Exploring the Influence of Urban Form on Urban Vibrancy in Shenzhen Based on Mobile Phone Data
Abstract
:1. Introduction
2. Study Area and Datasets
3. System of Influencing Factors
4. Geographically and Temporally Weighted Regression
5. Results and Discussion
5.1. Results of Ordinary Linear Regression
5.2. Results of GTWR
5.3. Visual Analysis of the GTWR Results
5.4. Planning Implications
- (1)
- The foundation of urban planning is people oriented. The underlying reasons for urban dynamics are the activities of people in a city, and the effects of many factors on urban vibrancy depend on the related functions and activities of city residents regardless of whether those residents exert an active or passive demand. Therefore, learning the rules of human activity is necessary and constitutes the foundation for improving urban life. This article proposes the use of data from the perspective of human perception, which can provide effective support for other fields of urban study and planning.
- (2)
- Improvements to urban vibrancy should be adapted to the local conditions. According to the results obtained by GTWR, the impacts of the same index on the urban vibrancy framework vary in different local areas and time periods and cannot be generalized. Investigating the local conditions is therefore important to formulate relevant planning schemes.
- (3)
- Overall, a good traffic network is positively correlated with urban vibrancy, especially during the daytime on weekdays. Therefore, urban vibrancy can be enhanced by reasonably planning the traffic network, improving the integration of roads and the travel degree, and increasing the potential of a region to become an activity destination and movement channel. The functional form of a city also possesses a very important influence on the vibrancy of the city. Specific measures to improve the vibrancy of the city include increasing the functions related to “the third type of places” [61], such as business consumption, tourism and leisure, improving the degree of regional functional mixing and enhancing the diversity of functions. Many facilities outside the city centre provide a wide range of personal items to urban consumers, making life in the suburbs more active by retaining social engagement activities according to the time and location. Our results shed lights on the importance of the new Chinese government programme in 2016 that aims to construct open communities, thereby easing land use and increasing the degree of functional mixing. Therefore, promoting spatial restructuring to adapt the city to industrial upgrading and linkage development for office buildings and service industries can ensure the efficient utilization of regional urban functions.
- (4)
- In general, the city centre can exhibit better vibrancy if it exhibits a diversity of functional combinations and a dynamic sustainable development. In addition, constructing a polycentric urban structure is a powerful way to improve the vibrancy of downtown areas that are far from the city centre. On the one hand, unified planning with attention to detail and optimizing the internal structure in the Futian CBD is important, as this approach can consolidate the position of the city centre area and enhance the ontological vibrancy of the CBD. On the other hand, constructing a multi-axis, multi-centre urban development frame with a strong network is also important. The geographical location conditions of each region should be evaluated according to the locations of important urban facilities, and the layout should be planned accordingly.
6. Conclusions
- (1)
- Quantitative calculations and visualizations display the dynamic changes of the population of Shenzhen at different times with different characteristics. This article emphasizes the importance of human activities throughout the city and measures the local vibrancy at a fine scale. More importantly, mobile phone signal data have numerous advantages; for example, they are collected in real time with a small sample deviation and differences among many groups.
- (2)
- A framework of the factors that influence urban vibrancy was constructed. In addition, from an urban morphological perspective, an indicator system of urban vibrancy influencing factors was constructed from three aspects: the traffic network morphology, urban function morphology, and urban geographical location. The value of each indicator was quantitatively calculated through theories and methods such as space syntax and information entropy; furthermore, a regression model was constructed as an explanatory variable, and urban vibrancy was represented by the number of people per hour. The descriptions of phenomena based on observations and experience were transformed into calculations of urban vibrancy based on theories and methods.
- (3)
- A regression model of urban vibrancy and its various influencing factors was established, and the influence of each factor on urban vibrancy was expressed quantitatively. GTWR was adopted to delve into the influencing factors of time and the effects of their changes. In addition, the higher degree of fitting can more effectively explain the vibrancy of Shenzhen and the influencing factors of the factors in different situations.
Author Contributions
Funding
Conflicts of Interest
References
- Delclòs-Alió, X.; Miralles-Guasch, C. Looking at Barcelona through Jane Jacobs’s eyes: Mapping the basic conditions for urban vitality in a Mediterranean conurbation. Land Use Pol. 2018, 75, 505–517. [Google Scholar] [CrossRef]
- Montgomery, J. Making a city: Urbanity, vitality and urban design. J. Urban Des. 1998, 3, 93–116. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. [Google Scholar]
- Jacobs, J. The Life of Cities; Random House: New York, NY, USA, 1969. [Google Scholar]
- Sulis, P.; Manley, E.; Zhong, C.; Batty, M. Using mobility data as proxy for measuring urban vitality. J. Spat. Inf. Sci. 2018, 16, 137–162. [Google Scholar] [CrossRef]
- Sung, H.; Lee, S. Residential built environment and walking activity: Empirical evidence of Jane Jacobs’ urban vitality. Transp. Res. Part D Transp. Environ. 2015, 41, 318–329. [Google Scholar] [CrossRef]
- Wu, C.; Ye, X.; Ren, F.; Du, Q. Check-in behaviour and spatio-temporal vibrancy: An exploratory analysis in shenzhen, china. Cities 2018, 77, 104–116. [Google Scholar] [CrossRef]
- Yue, Y.; Zhuang, Y.; Yeh, A.G.; Xie, J.-Y.; Ma, C.-L.; Li, Q.-Q. Measurements of POI-based mixed use and their relationships with neighbourhood vibrancy. Int. J. Geogr. Inf. Sci. 2017, 31, 658–675. [Google Scholar] [CrossRef]
- Alexander, C. The Timeless Way of Building; Oxford University Press: New York, NY, USA, 1979; Volume 1. [Google Scholar]
- Lynch, K. Good City Form; MIT Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Gehl, J. A changing street life in a changing society. Places 1989, 6, 8–17. [Google Scholar]
- Landry, C. Urban vitality: A new source of urban competitiveness. Archis 2000, 12, 8–13. [Google Scholar]
- Jiang, D. The Theory of City form Vitality; Southeast University Press: Nanjing, China, 2007. (In Chinese) [Google Scholar]
- Djankov, S.; Glaeser, E.; La Porta, R.; Lopez-de-Silanes, F.; Shleifer, A. The new comparative economics. J. Comp. Econ. 2003, 31, 595–619. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.-Y.; Ochoa, J.J.; Shah, M.N.; Zhang, X. The application of urban sustainability indicators—A comparison between various practices. Habitat Int. 2011, 35, 17–29. [Google Scholar] [CrossRef]
- Shen, Y.; Karimi, K. The economic value of streets: Mix-scale spatio-functional interaction and housing price patterns. Appl. Geogr. 2017, 79, 187–202. [Google Scholar] [CrossRef]
- Shen, Y.; Karimi, K. Urban function connectivity: Characterisation of functional urban streets with social media check-in data. Cities 2016, 55, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Ying, L.; Yin, Z. Quantitative evaluation on street vibrancy and its impact factors: A case study of Chengdu. New Architect. 2016, 1, 52–57. (In Chinese) [Google Scholar]
- Buyantuyev, A.; Wu, J.; Gries, C.J.L.; Planning, U. Multiscale analysis of the urbanization pattern of the Phoenix metropolitan landscape of USA: Time, space and thematic resolution. Landsc. Urban Plan. 2010, 94, 206–217. [Google Scholar] [CrossRef]
- Dovey, K.; Pafka, E. The urban density assemblage: Modelling multiple measures. Urban Des. Int. 2014, 19, 66–76. [Google Scholar] [CrossRef]
- Deng, C.; Ma, J.J.L.; Planning, U. Viewing urban decay from the sky: A multi-scale analysis of residential vacancy in a shrinking US city. Landsc. Urban Plan. 2015, 141, 88–99. [Google Scholar] [CrossRef]
- Turkoglu, H.J.P.-S.; Sciences, B. Sustainable development and quality of urban life. Procedia Soc. Behav. Sci. 2015, 202, 10–14. [Google Scholar] [CrossRef]
- Apparicio, P.; Landry, S.; Lewnard, J.J.L.; Planning, U. Disentangling the effects of urban form and socio-demographic context on street tree cover: A multi-level analysis from Montréal. Landsc. Urban Plan. 2017, 157, 422–433. [Google Scholar]
- Forsyth, A. What is a walkable place? The walkability debate in urban design. Urban Des. Int. 2015, 20, 274–292. [Google Scholar] [CrossRef] [Green Version]
- Jacobs-Crisioni, C.; Rietveld, P.; Koomen, E.; Tranos, E. Evaluating the impact of land-use density and mix on spatiotemporal urban activity patterns: An exploratory study using mobile phone data. Environ. Plan. A 2014, 46, 2769–2785. [Google Scholar] [CrossRef]
- De Nadai, M.; Staiano, J.; Larcher, R.; Sebe, N.; Quercia, D.; Lepri, B. The death and life of great Italian cities: A mobile phone data perspective. In Proceedings of the 25th International Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 413–423. [Google Scholar]
- Gehl, J. Life between Buildings: Using Public Space; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- Trancik, R. Finding Lost Space: Theories of Urban Design; John Wiley & Sons: Hoboken, NJ, USA, 1986. [Google Scholar]
- Mehta, V. Lively streets: Determining environmental characteristics to support social behavior. J. Plan. Educ. Res. 2007, 27, 165–187. [Google Scholar] [CrossRef]
- Sung, H.-G.; Go, D.-H.; Choi, C.G. Evidence of Jacobs’s street life in the great Seoul city: Identifying the association of physical environment with walking activity on streets. Cities 2013, 35, 164–173. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Wu, B.; Li, R.; Huang, B. A geographically and temporally weighted autoregressive model with application to housing prices. Int. J. Geogr. Inf. Sci. 2014, 28, 1186–1204. [Google Scholar] [CrossRef]
- Chu, H.-J.; Huang, B.; Lin, C.-Y. Modeling the spatio-temporal heterogeneity in the PM10–PM2.5 relationship. Atmos. Environ. 2015, 102, 176–182. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.-M.; Xiao, H.; Yang, W.; Liu, D.; Chen, B. Driving factors of carbon dioxide emissions in China: An empirical study using 2006–2010 provincial data. Front. Earth Sci. 2017, 11, 156–161. [Google Scholar] [CrossRef]
- Koohsari, M.J.; Sugiyama, T.; Mavoa, S.; Villanueva, K.; Badland, H.; Giles-Corti, B.; Owen, N. Street network measures and adults’ walking for transport: Application of space syntax. Health Place 2016, 38, 89–95. [Google Scholar] [CrossRef]
- Karimi, K. Space Syntax: Consolidation and Transformation of an Urban Research Field; Taylor & Francis: Abingdon, UK, 2018. [Google Scholar]
- Jiang, B.; Claramunt, C.; Klarqvist, B. Integration of space syntax into GIS for modelling urban spaces. Int. J. Appl. Earth Obs. Geoinf. 2000, 2, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Hillier, B. Space and spatiality: What the built environment needs from social theory. Build. Res. Informat. 2008, 36, 216–230. [Google Scholar] [CrossRef]
- Karimi, K. A configurational approach to analytical urban design: ‘Space syntax’methodology. Urban Des. Int. 2012, 17, 297–318. [Google Scholar] [CrossRef]
- Mahmoud, A.H.; Omar, R. Planting design for urban parks: Space syntax as a landscape design assessment tool. Front. Archit. Res. 2015, 4, 35–45. [Google Scholar] [CrossRef]
- Li, X.; Lv, Z.; Zheng, Z.; Zhong, C.; Hijazi, I.H.; Cheng, S. Assessment of lively street network based on geographic information system and space syntax. Multimed. Tools Appl. 2017, 76, 17801–17819. [Google Scholar] [CrossRef]
- Sharmin, S.; Kamruzzaman, M. Meta-analysis of the relationships between space syntax measures and pedestrian movement. Transp. Rev. 2018, 38, 524–550. [Google Scholar] [CrossRef]
- Seamon, D. A lived hermetic of people and place: Phenomenology and space syntax. In Proceedings of the 6th International Space Syntax Symposium, Istanbul, Turkey, 12–15 June 2007; pp. iii-1–iii-16. [Google Scholar]
- Ye, Y.; Van Nes, A. Quantitative tools in urban morphology: Combining space syntax, spacematrix and mixed-use index in a GIS framework. Urban Morphol. 2014, 18, 97–118. [Google Scholar]
- Lerman, Y.; Rofè, Y.; Omer, I. Using space syntax to model pedestrian movement in urban transportation planning. Geogr. Anal. 2014, 46, 392–410. [Google Scholar] [CrossRef]
- Omer, I.; Kaplan, N. Using space syntax and agent-based approaches for modeling pedestrian volume at the urban scale. Comput. Environ. Urban Syst. 2017, 64, 57–67. [Google Scholar] [CrossRef]
- Omer, I.; Kaplan, N. Structural properties of the angular and metric street network’s centralities and their implications for movement flows. Env. Plan. B Urban Anal. CIty Sci. 2018. [Google Scholar] [CrossRef]
- Hillier, B. Studying cities to learn about minds: Some possible implications of space syntax for spatial cognition. Environ. Plan. B Plan. Des. 2012, 39, 12–32. [Google Scholar] [CrossRef]
- Hillier, W.; Yang, T.; Turner, A. Advancing DepthMap to advance our understanding of cities: Comparing streets and cities and streets with cities. In Proceedings of the Eighth International Space Syntax Symposium, Santiago de Chile, Chile, 3–6 January 2002. [Google Scholar]
- Hillier, B.; Iida, S. Network and psychological effects in urban movement. In Proceedings of the International Conference on Spatial Information Theory, Ellicottville, NY, USA, 14–18 September 2005; pp. 475–490. [Google Scholar]
- Jiang, B. Axwoman 6.0: An ArcGIS Extension for Urban Morphological Analysis; University of Gävle: Gävle, Sweden, 2012. [Google Scholar]
- Varoudis, T. DepthmapX Multi-Platform Spatial Network Analysis Software. 2012. Available online: http://varoudis.github. io/depthmapX (accessed on 9 July 2017).
- Carlos, H.A.; Shi, X.; Sargent, J.; Tanski, S.; Berke, E. Density estimation and adaptive bandwidths: A primer for public health practitioners. Int. J. Health Geogr. 2010, 9, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, C.; Weaver, W. Biodiversity Measurements; Urbana University Press: Urbana, IL, USA, 1948; pp. 117–127. [Google Scholar]
- Xing, H.; Meng, Y.; Shi, Y. A dynamic human activity-driven model for mixed land use evaluation using social media data. Trans. GIS 2018, 22, 1130–1151. [Google Scholar] [CrossRef]
- Liu, X.; Long, Y.J.E.; Planning, P. Automated identification and characterization of parcels with OpenStreetMap and points of interest. Environ. Plan. B Plan. Des. 2016, 43, 341–360. [Google Scholar] [CrossRef]
- Corbusier, L.; Eardley, A. The Athens Charter; Grossman Publishers: New York, NY, USA, 1973. [Google Scholar]
- Li, C.; Wang, M.; Wang, J.; Wu, W. The Geography of City Liveliness and Land Use Configurations: Evidence from Location-Based Big Data in Beijing; Spatial Economics Research Centre (LSE): London, UK, 2016. [Google Scholar]
- McMaster, R. In Memoriam: George F. Jenks (1916–1996). Cartogr. Geogr. Inf. Syst. 1997, 24, 56–59. [Google Scholar] [CrossRef]
- Jenks, G. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Oldenburg, R. The Great Good Place: Café, Coffee Shops, Community Centers, Beauty Parlors, General Stores, Bars, Hangouts, and How They Get You through the Day; Paragon House Publishers: St Paul, MN, USA, 1989. [Google Scholar]
Aspects | Indicator | Abbreviations |
---|---|---|
Road traffic pattern | Integration of road | Integration |
Choice of road | Choice | |
Urban functional form | Degree of mixing | Mixing |
Density of residence | Residence | |
Density of traffic | Traffic | |
Density of commerce | Commerce | |
Density of leisure | Leisure | |
Locational condition | Distance to city centre | City centre |
Distance to airport | Airport |
Variable | Tolerance_before | VIF_before | Tolerance_after | VIF_after |
---|---|---|---|---|
Mixing | 0.769 | 1.301 | 0.781 | 1.280 |
Residence | 0.627 | 1.595 | 0.630 | 1.586 |
Traffic | 0.230 | 4.349 | 0.230 | 4.344 |
Commerce | 0.238 | 4.210 | 0.238 | 4.204 |
Leisure | 0.266 | 3.759 | 0.267 | 3.745 |
City centre | 0.722 | 1.385 | 0.782 | 1.279 |
Airport | 0.533 | 1.876 | 0.618 | 1.617 |
Integration | 0.041 | 24.412 | 0.426 | 2.349 |
Choice | 0.050 | 20.007 | — | — |
Time | Constant | Mixing | Residence | Traffic | Commerce | Leisure | City Centre | Airport | Integration | |
---|---|---|---|---|---|---|---|---|---|---|
H1 | −2.584×10(−15) | 0.110 ** | 0.235 ** | 0.097 * | 0.221 ** | 0.149 ** | −0.031 | −0.071 ** | 0.112 ** | 0.573 |
H2 | −4.769×10(−16) | 0.111 ** | 0.238 ** | 0.097 * | 0.218 ** | 0.147 ** | −0.030 | −0.071 ** | 0.112 ** | 0.570 |
H3 | −2.505×10(−16) | 0.112 ** | 0.241 ** | 0.098 * | 0.216 ** | 0.147 ** | −0.029 | −0.072 ** | 0.111 ** | 0.570 |
H4 | −4.633×10(−16) | 0.112 ** | 0.241 ** | 0.096 * | 0.217 ** | 0.145 ** | −0.029 | −0.072 ** | 0.112 ** | 0.569 |
H5 | −5.589×10(−16) | 0.112 ** | 0.243 ** | 0.095 * | 0.215 ** | 0.146 ** | −0.029 | −0.071 ** | 0.113 ** | 0.568 |
H6 | 6.993×10(−17) | 0.113 ** | 0.243 ** | 0.094 * | 0.215 ** | 0.145 ** | −0.030 | −0.071 ** | 0.114 ** | 0.568 |
H7 | −4.133×10(−16) | 0.111 ** | 0.238 ** | 0.098 * | 0.210 ** | 0.148 ** | −0.035 | −0.069 ** | 0.117 ** | 0.571 |
H8 | −2.278×10(−15) | 0.093 ** | 0.199 ** | 0.141 ** | 0.183 ** | 0.156 ** | −0.056 * | −0.057 * | 0.136 ** | 0.580 |
H9 | 5.316×10(−16) | 0.041 | 0.098 ** | 0.238 ** | 0.186 ** | 0.141 ** | −0.085 ** | −0.032 | 0.167 ** | 0.609 |
H10 | 7.005×10(−16) | 0.014 | 0.034 | 0.304 ** | 0.253 ** | 0.093 * | −0.082 ** | −0.023 | 0.164 ** | 0.643 |
H11 | 1.220×10(−15) | 0.003 | 0.005 | 0.315 ** | 0.297 ** | 0.076 * | −0.081 ** | −0.020 | 0.156 ** | 0.655 |
H12 | −1.624×10(−15) | −0.004 | −0.004 | 0.321 ** | 0.320 ** | 0.068 | −0.078 ** | −0.021 | 0.147 ** | 0.662 |
H13 | 8.436×10(−16) | −0.002 | −0.006 | 0.308 ** | 0.323 ** | 0.091 * | −0.073 ** | −0.023 | 0.138 ** | 0.663 |
H14 | 8.791×10(−16) | −0.005 | −0.010 | 0.320 ** | 0.332 ** | 0.072 * | −0.076 ** | −0.022 | 0.137 ** | 0.663 |
H15 | −9.614×10(−16) | −0.010 | −0.021 | 0.331 ** | 0.336 ** | 0.064 | −0.078 ** | −0.019 | 0.136 ** | 0.661 |
H16 | −2.460×10(−16) | −0.012 | −0.026 | 0.334 ** | 0.343 ** | 0.060 | −0.078 ** | −0.020 | 0.132 ** | 0.661 |
H17 | −1.925×10(−16) | −0.009 | −0.020 | 0.332 ** | 0.337 ** | 0.062 | −0.077 ** | −0.021 | 0.133 ** | 0.659 |
H18 | −7.035×10(−16) | 0.000 | −0.004 | 0.316 ** | 0.326 ** | 0.073 * | −0.077 ** | −0.024 | 0.135 ** | 0.657 |
H19 | −1.187×10(−15) | 0.030 | 0.047 * | 0.264 ** | 0.290 ** | 0.116 ** | −0.072 ** | −0.034 | 0.133 ** | 0.649 |
H20 | −1.082×10(−15) | 0.057 ** | 0.106 ** | 0.218 ** | 0.262 ** | 0.142 ** | −0.057 * | −0.050 * | 0.124 ** | 0.635 |
H21 | −1.811×10(−15) | 0.075 ** | 0.143 ** | 0.180 ** | 0.252 ** | 0.151 ** | −0.050 * | −0.058 ** | 0.122 ** | 0.624 |
H22 | −1.151×10(−15) | 0.088 ** | 0.178 ** | 0.150 ** | 0.239 ** | 0.153 ** | −0.047 * | −0.062 ** | 0.118 ** | 0.609 |
H23 | 9.486×10(−16) | 0.099 ** | 0.209 ** | 0.131 ** | 0.229 ** | 0.143 ** | −0.041 | −0.066 ** | 0.115 ** | 0.590 |
H24 | −2.844×10(−15) | 0.104 ** | 0.224 ** | 0.115 ** | 0.230 ** | 0.141 ** | −0.036 | −0.070 ** | 0.109 ** | 0.580 |
Time | Constant | Mixing | Residence | Traffic | Commerce | Leisure | City Centre | Airport | Integration | |
---|---|---|---|---|---|---|---|---|---|---|
H1 | −1.445×10(−15) | 0.108 ** | 0.226 ** | 0.097 * | 0.228 ** | 0.156 ** | −0.030 | −0.070 ** | 0.111 ** | 0.576 |
H2 | 3.427×10(−16) | 0.109 ** | 0.232 ** | 0.095 * | 0.227 ** | 0.151 ** | −0.029 | −0.071 ** | 0.110 ** | 0.572 |
H3 | −5.611×10(−16) | 0.111 ** | 0.235 ** | 0.093 * | 0.226 ** | 0.149 ** | −0.028 | −0.071 ** | 0.109 ** | 0.569 |
H4 | −7.938×10(−16) | 0.112 ** | 0.237 ** | 0.092 * | 0.225 ** | 0.148 ** | −0.027 | −0.072 ** | 0.109 ** | 0.568 |
H5 | 2.253×10(−16) | 0.112 ** | 0.238 ** | 0.091 * | 0.223 ** | 0.149 ** | −0.027 | −0.072 ** | 0.110 ** | 0.567 |
H6 | −7.168×10(−17) | 0.113 ** | 0.238 ** | 0.091 * | 0.223 ** | 0.148 ** | −0.028 | −0.072 ** | 0.110 ** | 0.567 |
H7 | 7.686×10(−16) | 0.112 ** | 0.236 ** | 0.092 * | 0.219 ** | 0.151 ** | −0.031 | −0.070 ** | 0.113 ** | 0.568 |
H8 | 8.425×10(−16) | 0.107 ** | 0.227 ** | 0.104 * | 0.210 ** | 0.154 ** | −0.037 | −0.066 ** | 0.120 ** | 0.574 |
H9 | −1.315×10(−15) | 0.099 ** | 0.207 ** | 0.129 ** | 0.209 ** | 0.156 ** | −0.042 | −0.060 ** | 0.125 ** | 0.586 |
H10 | 3.862×10(−17) | 0.092 ** | 0.180 ** | 0.148 ** | 0.215 ** | 0.166 ** | −0.044 | −0.056 * | 0.127 ** | 0.603 |
H11 | 1.547×10(−15) | 0.082 ** | 0.149 ** | 0.160 ** | 0.234 ** | 0.180 ** | −0.047 | −0.054 * | 0.124 ** | 0.620 |
H12 | −6.127×10(−16) | 0.072 ** | 0.123 ** | 0.164 ** | 0.254 ** | 0.194 ** | −0.048 | −0.052 * | 0.116 ** | 0.630 |
H13 | −6.100×10(−16) | 0.066 ** | 0.104 ** | 0.162 ** | 0.271 ** | 0.206 ** | −0.045 | −0.052 * | 0.109 ** | 0.635 |
H14 | 1.427×10(−15) | 0.063 ** | 0.094 ** | 0.170 ** | 0.278 ** | 0.203 ** | −0.047 | −0.050 * | 0.109 ** | 0.638 |
H15 | 7.112×10(−17) | 0.061 ** | 0.090 ** | 0.174 ** | 0.281 ** | 0.199 ** | −0.048 * | −0.049 * | 0.111 ** | 0.642 |
H16 | 1.352×10(−15) | 0.060 ** | 0.088 ** | 0.177 ** | 0.286 ** | 0.193 ** | −0.050 * | −0.049 * | 0.112 ** | 0.642 |
H17 | −1.652×10(−15) | 0.063 ** | 0.088 ** | 0.179 ** | 0.289 ** | 0.186 ** | −0.050 * | −0.050 * | 0.111 ** | 0.642 |
H18 | 9.812×10(−17) | 0.065 ** | 0.097 ** | 0.160 ** | 0.284 ** | 0.191 ** | −0.053 * | −0.049 * | 0.114 ** | 0.632 |
H19 | −6.596×10(−16) | 0.072 ** | 0.111 ** | 0.141 ** | 0.277 ** | 0.204 ** | −0.049 * | −0.052 * | 0.111 ** | 0.626 |
H20 | −7.319×10(−16) | 0.080 ** | 0.131 ** | 0.129 ** | 0.269 ** | 0.202 ** | −0.044 | −0.056 * | 0.112 ** | 0.621 |
H21 | 3.432×10(−16) | 0.090 ** | 0.156 ** | 0.117 ** | 0.255 ** | 0.194 ** | −0.044 | −0.059 ** | 0.117 ** | 0.615 |
H22 | −6.661×10(−17) | 0.098 ** | 0.188 ** | 0.116 ** | 0.235 ** | 0.176 ** | −0.042 | −0.063 ** | 0.119 ** | 0.604 |
H23 | −1.041×10(−15) | 0.106 ** | 0.217 ** | 0.111 ** | 0.223 ** | 0.156 ** | −0.038 | −0.067 ** | 0.115 ** | 0.588 |
H24 | 8.507×10(−16) | 0.109 ** | 0.230 ** | 0.098 * | 0.225 ** | 0.151 ** | −0.034 | −0.070 ** | 0.111 ** | 0.575 |
Variable | Min | Q1 | Q2 | Q3 | Max | Mean | SD |
---|---|---|---|---|---|---|---|
Constant | −40.068 | −1.401 | −0.271 | 0.728 | 60.269 | −0.458 | 5.705 |
Mixing | −2.069 | −0.090 | 0.016 | 0.121 | 1.603 | −0.007 | 0.310 |
Residence | −3.159 | −0.094 | 0.047 | 0.257 | 12.105 | 0.120 | 0.644 |
Traffic | −3.789 | −0.139 | 0.295 | 0.704 | 8.656 | 0.327 | 0.823 |
Commerce | −11.707 | −0.095 | 0.136 | 0.489 | 7.384 | 0.218 | 0.732 |
Leisure | −6.226 | −0.099 | 0.110 | 0.405 | 2.951 | 0.133 | 0.637 |
City centre | −23.227 | −0.834 | −0.074 | 0.650 | 31.197 | −0.187 | 3.258 |
Airport | −55.138 | −1.326 | −0.17 | 0.877 | 32.772 | −0.444 | 4.941 |
Integration | −2.467 | −0.054 | 0.099 | 0.271 | 2.409 | 0.118 | 0.345 |
Bandwidth: 0.199 : 0.870 |
Variable | Min | Q1 | Q2 | Q3 | Max | Mean | SD |
---|---|---|---|---|---|---|---|
Constant | −30.355 | −1.279 | −0.169 | 0.818 | 59.111 | −0.309 | 5.402 |
Mixing | −1.863 | −0.067 | 0.024 | 0.138 | 1.554 | 0.019 | 0.320 |
Residence | −2.737 | −0.065 | 0.076 | 0.289 | 11.804 | 0.161 | 0.688 |
Traffic | −3.630 | −0.171 | 0.265 | 0.693 | 8.943 | 0.305 | 0.836 |
Commerce | −11.975 | −0.092 | 0.155 | 0.486 | 7.276 | 0.225 | 0.737 |
Leisure | −6.113 | −0.060 | 0.161 | 0.499 | 2.874 | 0.199 | 0.650 |
City centre | −16.584 | −0.741 | −0.042 | 0.662 | 30.500 | −0.118 | 3.096 |
Airport | −54.105 | −1.297 | −0.189 | 0.837 | 27.900 | −0.611 | 4.824 |
Integration | −2.297 | −0.067 | 0.087 | 0.253 | 2.377 | 0.100 | 0.344 |
Bandwidth: 0.255 : 0.865 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Lin, Y.; Li, S.; Li, S.; Li, J.; Ren, F.; Wu, C. Exploring the Influence of Urban Form on Urban Vibrancy in Shenzhen Based on Mobile Phone Data. Sustainability 2018, 10, 4565. https://doi.org/10.3390/su10124565
Tang L, Lin Y, Li S, Li S, Li J, Ren F, Wu C. Exploring the Influence of Urban Form on Urban Vibrancy in Shenzhen Based on Mobile Phone Data. Sustainability. 2018; 10(12):4565. https://doi.org/10.3390/su10124565
Chicago/Turabian StyleTang, Lingjun, Yu Lin, Sijia Li, Sheng Li, Jingyi Li, Fu Ren, and Chao Wu. 2018. "Exploring the Influence of Urban Form on Urban Vibrancy in Shenzhen Based on Mobile Phone Data" Sustainability 10, no. 12: 4565. https://doi.org/10.3390/su10124565
APA StyleTang, L., Lin, Y., Li, S., Li, S., Li, J., Ren, F., & Wu, C. (2018). Exploring the Influence of Urban Form on Urban Vibrancy in Shenzhen Based on Mobile Phone Data. Sustainability, 10(12), 4565. https://doi.org/10.3390/su10124565