Trace Metal Content and Availability of Essential Metals in Agricultural Soils of Alicante (Spain)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Propertie | Sand | Clay | Silt | pH | CO3 | SOC | Fe (1) | Mn (1) | Cu (1) | Zn (1) | Cd (2) | Ni (2) | Pb (2) | Cr (2) | Cu (2) | Zn (2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand | 1 | −0.922 ** | −0.747 ** | 0.284 ** | −0.281 ** | −0.120 | 0.309 ** | 0.103 | 0.106 | 0.315 ** | −0.031 | −0.628 ** | −0.190 | −0.423 ** | −0.279 ** | −0.615 ** |
Clay | 1 | 0.432 ** | −0.185 | 0.077 | −0.029 | −0.307 ** | −0.150 | −0.039 | −0.285 ** | −0.064 | 0.592 ** | 0.262 ** | 0.402 ** | 0.345 ** | 0.632 ** | |
Silt | 1 | −0.345 ** | 0.522 ** | 0.330 ** | −0.193 | 0.016 | −0.181 | −0.246 * | 0.182 | 0.448 ** | −0.007 | 0.296 ** | 0.058 | 0.347 ** | ||
pH | 1 | −0.225 * | −0.445 ** | −0.237 * | −0.325 ** | −0.220 * | 0.201 * | −0.198 * | −0.466 ** | −0.140 | −0.225 * | −0.401 ** | −0.31 ** | |||
CO3 | 1 | 0.153 | −0.005 | −0.076 | −0.021 | −0.113 | 0.241 * | 0.282 ** | −0.341 ** | 0.389 ** | −0.028 | 0.106 | ||||
SOC | 1 | 0.041 | 0.120 | 0.017 | 0.050 | 0.263 ** | 0.106 | 0.294 ** | 0.227 * | 0.288 ** | 0.292 ** | |||||
Fe (1) | 1 | 0.690 ** | 0.480 ** | 0.206 * | 0.134 | 0.164 | −0.013 | −0.142 | 0.060 | −0.221 * | ||||||
Mn (1) | 1 | 0.493 ** | 0.028 | 0.191 | 0.334 ** | 0.131 | 0.035 | 0.168 | −0.012 | |||||||
Cu (1) | 1 | 0.196 | −0.070 | 0.208 * | 0.193 | 0.074 | 0.452 ** | 0.077 | ||||||||
Zn (1) | 1 | −0.172 | −0.208 * | −0.020 | −0.234 * | −0.148 | −0.154 | |||||||||
Cd (2) | 1 | 0.146 | −0.130 | 0.434 ** | 0.106 | 0.059 | ||||||||||
Ni (2) | 1 | 0.317 ** | 0.544 ** | 0.473 ** | 0.637 ** | |||||||||||
Pb (2) | 1 | 0.310 ** | 0.516 ** | 0.442 ** | ||||||||||||
Cr (2) | 1 | 0.376 ** | 0.535 ** | |||||||||||||
Cu (2) | 1 | 0.642 ** | ||||||||||||||
Zn (2) | 1 |
References
- Rey Benayas, J.M.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CAB Rev. 2007, 2, 1–14. [Google Scholar] [CrossRef]
- Marques, M.J.; Jimenez-Ballesta, R.; Álvarez, A.; Bienes, R. Spanish Research on Soil Damage. Sci. Total Environ. 2007, 378, 1–4. [Google Scholar] [CrossRef]
- Celik, I.; Ortas, I.; Kilic, S. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil Tillage Res. 2004, 78, 59–67. [Google Scholar] [CrossRef]
- Herencia, J.F.; García-Galavís, P.A.; Maqueda, C. Long-term effect of organic and mineral fertilization on soil physical properties under greenhouse and outdoor management practices. Pedosphere 2011, 21, 443–453. [Google Scholar] [CrossRef]
- Li, Z.; Schneider, R.L.; Morreale, S.J.; Xie, Y.; Li, C.; Li, J. Woody organic amendments for retaining soil water, improving soil properties and enhancing plant growth in desertified soils of Ningxia, China. Geoderma 2018, 310, 143–152. [Google Scholar] [CrossRef]
- Lee, P.; Sims, E.; Bertham, O.; Symington, H.; Bell, N.; Pfaltzgraff, L.; Sjögren, P.; Wilts, H.; O’Brien, M.; Benke, J. Towards a Circular Economy—Waste Management in the EU. Available online: http://www.europarl.europa.eu/RegData/etudes/STUD/2017/581913/EPRS_STU%282017%29581913_EN.pdf (accessed on 1 December 2018).
- Martin, M.P.; Seen, D.L.; Boulonne, L.; Jolivet, C.; Nair, K.M.; Bourgeon, G.; Arrouays, D. Optimizing pedotransfer functions for estimating soil bulk density using boosted regression trees. Soil Sci. Soc. Am. J. 2009, 73, 485–493. [Google Scholar] [CrossRef]
- Schjønning, P.; Thomsen, I.K. Shallow tillage effects on soil properties for temperate-region hard-setting soils. Soil Tillage Res. 2013, 132, 12–20. [Google Scholar] [CrossRef]
- Shan, Y.; Tysklind, M.; Hao, F.; Ouyang, W.; Chen, S.; Lin, C. Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. J. Soil Sediments 2013, 13, 720–729. [Google Scholar] [CrossRef]
- Jiménez, R.; Navarro Pedreño, J. Introducción a la contaminación de suelos. In Introducción a la Contaminación de Suelos; Jiménez, R., Ed.; Ediciones Mundiprensa: Madrid, Spain, 2017; pp. 1–21. ISBN 978-84-8476-789-3. [Google Scholar]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Hani, A.; Pazira, E. Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environ. Monit. Assess. 2011, 176, 677–691. [Google Scholar] [CrossRef]
- Lu, A.; Wang, J.; Qin, X.; Wang, K.; Han, P.; Zhang, S. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Sci. Total Environ. 2012, 425, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Romic, D.; Romic, M.; Zovko, M.; Bakic, H.; Ondrasek, G. Trace metals in the coastal soils developed from estuarine floodplain sediments in the Croatian Mediterranean region. Environ. Geochem. Health 2018, 34, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Peris, M.; Recatalá, L.; Micó, C.; Sánchez, R.; Sánchez, J. Increasing the knowledge of heavy metal contents and sources in agricultural soils of the European Mediterranean region. Water Air Soil Pollut. 2008, 192, 25–37. [Google Scholar] [CrossRef]
- Franco-Uria, A.; López-Mateo, C.; Roca, E.; Fernández-Marcos, M.L. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J. Hazard. Mater. 2009, 165, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Maas, S.; Scheifler, R.; Benslama, M.; Crini, N.; Lucot, E.; Brahmia, Z.; Benyacoub, S.; Giraudoux, P. Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria. Environ. Pollut. 2010, 158, 2294–2301. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.A.; Faz, A.; Martínez-Martínez, S.; Arocena, J.M. Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment (Murcia city, southeast Spain). Appl. Geochem. 2011, 26, 405–414. [Google Scholar] [CrossRef]
- Hu, B.; Jia, X.; Hu, J.; Xu, D.; Xia, F.; Li, Y. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2017, 14, 1042. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metals toxicity and the environment. EXS 2012, 101, 133–164. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabia, C.; Lugato, E.; Jones, A.; Borrelli, P.; Scarpa, S.; Orgiazzi, A.; Montanarella, L. Potential sources of anthropogenic copper inputs to European agricultural soils. Sustainability 2018, 10, 2380. [Google Scholar] [CrossRef]
- Pourret, O. On the necessity of banning the term “Heavy Metal” from the scientific literature. Sustainability 2018, 10, 2879. [Google Scholar] [CrossRef]
- Zorpas, A.A. Heavy Metals Leachability Before, During and After Composting of Sewage Sludge with Natural Zeolite. Desalination Water Treat. 2009, 8, 256–262. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Adagunodo, T.A.; Sunmonu, L.A.; Emetere, M.E. Heavy metals’ data in soils for agricultural activities. Data Brief 2018, 18, 1847–1855. [Google Scholar] [CrossRef]
- Glæsner, N.; Helming, K.; de Vries, W. Do Current European Policies Prevent Soil Threats and Support Soil Functions? Sustainability 2014, 6, 9538–9563. [Google Scholar] [CrossRef] [Green Version]
- De la Torre, A.; Alías, L.J. Suelos y Vegetación en el Alto Vinalopó; Universidad de Alicante: Alicante, Spain, 1996; p. 263. ISBN 8479082712. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-Size Analysis. In Methods of Soil Analysis 1: Physical and Mineralogical Methods, 2nd ed.; Campbell, G.S., Jackson, R.D., Mortland, M.M., Nielsen, D.R., Klute, A., Eds.; SSSA Book Series: Madison, WI, USA, 1986; pp. 383–411. ISBN 0-89118-088-5. [Google Scholar]
- MAPA. Métodos Oficiales de Análisis. Tomo III; MAPA: Madrid, Spain, 1986; p. 532. ISBN 847479532X. [Google Scholar]
- Hulseman, J. An inventory of marine carbonate materials. J. Sediment. Petrol. 1966, 36, 622–625. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA: Madison, WI, USA, 1996; pp. 961–1010. ISBN 978-0891188254. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Baldantoni, D.; Leone, A.; Iovieno, P.; Morra, L.; Zaccardelli, M.; Alfani, A. Total and available soil trace element concentrations in two Mediterranean agricultural systems treated with municipal waste compost or conventional mineral fertilizers. Chemosphere 2010, 80, 1006–1013. [Google Scholar] [CrossRef]
- Iatrou, M.; Papadopoulos, A.; Papadopoulos, F.; Dichala, O.; Psoma, P.; Bountla, A. Determination of Soil-Available Micronutrients using the DTPA and Mehlich 3 Methods for Greek Soils Having Variable Amounts of Calcium Carbonate. Commun. Soil Sci. Plant Anal. 2015, 46, 1905–1912. [Google Scholar] [CrossRef]
- Moral, R.; Navarro-Pedreño, J.; Gómez, I.; Mataix, J. Quantitative Analysis of Organic Residues: Effects of Samples Preparation in the Determination of Metal. Commun. Soil Sci. Plant Anal. 1996, 27, 753–761. [Google Scholar] [CrossRef]
- Micó, C.; Peris, M.; Recatalá, L.; Sánchez, J. Baseline values for heavy metals in agricultural soils in a European Mediterranean region. Sci. Total Environ. 2007, 378, 13–17. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics with SPSS, 3rd ed.; SAGE Publications Ltd.: London, UK, 2009; p. 821. ISBN 978-1847879073. [Google Scholar]
- Moreno, J.L.; Garcı́a, C.; Landi, L.; Falchini, L.; Pietramellara, G.; Nannipieri, P. The ecological dose value (ED50) for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil. Soil Biol. Biochem. 2001, 33, 483–489. [Google Scholar] [CrossRef]
- Antibachi, D.; Kelepertzis, E.; Kelepertis, A. Heavy metals in agricultural soils of the Mouriki-Thiva area and environmental impact implications. Soil Sediment Contam. 2012, 21, 434–450. [Google Scholar] [CrossRef]
- Rodríguez, J.A.; Ramos-Miras, J.J.; Boluda, R.; Gil, C. Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma 2013, 200–201, 180–188. [Google Scholar] [CrossRef]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Kelepertzis, E. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma 2014, 221–222, 82–90. [Google Scholar] [CrossRef]
- Romic, M.; Romic, D. Heavy metals distribution in agricultural topsoils in urban area. Environ. Geol. 2003, 43, 795–805. [Google Scholar] [CrossRef]
- Jiménez Ballesta, R.; Navarro-Pedreño, J.; Gómez, I.; Almendro, M.B. Contaminación de suelos por metales pesados. In Introducción a la Contaminación de Suelos; Jiménez Ballesta, R., Ed.; Mundi-Prensa: Madrid, Spain, 2017; pp. 39–71. ISBN 978-84-8476-789-3. [Google Scholar]
- Caporale, A.G.; Violante, A. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Curr. Pollut. Rep. 2016, 2, 15–27. [Google Scholar] [CrossRef]
- Rieuwerts, J.S.; Thorton, I.; Farago, M.E.; Ashmore, M.R. Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads approach for metals. Chem. Speciat. Bioavailab. 1998, 10, 61–75. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Wildung, R.E. Soil and Plant Factors Influencing the Accumulation of Heavy Metals by Plants. Environ. Health Perspect. 1978, 27, 149–159. [Google Scholar] [CrossRef]
- Sanders, J.R.; Adams, T. McM. The effects of pH and soil type on concentrations of zinc, copper and nickel extracted by calcium chloride from sewage sludge-treated soils. Environ. Pollut. 1987, 43, 219–228. [Google Scholar] [CrossRef]
- Yuan, G.; Lavkulich, L.M. Sorption behavior of copper, zinc, and cadmium in response to simulated changes in soil properties. Commun. Soil Sci. Plant Anal. 1997, 28, 571–587. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Gómez, I.; Navarro-Pedreño, J. The influence of soil properties on the mobility of metals following a single application of polluted sewage sludge to seventy agricultural topsoils: A laboratory column study. Soil Sediment Control 2011, 20, 961–976. [Google Scholar] [CrossRef]
- Fytianos, K.; Katsianis, G.; Triantafyllou, P.; Zachariadis, G. Accumulation of heavy metals in vegetables grown in an industrial area in relation to soil. Bull. Environ. Contam. Toxicol. 2001, 67, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Hattab, N.; Motelica-Heino, M.; Faure, O.; Bouchardon, J.L. Effect of fresh and mature organic amendments on the phytoremediation of technosols contaminated with high concentrations of trace elements. J. Environ. Manag. 2015, 159, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafuente, A.L.; González, C.; Quintana, J.R.; Vázquez, A.; Romero, A. Mobility of heavy metals in poorly developed carbonate soils in the Mediterranean region. Geoderma 2008, 145, 238–244. [Google Scholar] [CrossRef]
- Nunes, J.R.; Ramos-Miras, J.; López-Piñeiro, A.; Loures, L.; Gil, C.; Coelho, J.; Loures, A. Concentrations of available heavy metals in Mediterranean agricultural soils and their relation with some selected properties: A case study in typical Mediterranean soils. Sustainability 2014, 6, 9124–9138. [Google Scholar] [CrossRef] [Green Version]
Descriptive Statistics | Sand (%) | Clay (%) | Silt (%) | pH | CO3 (%) | SOC (%) |
---|---|---|---|---|---|---|
Mean | 56 | 23 | 21 | 8.6 | 33 | 0.65 |
SD | 18 | 13 | 8 | 0.2 | 15 | 0.29 |
Fe-DTPA (mg/kg) | Mn-DTPA (mg/kg) | Cu-DTPA (mg/kg) | Zn-DTPA (mg/kg) | |||
Mean | 2.1 | 2.0 | 1.0 | 0.6 | ||
SD | 1.3 | 1.1 | 0.7 | 0.6 | ||
Cd-T (mg/kg) | Ni-T (mg/kg) | Pb-T (mg/kg) | Cr-T (mg/kg) | Cu-T (mg/kg) | Zn-T (mg/kg) | |
Mean | 0.21 | 13 | 10 | 16 | 10 | 21 |
SD | 0.07 | 6 | 3 | 7 | 4 | 9 |
Cd-T (mg/kg) | Ni-T (mg/kg) | Pb-T (mg/kg) | Cr-T (mg/kg) | Cu-T (mg/kg) | Zn-T (mg/kg) | |
---|---|---|---|---|---|---|
Mean | 0.21 | 13 | 10 | 16 | 10 | 21 |
GEMAS interval | 0.140–0.200 | 11–18 | 18–23 | 33–41 | 8.66–12.9 | 18–27 |
Mediterranean Area | Cd | Ni | Pb | Cr | Cu | Zn | Reference |
---|---|---|---|---|---|---|---|
Almería (Spain) | 0.4 | 26.9 | 25.6 | 29.6 | 25.7 | 65.7 | Rodríguez et al. (2013) |
Alicante (Spain) | 0.34 | 20.9 | 22.8 | 26.5 | 22.5 | 52.8 | Micó et al. (2006) |
Murcia (Spain) | 0.22 | 13.5 | 48.9 | 17.6 | 11 | 18.4 | Acosta et al. (2011) |
Castellón (Spain) | 0.33 | 19.3 | 55.8 | 33.3 | 36.6 | 78.5 | Peris et al. (2008) |
Piemonte (Italy) | - | 83.2 | 16.1 | 46.2 | 58.3 | 62.7 | Facchinelli et al. (2001) |
Zagreb (Croatia) | 0.66 | 49.5 | 25.9 | - | 20.8 | 77.9 | Romic and Romic (2003) |
Thiva (Greece) | 32.0 | 1521.0 | 24.0 | 277.0 | - | 67.0 | Antibachi et al. (2012) |
Peloponnese (Greece) | 0.54 | 146.8 | 19.7 | 83.1 | 74.7 | 74.9 | Kelepertzis (2014) |
Regulation | Cd-T | Ni-T | Pb-T | Cr-T | Cu-T | Zn-T | Reference |
---|---|---|---|---|---|---|---|
Canadian regulation | 1.4 | 50.0 | 70.0 | 64.0 | 63.0 | 200.0 | CCME (2007) |
Dutch regulation 1 | 0.8 | 35.0 | 85.0 | 100.0 | 36.0 | 140.0 | VROM (2000) |
Dutch regulation 2 | 12.0 | 210.0 | 530.0 | 380.0 | 190.0 | 720.0 | VROM (2000) |
Spanish regulation 3 | 3.0 | 112.0 | 300.0 | 150.0 | 210.0 | 450.0 | RD1310/90 (1990) |
Equation | R value | F value |
---|---|---|
Fe-DTPA = −1.64 pH − 0.04 Clay + 17.0 | 0.429 | 10.90 *** |
Mn-DTPA = −1.55 pH + 15.2 | 0.325 | 11.60 *** |
Cu-DTPA = −0.62 pH + 6.30 | 0.220 | 04.97 * |
Zn-DTPA = 0.30 pH − 0.09 Clay − 0.08 Silt − 1.61 | 0.336 | 04.08 * |
Cd-T = 0.05 SOC − 0.02 pH − 0.001 CO3 + 0.304 | 0.337 | 04.09 * |
Ni-T = −8.10 pH + 0.22 Clay + 0.06 CO3 + 0.03 Silt + 74.47 | 0.714 | 24.60 *** |
Cu-T = −4.30 pH + 2.37 SOC + 0.09 Clay + 43.20 | 0.511 | 11.33 *** |
Zn-T = −2.99 pH + 2.87 SOC + 0.43 Clay − 0.07 Silt + 32.69 | 0.709 | 24.00 *** |
Cr-T = −3.13 pH + 0.22 Clay + 0.19 CO3 − 0.11 Silt + 33.65 | 0.553 | 10.44 *** |
Pb-T = 4.12 SOC − 0.09 CO3 + 0.07 Clay + 8.52 | 0.576 | 15.87 *** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Pedreño, J.; Almendro-Candel, M.B.; Gómez Lucas, I.; Jordán Vidal, M.M.; Bech Borras, J.; Zorpas, A.A. Trace Metal Content and Availability of Essential Metals in Agricultural Soils of Alicante (Spain). Sustainability 2018, 10, 4534. https://doi.org/10.3390/su10124534
Navarro-Pedreño J, Almendro-Candel MB, Gómez Lucas I, Jordán Vidal MM, Bech Borras J, Zorpas AA. Trace Metal Content and Availability of Essential Metals in Agricultural Soils of Alicante (Spain). Sustainability. 2018; 10(12):4534. https://doi.org/10.3390/su10124534
Chicago/Turabian StyleNavarro-Pedreño, Jose, María Belén Almendro-Candel, Ignacio Gómez Lucas, Manuel M. Jordán Vidal, Jaume Bech Borras, and Antonis A. Zorpas. 2018. "Trace Metal Content and Availability of Essential Metals in Agricultural Soils of Alicante (Spain)" Sustainability 10, no. 12: 4534. https://doi.org/10.3390/su10124534
APA StyleNavarro-Pedreño, J., Almendro-Candel, M. B., Gómez Lucas, I., Jordán Vidal, M. M., Bech Borras, J., & Zorpas, A. A. (2018). Trace Metal Content and Availability of Essential Metals in Agricultural Soils of Alicante (Spain). Sustainability, 10(12), 4534. https://doi.org/10.3390/su10124534