(CLAY) 0.999 0.018

Table A6. Linear regression coefficients, adjusted R2 values (R2
adj), and root mean square error (rmse)

of regression equations for log10(BF) of Cd, Cu, Ni, Pb and Zn. BF is kgfree/kgtotal. OC and CLAY are
in %.

Metal Regression R2
adj rmse

Cd log10(BF) = −0.57 − 0.48·pH − 0.75· log10(OC) + 0.15· log10(CLAY) 0.94 0.11
Cu log10(BF) = −0.081 − 0.99·pH − 0.64· log10(OC) + 0.15· log10(CLAY) 0.99 0.11
Ni log10(BF) = −1.02 − 0.41·pH − 0.26· log10(OC) + 0.15· log10(CLAY) 0.93 0.11
Pb log10(BF) = 1.73 − 1.2·pH − 0.81· log10(OC) + 0.15· log10(CLAY) 0.99 0.11
Zn log10(BF) = −0.43 − 0.49·pH − 0.5· log10(OC) + 0.15· log10(CLAY) 0.94 0.11

Table A7. Linear regression coefficients, adjusted R2 values (R2
adj), and root mean square error (rmse)

of regression equations for log10(EF) of Cu and Ni. EF is in m3
pore water/kgfree.

Metal Regression R2
adj rmse

Cu log10(EF) = 2.59 + 0.34·pH 0.94 0.099
Ni log10(EF) = 2.23 + 0.061·pH 0.66 0.05
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Table A8. Coefficients of variance (CV), equal to standard deviation over arithmetic mean, calculated
for fate factors (FF), bioavailability factors (BF), effect factors (EF), and comparative toxicity potentials
(CTP) among soils, and CV (median and range) calculated for CTPs among metals. CV for the EF of Pb
is equal to 0 because the EF for this metal does not vary geographically, consistently with predictions
of free ion activity models.

Cd

FF 1.07
BF 0.88
EF 1.03

CTP 1.41

Cu

FF 0.64
BF 1.47
EF 0.73

CTP 0.97

Ni

FF 0.75
BF 1.03
EF 0.17

CTP 0.37

Pb

FF 0.65
BF 1.64
EF 0

CTP 1.39

Zn

FF 1.05
BF 0.91
EF 0.77

CTP 0.87

CV (across metals) CTP 1.33 (0.62–2.1)

Appendix A.4. Prediction of Terrestrial Ecotoxicity Impact Scores

Table A9. Linear regression coefficients, adjusted R2 values (R2
adj) and standard error of estimate (se)

of regression equations for log10(ISs) of metal s (Cd, Cu, Ni, Pb or Zn). Emission of metal s (mtotal,s) is
in kg, impact score (ISs) is in m3

pore water·day. The regressions were developed by fitting a linear model
to the data presented in Figure 4.

Metal Regression n R2
adj se p

Cd log10(ISCd) = 3.77 + 1.03·log10
(
mtotal,Cd

)
33 0.94 0.2 <2.2 × 10−16

Cu log10(ISCu) = 3.26+ 1.05·log10
(
mtotal,Cu

)
30 0.94 0.21 <2.2 × 10−16

Ni log10(ISNi) = 3.47 + 0.99·log10
(
mtotal,Ni

)
30 0.998 0.035 <2.2 × 10−16

Pb log10(ISPb) = 3.81 + 1.15·log10
(
mtotal,Pb

)
30 0.87 0.33 4.6 × 10−14

Zn log10(ISZn) = 4.27 + 1·log10
(
mtotal,Zn

)
30 0.97 0.14 <2.2 × 10−16
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