Exploring Spatiotemporal Variation in Hourly Metro Ridership at Station Level: The Influence of Built Environment and Topological Structure
Abstract
:1. Introduction
2. Literature Review
2.1. Characteristics Affecting Ridership
2.2. Direct Ridership Models
3. Methodology
4. Study Area and Data
4.1. Metro Ridership Data
4.2. Influence Factor Measurement
5. Modeling and Discussion
5.1. Variables Selection for GTWR
5.2. Modeling
5.3. Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, J.; Xu, X.; Hong, L.; Wang, S.; Fei, Q. Networked analysis of the Shanghai subway network, in China. Phys. A Stat. Mech. Its Appl. 2011, 390, 4562–4570. [Google Scholar] [CrossRef]
- Kim, C.; Kim, S.; Kang, H.; Song, S.-M. What Makes Urban Transportation Efficient? Evidence from Subway Transfer Stations in Korea. Sustainability 2017, 9, 2054. [Google Scholar] [CrossRef]
- Mu, R.; de Jong, M.; Yu, B.; Yang, Z. The future of the modal split in China’s greenest city: Assessing options for integrating Dalian’s fragmented public transport system. Policy Soc. 2012, 31, 51–71. [Google Scholar] [CrossRef]
- Li, M.; Dong, L.; Shen, Z.; Lang, W.; Ye, X. Examining the Interaction of Taxi and Subway Ridership for Sustainable Urbanization. Sustainability 2017, 9, 242. [Google Scholar] [CrossRef]
- Anderson, M.L. Subways, strikes, and slowdowns: The impacts of public transit on traffic congestion. Am. Econ. Rev. 2014, 104, 2763–2796. [Google Scholar] [CrossRef]
- Kim, H.; Kwon, S.; Wu, S.K.; Sohn, K. Why do passengers choose a specific car of a metro train during the morning peak hours? Transp. Res. Part A Policy Pract. 2014, 61, 249–258. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, N.; Zhang, Y. Hazard-based model for estimation of congestion duration in urban rail transit considering loss minimization. Transp. Res. Rec. J. Transp. Res. Board 2016, 2595, 78–87. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, M.; Wu, X.; AbouRizk, S.M. Simulation-based route planning for pedestrian evacuation in metro stations: A case study. Autom. Construct. 2016, 71, 430–442. [Google Scholar] [CrossRef]
- Cardozo, O.D.; García-Palomares, J.C.; Gutiérrez, J. Application of geographically weighted regression to the direct forecasting of transit ridership at station-level. Appl. Geogr. 2012, 34, 548–558. [Google Scholar] [CrossRef]
- Mcnally, M.G. The four step model. In Handbook of Transport Modelling; Hensher, D.A., Button, J.K., Eds.; Emerald Group Publishing Limite: Bingley, UK, 2007; pp. 35–52. [Google Scholar]
- Ceccato, V.; Oberwittler, D. Comparing spatial patterns of robbery: Evidence from a Western and an Eastern European city. Cities 2008, 25, 185–196. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Cardozo, O.D.; García-Palomares, J.C. Transit ridership forecasting at station level: An approach based on distance-decay weighted regression. J. Transp. Geogr. 2011, 19, 1081–1092. [Google Scholar] [CrossRef]
- Kuby, M.; Barranda, A.; Upchurch, C. Factors influencing light-rail station boardings in the United States. Transp. Res. Part A Policy Pract. 2004, 38, 223–247. [Google Scholar] [CrossRef]
- Sohn, K.; Shim, H. Factors generating boardings at Metro stations in the Seoul metropolitan area. Cities 2010, 27, 358–368. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, W.; Song, Y.; Zhu, Y. What influences Metro station ridership in China? Insights from Nanjing. Cities 2013, 35, 114–124. [Google Scholar] [CrossRef]
- De Andrade, G.T.; Gonçalves, J.A.M.; da Silva Portugal, L. Analysis of Explanatory Variables of Rail Ridership: The Situation of Rio de Janeiro. Procedia Soc. Behav. Sci. 2014, 162, 449–458. [Google Scholar] [CrossRef]
- Ding, C.; Wang, D.; Ma, X.; Li, H. Predicting short-term subway ridership and prioritizing its influential factors using gradient boosting decision trees. Sustainability 2016, 8, 1100. [Google Scholar] [CrossRef]
- Jun, M.-J.; Choi, K.; Jeong, J.-E.; Kwon, K.-H.; Kim, H.-J. Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul. J. Transp. Geogr. 2015, 48, 30–40. [Google Scholar] [CrossRef]
- Tao, X.; Ming, Z.; Aditjandra, P.T. The impact of urban rail transit on commercial property value: New evidence from Wuhan, China. Transp. Res. Part A Policy Pract. 2016, 91, 223–235. [Google Scholar]
- Ji, Y.; Ma, X.; Yang, M.; Jin, Y.; Gao, L. Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach. Sustainability 2018, 10, 1526. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, N.; Zhang, Y.; Shi, Z. Forecasting of Short-Term Metro Ridership with Support Vector Machine Online Model. J. Adv. Transp. 2018, 2018, 3189238. [Google Scholar] [CrossRef]
- Chan, S.; Miranda-Moreno, L. A station-level ridership model for the metro network in Montreal, Quebec. Can. J. Civil Eng. 2013, 40, 254–262. [Google Scholar] [CrossRef]
- Choi, J.; Lee, Y.J.; Kim, T.; Sohn, K. An analysis of Metro ridership at the station-to-station level in Seoul. Transportation 2011, 39, 705–722. [Google Scholar] [CrossRef]
- Sung, H.; Choi, K.; Lee, S.; Cheon, S. Exploring the impacts of land use by service coverage and station-level accessibility on rail transit ridership. J. Transp. Geogr. 2014, 36, 134–140. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X. Transit ridership estimation with network Kriging: A case study of Second Avenue Subway, NYC. J. Transp. Geogr. 2014, 41, 107–115. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, J.; Ding, C.; Wang, Y. A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership. Comput. Environ. Urban Syst. 2018, 70, 113–124. [Google Scholar] [CrossRef]
- Murray, A.T.; Davis, R.; Stimson, R.J.; Ferreira, L. Public Transportation Access. Transp. Res. Part D Transp. Environ. 1998, 3, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Han, B.; Li, D. Modeling and simulation of passenger alighting and boarding movement in Beijing metro stations. Transp. Res. Part C Emerg. Technol. 2008, 16, 635–649. [Google Scholar] [CrossRef]
- Brown, J.; Thompson, G.; Bhattacharya, T.; Jaroszynski, M. Understanding transit ridership demand for the multidestination, multimodal transit network in Atlanta, Georgia: Lessons for increasing rail transit choice ridership while maintaining transit dependent bus ridership. Urban Stud. 2014, 51, 938–958. [Google Scholar] [CrossRef]
- Giuliano, G. Travel, location and race/ethnicity. Transp. Res. Part A Policy Pract. 2003, 37, 351–372. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, W.; Song, Y.; Zhu, Y. Analysis of Metro ridership at station level and station-to-station level in Nanjing: An approach based on direct demand models. Transportation 2014, 41, 133–155. [Google Scholar] [CrossRef]
- Cervero, R. Alternative Approaches to Modeling the Travel-Demand Impacts of Smart Growth. J. Am. Plan. Assoc. 2006, 72, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46 (Suppl. 1), 234–240. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression; John Wiley and Sons, Limited West Atrium: Chichester, UK, 2003. [Google Scholar]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Chu, H.-J.; Huang, B.; Lin, C.-Y. Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship. Atmos. Environ. 2015, 102, 176–182. [Google Scholar] [CrossRef]
- Du, Z.; Wu, S.; Zhang, F.; Liu, R.; Zhou, Y. Extending geographically and temporally weighted regression to account for both spatiotemporal heterogeneity and seasonal variations in coastal seas. Ecol. Inform. 2018, 43, 185–199. [Google Scholar] [CrossRef]
- NPB. Nanjing Statistic Yearbook 2016. Available online: http://221.226.86.104/file/nj2004/2017/zonghe/index.htm (accessed on 15 June 2018).
- Survey of Nanjing Metro Network Planning by 2030. Available online: http://www.njmetro.com.cn/build_030.aspx (accessed on 15 June 2018).
- Newman, M.E. Analysis of weighted networks. Phys. Rev. E 2004, 70, 056131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutner, M.H.; Nachtsheim, C.; Neter, J. Applied Linear Regression Models; McGraw-Hill/Irwin: New York, NY, USA, 2004. [Google Scholar]
Variable | Description | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Built Environment | |||||
Residence | Number of residence communities | 17.40 | 19.17 | 0 | 92 |
Office | Number of companies and government agencies | 79.02 | 140.88 | 0 | 866 |
Commerce | Number of shopping malls, restaurants, retail stores, and entertainment centers | 261.93 | 403.23 | 0 | 2489 |
Service | Number of communications, financial buildings, hospitals | 49.84 | 68.37 | 0 | 504 |
Education | Number of education agencies | 26.16 | 37.63 | 0 | 178 |
Hotel | Number of hotels | 14.00 | 20.89 | 0 | 119 |
Scenery | Number of famous sceneries | 9.79 | 22.58 | 0 | 161 |
Parking | Number of parking lots | 10.31 | 13.46 | 0 | 82 |
Connected Road | Total length of road (km) | 29.64 | 12.59 | 1.56 | 55.85 |
Connected Bus | Number of bus stops | 23.55 | 21.17 | 0 | 82 |
Connected Bike | Number of public-bike stations | 3.53 | 4.68 | 0 | 18 |
Nearest Bus | The distance from the nearest bus stop (m) | 5315.78 | 8435.76 | 16.21 | 42,693.46 |
Nearest Bike | The distance from the nearest public-bike station (m) | 405.63 | 657.33 | 1.98 | 3695.94 |
Topological Structure | |||||
Degree Centrality | Degree centrality of metro station | 2.05 | 0.63 | 1 | 5 |
Closeness Centrality | Closeness centrality calculated based on Metro network | 0.07 | 0.02 | 0.04 | 0.10 |
Betweenness Centrality | Betweenness centrality calculated based on Metro network | 906.36 | 755.51 | 0 | 3570 |
Variable | Coefficient | Std. Dev. | t−Statistic | Probability | VIF |
---|---|---|---|---|---|
Intercept | −17661.46 | 5042.78 | −3.50 | 0.00 a | |
Residence | −201.53 | 86.73 | −2.32 | 0.02 a | 3.48 |
Commerce | 18.86 | 5.37 | 3.51 | 0.00 a | 5.92 b |
Scenery | −158.47 | 57.07 | −2.78 | 0.01 a | 2.09 |
Parking | 333.73 | 166.97 | 2.00 | 0.05 a | 6.36 b |
Degree Centrality | 5126.02 | 1594.41 | 3.22 | 0.00 a | 1.28 |
Closeness Centrality | 24,7791.70 | 80,625.68 | 3.07 | 0.00 a | 2.41 |
Number of observations | 128 | 0.57 | |||
RSS (Residual Sum of Squares) | 15,969,253,868.32 | MS (Mean Square) | 100,142,322.48 |
Source of Variation | RSS | DF | MS | Pseudo-F Statistic | p-Value | |
---|---|---|---|---|---|---|
OLS residuals | 2,647,094,052.17 | 2425.00 | 1,091,585.18 | 0.24 | ||
TWR residuals | 1,571,998,861.05 | 2333.35 | 673,710.14 | 0.52 | ||
GWR residuals | 2,007,357,668.66 | 2304.84 | 870,932.18 | 0.42 | ||
GTWR residuals | 218,308,621.64 | 960.02 | 227,399.57 | 0.93 | ||
TWR/OLS improvement | 1,075,095,191.12 | 91.65 | 1,172,9932.15 | 17.41 | 0.00 | |
GWR/OLS improvement | 639,736,383.51 | 120.16 | 5,323,953.40 | 6.11 | 0.00 | |
GTWR/OLS improvement | 2,428,785,430.53 | 1464.98 | 1,657,899.07 | 7.29 | 0.00 | |
GTWR/TWR improvement | 1,353,690,239.41 | 1373.32 | 985,703.58 | 4.33 | 0.00 | |
GTWR/GWR improvement | 1,789,049,047.02 | 1344.82 | 1,330,330.03 | 5.85 | 0.00 |
Variable | Mean | Min | Max | LQ | Medium | UQ | Std. Dev. |
---|---|---|---|---|---|---|---|
Intercept | 141.18 | −52,864.92 | 78,513.04 | −1234.82 | 2.43 | 1233.43 | 5079.40 |
Residence | 28.13 | −664.54 | 1070.38 | −9.45 | 1.97 | 32.59 | 100.26 |
Commerce | −0.37 | −197.84 | 77.47 | −0.22 | 0.26 | 1.31 | 10.73 |
Scenery | −92.13 | −7012.30 | 7548.52 | −28.94 | −5.65 | 4.98 | 510.39 |
Parking | 34.40 | −1576.47 | 4487.69 | −4.53 | 12.78 | 45.46 | 232.10 |
Degree Centrality | 313.77 | −3168.00 | 6758.58 | −31.92 | 110.47 | 700.74 | 694.48 |
Closeness Centrality | −3910.48 | −1,191,278.07 | 901,756.46 | −20,103.34 | −1276.66 | 11,094.17 | 77,422.57 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Zhang, N.; Liu, Y.; Xu, W. Exploring Spatiotemporal Variation in Hourly Metro Ridership at Station Level: The Influence of Built Environment and Topological Structure. Sustainability 2018, 10, 4564. https://doi.org/10.3390/su10124564
Shi Z, Zhang N, Liu Y, Xu W. Exploring Spatiotemporal Variation in Hourly Metro Ridership at Station Level: The Influence of Built Environment and Topological Structure. Sustainability. 2018; 10(12):4564. https://doi.org/10.3390/su10124564
Chicago/Turabian StyleShi, Zhuangbin, Ning Zhang, Yang Liu, and Wei Xu. 2018. "Exploring Spatiotemporal Variation in Hourly Metro Ridership at Station Level: The Influence of Built Environment and Topological Structure" Sustainability 10, no. 12: 4564. https://doi.org/10.3390/su10124564
APA StyleShi, Z., Zhang, N., Liu, Y., & Xu, W. (2018). Exploring Spatiotemporal Variation in Hourly Metro Ridership at Station Level: The Influence of Built Environment and Topological Structure. Sustainability, 10(12), 4564. https://doi.org/10.3390/su10124564