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Abstract: Urban vibrancy is an important indicator of the attractiveness of a city and its potential
for comprehensive, healthy and sustainable development in all aspects. With the development of
big data, an increasing number of datasets can be used to analyse urban vibrancy on fine spatial and
temporal scales from the perspective of human perception. In this study, we applied mobile phone
data as a proxy for local vibrancy in Shenzhen and constructed a comprehensive framework for the
factors that influence urban vibrancy, especially in terms of urban morphology and space syntax.
In addition, the popular geographically and temporally weighted regression (GTWR) method was
used to explore the spatiotemporal relationships between vibrancy and its influencing factors. The
spatial and temporal coefficients are presented through maps. The conclusions of this attempt to
study urban vibrancy with urban big data have significant implications for helping urban planners
and policy makers optimize the spatial layouts of urban functional zones and perform high-quality
city planning.

Keywords: urban vibrancy; mobile phone data; urban form; GTWR

1. Introduction

Cities are the main places where humans live and where development occurs. Depending on the
differences among urban function areas, urban spaces are highly social and change dynamically as
people engage in different activities. To scientifically, visually, and intuitively describe the state of urban
development, an increasing amount of people are referencing urban vibrancy as an important indicator
to judge whether a city possesses a certain attractiveness and the potential for comprehensive, healthy
and sustainable development in all aspects [1–8]. In addition, increasing numbers of researchers have
postulated that vibrancy constitutes one of the essential elements of a successful city [2,9–11]. Vibrancy
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encompasses many aspects, including the economy, society and culture in addition to the ecological
environment, all of which have profound impacts on urban development. With the rapid development
of society, people continue to pursue a high quality of life, and, thus, they are drawn to places
characterized by a high vibrancy. Urban vibrancy was first proposed from a conceptual perspective
by Jacobs [3,4], who started with urban streets and believed that urban vibrancy is generated by
the interactions between people and the functions of places. Subsequently, Montgomery [2] clearly
elaborated that one of the most striking characteristics of urban vibrancy is the dynamic changes in the
spatial and temporal dimensions. In urban economics, urban vibrancy is used to measure whether a
region’s development can operate sustainably and stably. According to Lynch [10], vibrancy is defined
as the ability of a city to meet the needs of its residents in a safe environment. The theories regarding
urban vibrancy in the abovementioned studies are offered from a sociological perspective based on
experience and investigation rather than through quantitative study. Urban vibrancy should accurately
reflect the number of people or the cumulative number of people at different times and places. Since
then, many studies have investigated urban vibrancy using a quantitative approach with the main
objectives of measuring urban vibrancy and exploring its influencing factors.

Urban vibrancy, which is considered to reflect a new source of urban competitiveness, can be
measured from multiple different perspectives [12]. To date, however, no widely recognized definition
of urban vibrancy has been accepted. The existing research on urban vibrancy is based mostly
on sociological terms with the idea that urban vibrancy includes mainly economic vibrancy, social
vibrancy and cultural vibrancy [13]. For example, Djankov et al. [14] proposed that the consumption
growth brought by urban facilities is the embodiment of urban growth. Many relevant studies
have comprehensively evaluated urban vibrancy by selecting the gross domestic product (GDP),
tertiary industry share, real estate price and other single or multiple factors [15–17]. Furthermore,
Ying and Yin [18] constructed a quantitative evaluation index system of street-based vibrancy that
can provide great reference significance for the establishment of an indicator system. In addition,
many scholars have measured urban vibrancy based on its characteristics, including the population
density [19,20], accessibility of roads or neighbourhoods [6,7], liveability of blocks [21], sustainability
and presence of mixed land use [22,23] and extent of human or pedestrian activity [24]. However,
vibrancy measurements in previous studies exhibit three main limitations: (1) they ignore the important
functions of people in the city; (2) they employ static statistical datasets; and (3) they lack research on the
sspatiotemporal characteristics of urban vibrancy at relatively fine scales. Based on the aforementioned
studies, our work, which does not consider economic vibrancy, is in accordance with Jacobs’s theory: a
successful city street must exhibit different flows of people in different time periods.

Mobile phone data possess a multitude of advantages. For example, mobile phone data exhibit
a vast spatial coverage; in addition, the individuals who use mobile phones provide a vast number
of samples, and it is relatively inexpensive to acquire the corresponding data. As a result, mobile
phone data have been widely applied to reflect regional features, study the connections and radiation
of urban spaces, explore the relationships between residents’ activities and both time and space,
etc. Hence, these data can provide a new research method and data source in addition to a new
perspective on geography, urban planning and public participation. Mobile phone data contain
detailed spatiotemporal information and thus can effectively reveal changes in human activity patterns;
accordingly, this data source is superior to traditional and static statistical data sources. In particular,
mobile phone data have two prominent advantages for research on urban vibrancy: (1) georeferenced
mobile phone data can indicate well-timed population distributions at microscopic temporal (e.g., by
hours, by weekdays and by weekends) and spatial scales (e.g., in traffic analysis zones (TAZs)); and
(2) mobile phone data cover the entire user group. Therefore, these data can be utilized to reflect the
temporal and spatial changes in urban vibrancy. For example, Jacobs-Crisioni et al. [25] measured
the extent of mixed land use and its effects on vibrancy based on mobile phone data, while Ying and
Yin [18] constructed a framework of influencing factors of street vibrancy based on mobile phone
data. Moreover, by analysing mobile signal data, Yue et al. [8] illustrated a generalizable relationship
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between point of interest (POI)-based mixed land use and vibrancy. In general, the previous studies
all applied ordinary linear regression to explore the relationships between local vibrancy and its
influencing factors without addressing their daily temporal variations, including the differences
between weekdays and weekends and those between the daytime and the night-time. Considering the
prominent characteristic of urban vibrancy reflecting the number of people in a given place at different
times [2,3] and the advantages of mobile phone data, this study uses the number of mobile phone
users in each day (24 h) as a proxy for urban vibrancy.

Although numerous measurements of vibrancy can be found, as mentioned previously, many
studies have instead emphasized the most important impacts of urban form, especially the functions
of streets and their relationship with local vibrancy [26–28]. If a city wants to achieve prosperity
and vibrancy, it must possess four elements: a mixed display of functions, a network of short streets
with a sufficient number of intersections, a diversity of building designs and a sufficiently dense
population [3]. Implicitly, the idea is that increases in the walkability and connectivity can lead to the
aggregation of more people in a given neighbourhood. Overall, urban form comprehensively reflects
the emergence, growth, and development of urban agglomeration, including its form, structure, and
function. The study of urban form generally includes the plan shape of the built-up area, the internal
functions of structures and the form of the road system. Therefore, this study focused on integrating
various influencing factors from an urban form perspective, developing an indicator system, and
conducting quantitative research on urban vibrancy and its influencing factors.

As mentioned before, many researchers have explored the relationships between urban vibrancy
and its influencing factors. For example, Mehta [29] integrated multivariate and factor analyses to
explore the effects of eleven street characteristics on the liveliness index. Yue et al. [8] constructed
a complete system to analyse the effects of mixed land use on vibrancy using mobile phone data.
Jacobs-Crisioni et al. [25] also applied multiple linear regression to explore the relationship between
mixed land use and vibrancy. Sung et al. [30] verified Jacobs’s theory of urban design on physical
diversity and vibrancy in New York City using regression analysis. Nevertheless, all of these studies
ignore the spatial and temporal heterogeneities in the urban vibrancy variation, which is important
for spatiotemporal analysis and modelling. In 2010, Huang et al. [31] produced a geographically
and temporally weighted regression (GTWR) model to account for and address spatiotemporal
nonstationarity; subsequently, this GTWR model has been widely used to study housing prices [32]
and the air quality [33] in addition to carbon dioxide emissions [34]. Therefore, GTWR is applicable
for revealing and exploring the relationships between vibrancy and its influencing factors, and it can
be used to find some potential information at finer temporal and spatial resolutions [7]. An in-depth
study of the temporal and spatial changes in urban vibrancy and its influencing factors is important
for reasonably planning and designing city spaces, optimizing urban morphology and enhancing
urban vibrancy.

Using Shenzhen as the study area, this study applied mobile phone signal data to quantitatively
evaluate urban vibrancy at high temporal and spatial resolutions. In addition, from an urban form
perspective, we built an urban vibrancy index system of influencing factors and further explore the
relationships between urban vibrancy and its influencing factors based on the spatial and temporal
dimensions using GTWR [31]. This work is superior to the existing literature for the following reasons.
(1) We further constructed a complete and diverse framework for the factors that influence urban
vibrancy that encompasses the concepts of space and place syntax, the distribution of amenities, and
areas of mixed land use. (2) This study distinguished vibrancy between weekdays and weekends,
thereby revealing the different life-styles of the residents of Shenzhen. (3) The GTWR model can reveal
the spatiotemporal heterogeneity of urban vibrancy and explore the relationships at a finer resolution
based on mobile phone data. The remainder of this paper is organized as follows. Section 2 presents
the method and materials with a detailed description of the spatial autoregressive model, study area
and dataset sources. Section 3 discusses the empirical results of the model and illustrates the potential
mechanisms. Finally, Section 4 outlines the conclusion and proposes some suggestions.
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2. Study Area and Datasets

This study used Shenzhen as the case study to explore the spatiotemporal changes in urban
vibrancy and its influencing factors based on mobile phone data. Shenzhen, one of the first-tier cities
in China, is located in the southeastern coastal area of Guangdong Province; the city covers a total
area of 1997.27 km2, including eight administrative districts and two new districts. By the end of 2016,
the population in Shenzhen had reached 10.84 million, including 3.85 million registered permanent
residents. Shenzhen is the first special economic zone in China and represents a high-tech innovation
centre, as it connects the mainland to Hong Kong. Accordingly, Shenzhen is an important transport
hub and is one of the most dynamic cities in China. Shenzhen contains 981 TAZs, which were taken as
the basic research unit. To preserve the connectivity of the study area, we deleted only island TAZs in
Shenzhen; subsequently, a total of 977 TAZs were considered in the analysis (Figure 1). Shenzhen is a
dynamic city that embraces inclusiveness and openness. Figure 2 shows photographs of some famous
places in Shenzhen that represent real-life situations related to urban vibrancy throughout the city.
Evidently, people prefer different places at different times, which constitutes the practical issue related
to the focus of our work.
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Figure 2. The real-life situations related to urban vibrancy in Shenzhen: (a) Windows of The World;
(b) Dongmen Pedestrian Street; (c) Mangrove Forest Nature Reserve; and (d) Lotus Hill Park. (Source:
https://image.baidu.com/).

Based on mobile signal data, the activities of mobile phone users within the mobile communication
network can be directly measured. Combined with the geographical location information of the base
station, the changes in the positions of mobile phone users in the real geographical space can be
obtained. The period of mobile signal data employed in this survey was from 1 May 2016 to 30 June
2016, spanning a total of 42 working days. The time interval of mobile phone data collection was
15 min, and an average of 426 million records were collected every day. The survey scope covered 7993
mobile phone base stations with an average of four cell towers in each TAZ covering an average of
90 m. In addition, road data and POI data were provided by the Urban Planning, Land & Resources
Commission of Shenzhen municipality (Municipality Oceanic Administration of Shenzhen). To explore
the differences between weekdays and weekends, we calculated the average records for both weekdays
and weekends.

3. System of Influencing Factors

Urban vibrancy and its influencing factors were studied. Thus, it was necessary to construct
a framework of influencing factors. According to previous studies and the conditions of Shenzhen,
we built this framework mainly from the urban form perspective, and we included nine factors
encompassing three aspects: the road traffic pattern, urban functional form and locational conditions.
These nine factors are described in Table 1.

https://image.baidu.com/
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Table 1. The descriptions of the influencing factors.

Aspects Indicator Abbreviations

Road traffic pattern Integration of road Integration
Choice of road Choice

Urban functional form

Degree of mixing Mixing
Density of residence Residence

Density of traffic Traffic
Density of commerce Commerce

Density of leisure Leisure

Locational condition
Distance to city centre City centre

Distance to airport Airport

Specifically, the factors related to the road traffic pattern were quantitatively measured by space
syntax, a system proposed primarily to study urban design and architecture [35]. Space syntax
was employed because it is helpful for understanding the impact of the spatial configuration of
urban areas and buildings on peoples’ movements. Essentially, space syntax is fundamentally
associated with the street network, but it is also related to various functional aspects of urban
form [36]. Space syntax can be utilized to model the spatial configurations of urban spaces based on
a connectivity graph representation [37]. The spatial configurations extracted by space syntax can
be employed to identify spatial patterns to reflect and explore urban structures, landscape design
and human behaviours [38–40]. Many researchers have noted that the indicators extracted from
space syntax have important effects on urban vibrancy [16,41–44] and are able to promote urban
vibrancy and improve living environments. By physically and functionally representing pedestrian
connections and accessibility [45], space syntax also contributes greatly to the design of urban streets
and neighbourhoods; thus, space syntax also has profound effects on urban vibrancy and intra-city
migration [46,47].

This study chose two road traffic pattern indicators, namely, integration and choice, which
are important and widely used concepts of space syntax [46,48–50]. In a previous study, Shen and
Karimi [16] reported that the integration and choice indicators of space syntax have significant effects
on housing prices. Integration is used to represent the accessibility within a network and to determine
whether pedestrians can travel to a given space quickly. In line segment analysis mode, the integration
indicator refers to the distance from each street segment to other street segments within a specific
radius; here, the distance is not the length of the line segment but the sum of the segments connecting
all of the angles turned. Therefore, integration describes the centrality of a road section, thereby
indicating the difference between its radiation and control range, and it reflects the potential of the
road section to represent a destination along which movement occurs. The choice indicator measures
the probability that a spatial element is located along the shortest path between any two elements
in the system. Axwoman 6.3 [51] was used to generate the axis map of the traffic network, and
DepthMapX [52] was used to calculate the relevant indexes based on the axis map. The highest degree
of integration is concentrated in the central area of Shenzhen, while the highest degree of choice is
concentrated mainly near the main roads. Because these indexes take the value of each segment,
converting them into each TAZ was necessary. Therefore, the kernel density estimation approach
based on the study by Carlos et al. [53] was used to obtain the value of factors on a grid scale. Then,
grid cell areal weighting interpolation was used to convert the values of integration and choice to the
TAZ scale.

The urban functional form is usually measured by land use data, which reflect the function of a
city in a certain area. However, the patch size of land use data is large; hence, these data do not reflect
mixed functions effectively. Therefore, POIs with a higher resolution were used instead of land use
data; this study considered 14 types of POIs. The degree of functional mixing and the densities of four
important functional categories, namely, residence, traffic, commerce and leisure, were considered. We



Sustainability 2018, 10, 4565 7 of 21

used the theory of information entropy to measure the degree of urban functional mixing [54]. The
concept of information entropy, which describes mainly the uncertainty in a source of information,
was originally proposed by Shannon, who used the physical concept of thermal entropy to solve
the problem of the quantitative measurement of information. In general, the more orderly a system
is, the lower the entropy is; similarly, the more disordered the system is, the higher the entropy is.
Information entropy theory is used in geographical applications mainly to measure the degree of
urban functionality, that is, the higher the entropy value is, the higher the degree of functionality is,
and vice versa [55,56]. The degree of functional mixing can be calculated as follows:

Mixing = −∑n
i=1 (pi × ln pi) (1)

where n denotes the total number of the types of POIs (n = 14), and pi represents the proportion of
the ith type of POI in the total number of POIs in each TAZ. As mentioned in the Athens charter [57],
the main functions of city life include recreation, work, recreation and travel. Therefore, this study
considered the relationships between urban vibrancy and traffic, commerce, leisure and residence
based on the POI data. Within the varying areas of the TAZs, the density of each POI was more
effective. In addition, the distance to the city centre and the distance to the airport were measured
to represent the locational conditions. All distances were measured based on the network distance
in ArcGIS.

4. Geographically and Temporally Weighted Regression

As one of the most important models in spatial statistics, GTWR is widely used in many fields
for scientific research and theoretical practice [31]. Compared with the traditional multiple regression
model, GTWR considers the existence of spatiotemporal heterogeneity, which enables the regression
process to be more detailed; in addition, GTWR can also clarify the degree of interaction between
different samples. GTWR can be calculated as follows:

yi = β0(ui, vi, ti) +
d

∑
k=1

βk(ui, vi, ti)xik + εi, i = 1, 2, . . . n (2)

where y is the dependent variable calculated by the hourly population based on mobile phone data,
X is an independent variable representing urban form, εi denotes the error term, βk(ui, vi, ti) is the
estimated coefficient of variable k for sample i, β0 is the intercept item, and (ui, vi, ti) represents the
temporal and spatial coordinates of sample i. We used the centre of each TAZ as the spatial location.

The calibration approach for GTWR is the weighted least squares method. Either the corrected
Akaike information criterion (AICc) or cross-validation (CV) can be used to choose the optimal
spatiotemporal bandwidth. Simply put, the closer the sample point is to the original point of the
regression, the greater is the weight of the sample. In contrast, an observation far from the original
point should be given a small weight. W(ui, vi, ti) represents the weights of other observations for
sample i. The estimated coefficients can be calculated as follows:

ˆ
β(ui, vi, ti) = [XTW(ui, vi, ti)X]

−1
XTW(ui, vi, ti)Y (3)

5. Results and Discussion

5.1. Results of Ordinary Linear Regression

To assess the relationships between the influencing factors and vibrancy in each of the TAZs,
a series of linear regressions was conducted. The population per hour on weekdays, weekends
and holidays in each TAZ constituted the dependent variable Y, which was tested to conform to a
normal distribution. All independent variables and dependent variables were standardized. However,
it was necessary to perform collinearity diagnostics before constructing multiple linear regression
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models. Multicollinearity refers to the distortion of a model estimation due to the existence of an exact
correlation or a high correlation between explanatory variables within the linear regression model;
these correlations can be caused by lag variables and incorrect model settings in addition to a limited
number of samples. The collinearity of the indicators was determined through the tolerance and the
variance inflation factor (VIF). When the tolerance is less than 0.1 or the VIF is greater than 10, the
indicator can be considered to possess severe collinearity. The spatial distributions of integration and
choice are consistent; therefore, a high level of collinearity exists between integration and choice. Based
on the t values and VIF values of these two variables, we deleted the variable of choice. The results of
the diagnostic information are listed in Table 2. Ultimately, eight factors were used to construct the
regression models. Then, we separated weekdays from weekends and used the number of people per
hour over 24 h as the dependent variable. To observe the overall temporal effects of various influencing
factors, ordinary linear regression (OLR) models were established for each hour. The OLR results are
shown in Tables 3 and 4.

Table 2. Results of the diagnostic information.

Variable Tolerance_before VIF_before Tolerance_after VIF_after

Mixing 0.769 1.301 0.781 1.280
Residence 0.627 1.595 0.630 1.586

Traffic 0.230 4.349 0.230 4.344
Commerce 0.238 4.210 0.238 4.204

Leisure 0.266 3.759 0.267 3.745
City centre 0.722 1.385 0.782 1.279

Airport 0.533 1.876 0.618 1.617
Integration 0.041 24.412 0.426 2.349

Choice 0.050 20.007 — —

Table 3 shows that, on weekdays, the commerce density and road integration are significantly
positively correlated with vibrancy throughout the day. The residence density, leisure density, distance
to airport and mixing degree are not statistically significant for urban vibrancy during the day but
have significant effects at night. In contrast, the relationship between the distance to the city centre
and urban vibrancy is negative during the daytime, that is, the greater the distance is to the city centre,
the lower the vibrancy is; however, this relationship at night is not significant. These phenomena occur
because the motivation for the daily activities of urban residents is relatively singular, i.e., work is the
main driving force of a diversity of activities. Therefore, during the daytime, the majority of people are
gathered in the city centre, while the influences of leisure, residence and mixing are relatively small.
At night, when people return to their residential areas after work, the influences of the two locational
factors are weakened, while the influences of the four density functions, especially the functions of
residence and leisure, on urban vibrancy increase [7,58].

Table 4 shows that, on weekends, the largest difference from weekdays lies in that the residence
and leisure density have a significant positive linear correlation to vibrancy on all days. The distance to
the city centre only has significant negative effects from 15:00 to 19:00. The causes of these phenomena
are that many people have no work requirements in the city centre, locational factors are reduced,
and the diversity of urban function enables people to meet the needs of leisure, entertainment, and
social aspects, significantly increasing city vigour on days off. In addition, on rest days, the degree of
road integration, as an indicator of the potential of regional travel destinations, is still significantly
positively correlated with urban vibrancy.
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Table 3. The OLR results on weekdays.

Time Constant Mixing Residence Traffic Commerce Leisure City Centre Airport Integration R2

H1 −2.584×10(−15) 0.110 ** 0.235 ** 0.097 * 0.221 ** 0.149 ** −0.031 −0.071 ** 0.112 ** 0.573
H2 −4.769×10(−16) 0.111 ** 0.238 ** 0.097 * 0.218 ** 0.147 ** −0.030 −0.071 ** 0.112 ** 0.570
H3 −2.505×10(−16) 0.112 ** 0.241 ** 0.098 * 0.216 ** 0.147 ** −0.029 −0.072 ** 0.111 ** 0.570
H4 −4.633×10(−16) 0.112 ** 0.241 ** 0.096 * 0.217 ** 0.145 ** −0.029 −0.072 ** 0.112 ** 0.569
H5 −5.589×10(−16) 0.112 ** 0.243 ** 0.095 * 0.215 ** 0.146 ** −0.029 −0.071 ** 0.113 ** 0.568
H6 6.993×10(−17) 0.113 ** 0.243 ** 0.094 * 0.215 ** 0.145 ** −0.030 −0.071 ** 0.114 ** 0.568
H7 −4.133×10(−16) 0.111 ** 0.238 ** 0.098 * 0.210 ** 0.148 ** −0.035 −0.069 ** 0.117 ** 0.571
H8 −2.278×10(−15) 0.093 ** 0.199 ** 0.141 ** 0.183 ** 0.156 ** −0.056 * −0.057 * 0.136 ** 0.580
H9 5.316×10(−16) 0.041 0.098 ** 0.238 ** 0.186 ** 0.141 ** −0.085 ** −0.032 0.167 ** 0.609

H10 7.005×10(−16) 0.014 0.034 0.304 ** 0.253 ** 0.093 * −0.082 ** −0.023 0.164 ** 0.643
H11 1.220×10(−15) 0.003 0.005 0.315 ** 0.297 ** 0.076 * −0.081 ** −0.020 0.156 ** 0.655
H12 −1.624×10(−15) −0.004 −0.004 0.321 ** 0.320 ** 0.068 −0.078 ** −0.021 0.147 ** 0.662
H13 8.436×10(−16) −0.002 −0.006 0.308 ** 0.323 ** 0.091 * −0.073 ** −0.023 0.138 ** 0.663
H14 8.791×10(−16) −0.005 −0.010 0.320 ** 0.332 ** 0.072 * −0.076 ** −0.022 0.137 ** 0.663
H15 −9.614×10(−16) −0.010 −0.021 0.331 ** 0.336 ** 0.064 −0.078 ** −0.019 0.136 ** 0.661
H16 −2.460×10(−16) −0.012 −0.026 0.334 ** 0.343 ** 0.060 −0.078 ** −0.020 0.132 ** 0.661
H17 −1.925×10(−16) −0.009 −0.020 0.332 ** 0.337 ** 0.062 −0.077 ** −0.021 0.133 ** 0.659
H18 −7.035×10(−16) 0.000 −0.004 0.316 ** 0.326 ** 0.073 * −0.077 ** −0.024 0.135 ** 0.657
H19 −1.187×10(−15) 0.030 0.047 * 0.264 ** 0.290 ** 0.116 ** −0.072 ** −0.034 0.133 ** 0.649
H20 −1.082×10(−15) 0.057 ** 0.106 ** 0.218 ** 0.262 ** 0.142 ** −0.057 * −0.050 * 0.124 ** 0.635
H21 −1.811×10(−15) 0.075 ** 0.143 ** 0.180 ** 0.252 ** 0.151 ** −0.050 * −0.058 ** 0.122 ** 0.624
H22 −1.151×10(−15) 0.088 ** 0.178 ** 0.150 ** 0.239 ** 0.153 ** −0.047 * −0.062 ** 0.118 ** 0.609
H23 9.486×10(−16) 0.099 ** 0.209 ** 0.131 ** 0.229 ** 0.143 ** −0.041 −0.066 ** 0.115 ** 0.590
H24 −2.844×10(−15) 0.104 ** 0.224 ** 0.115 ** 0.230 ** 0.141 ** −0.036 −0.070 ** 0.109 ** 0.580
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Table 4. The OLR regression results on weekends.

Time Constant Mixing Residence Traffic Commerce Leisure City Centre Airport Integration R2

H1 −1.445×10(−15) 0.108 ** 0.226 ** 0.097 * 0.228 ** 0.156 ** −0.030 −0.070 ** 0.111 ** 0.576
H2 3.427×10(−16) 0.109 ** 0.232 ** 0.095 * 0.227 ** 0.151 ** −0.029 −0.071 ** 0.110 ** 0.572
H3 −5.611×10(−16) 0.111 ** 0.235 ** 0.093 * 0.226 ** 0.149 ** −0.028 −0.071 ** 0.109 ** 0.569
H4 −7.938×10(−16) 0.112 ** 0.237 ** 0.092 * 0.225 ** 0.148 ** −0.027 −0.072 ** 0.109 ** 0.568
H5 2.253×10(−16) 0.112 ** 0.238 ** 0.091 * 0.223 ** 0.149 ** −0.027 −0.072 ** 0.110 ** 0.567
H6 −7.168×10(−17) 0.113 ** 0.238 ** 0.091 * 0.223 ** 0.148 ** −0.028 −0.072 ** 0.110 ** 0.567
H7 7.686×10(−16) 0.112 ** 0.236 ** 0.092 * 0.219 ** 0.151 ** −0.031 −0.070 ** 0.113 ** 0.568
H8 8.425×10(−16) 0.107 ** 0.227 ** 0.104 * 0.210 ** 0.154 ** −0.037 −0.066 ** 0.120 ** 0.574
H9 −1.315×10(−15) 0.099 ** 0.207 ** 0.129 ** 0.209 ** 0.156 ** −0.042 −0.060 ** 0.125 ** 0.586

H10 3.862×10(−17) 0.092 ** 0.180 ** 0.148 ** 0.215 ** 0.166 ** −0.044 −0.056 * 0.127 ** 0.603
H11 1.547×10(−15) 0.082 ** 0.149 ** 0.160 ** 0.234 ** 0.180 ** −0.047 −0.054 * 0.124 ** 0.620
H12 −6.127×10(−16) 0.072 ** 0.123 ** 0.164 ** 0.254 ** 0.194 ** −0.048 −0.052 * 0.116 ** 0.630
H13 −6.100×10(−16) 0.066 ** 0.104 ** 0.162 ** 0.271 ** 0.206 ** −0.045 −0.052 * 0.109 ** 0.635
H14 1.427×10(−15) 0.063 ** 0.094 ** 0.170 ** 0.278 ** 0.203 ** −0.047 −0.050 * 0.109 ** 0.638
H15 7.112×10(−17) 0.061 ** 0.090 ** 0.174 ** 0.281 ** 0.199 ** −0.048 * −0.049 * 0.111 ** 0.642
H16 1.352×10(−15) 0.060 ** 0.088 ** 0.177 ** 0.286 ** 0.193 ** −0.050 * −0.049 * 0.112 ** 0.642
H17 −1.652×10(−15) 0.063 ** 0.088 ** 0.179 ** 0.289 ** 0.186 ** −0.050 * −0.050 * 0.111 ** 0.642
H18 9.812×10(−17) 0.065 ** 0.097 ** 0.160 ** 0.284 ** 0.191 ** −0.053 * −0.049 * 0.114 ** 0.632
H19 −6.596×10(−16) 0.072 ** 0.111 ** 0.141 ** 0.277 ** 0.204 ** −0.049 * −0.052 * 0.111 ** 0.626
H20 −7.319×10(−16) 0.080 ** 0.131 ** 0.129 ** 0.269 ** 0.202 ** −0.044 −0.056 * 0.112 ** 0.621
H21 3.432×10(−16) 0.090 ** 0.156 ** 0.117 ** 0.255 ** 0.194 ** −0.044 −0.059 ** 0.117 ** 0.615
H22 −6.661×10(−17) 0.098 ** 0.188 ** 0.116 ** 0.235 ** 0.176 ** −0.042 −0.063 ** 0.119 ** 0.604
H23 −1.041×10(−15) 0.106 ** 0.217 ** 0.111 ** 0.223 ** 0.156 ** −0.038 −0.067 ** 0.115 ** 0.588
H24 8.507×10(−16) 0.109 ** 0.230 ** 0.098 * 0.225 ** 0.151 ** −0.034 −0.070 ** 0.111 ** 0.575
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5.2. Results of GTWR

The above conclusions, which were based on an analysis of the OLR results, show that the
effects of each variable are quite different in different time periods. Therefore, comprehensively and
scientifically capturing these relationships by using OLR is difficult. In addition, through the R2

metric, these OLR models can explain only 60% of the variation at most, which is obviously insufficient
for modelling. In consideration of spatiotemporal nonstationarity, the GTWR model was adopted
to investigate the local relationships. The GTWR results on weekdays and weekends are shown in
Tables 5 and 6, respectively. For the varying estimated coefficients of GTWR, it is wise to show the
coefficients as the sequence of the minimum (Min), first quartile (Q1), median (Q2), third quartile (Q3)
and maximum (Max). In addition, the mean value (Mean) and standard deviation (SD) are also used
to reflect the variations in the estimated coefficients. According to the results shown in Tables 5 and 6,
the weekdays and weekends can explain 86.98% and 86.51%, respectively, of the variations in local
vibrancy. Clearly, these results are superior to the OLR results, thereby demonstrating the advantages
of GTWR. Moreover, the statistical results show that the estimated coefficients obtained from using
GTWR in the different TAZs, over different time periods throughout the day and for different times of
the week (weekdays and weekends) are different. Moreover, these differences are reflected not only in
the values but also by the positive and negative effects. For example, the degree of functional mixing
on average is negative during the weekdays, while it is positive on the weekends. The effects of the
explained variables on vibrancy should not be treated as the same; thus, separating them into the
temporal dimension and spatial dimension in detail is necessary.

Table 5. Statistical results of the estimated coefficients based on GTWR on weekdays.

Variable Min Q1 Q2 Q3 Max Mean SD

Constant −40.068 −1.401 −0.271 0.728 60.269 −0.458 5.705
Mixing −2.069 −0.090 0.016 0.121 1.603 −0.007 0.310

Residence −3.159 −0.094 0.047 0.257 12.105 0.120 0.644
Traffic −3.789 −0.139 0.295 0.704 8.656 0.327 0.823

Commerce −11.707 −0.095 0.136 0.489 7.384 0.218 0.732
Leisure −6.226 −0.099 0.110 0.405 2.951 0.133 0.637

City centre −23.227 −0.834 −0.074 0.650 31.197 −0.187 3.258
Airport −55.138 −1.326 −0.17 0.877 32.772 −0.444 4.941

Integration −2.467 −0.054 0.099 0.271 2.409 0.118 0.345

Bandwidth: 0.199 R2: 0.870

Table 6. Statistical results of the estimated coefficients based on GTWR on weekends.

Variable Min Q1 Q2 Q3 Max Mean SD

Constant −30.355 −1.279 −0.169 0.818 59.111 −0.309 5.402
Mixing −1.863 −0.067 0.024 0.138 1.554 0.019 0.320

Residence −2.737 −0.065 0.076 0.289 11.804 0.161 0.688
Traffic −3.630 −0.171 0.265 0.693 8.943 0.305 0.836

Commerce −11.975 −0.092 0.155 0.486 7.276 0.225 0.737
Leisure −6.113 −0.060 0.161 0.499 2.874 0.199 0.650

City centre −16.584 −0.741 −0.042 0.662 30.500 −0.118 3.096
Airport −54.105 −1.297 −0.189 0.837 27.900 −0.611 4.824

Integration −2.297 −0.067 0.087 0.253 2.377 0.100 0.344

Bandwidth: 0.255 R2: 0.865

5.3. Visual Analysis of the GTWR Results

To better show the effects of the explanatory variables on vibrancy in the spatial and temporal
dimensions, the results for each index on the weekdays and weekends were statistically analysed and
plotted separately. In this way, the temporal differences and spatial differences are visualized.
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1. Temporal differences

Using the hour as the statistical unit, we calculated and visualized the average coefficients in
each TAZ at each time unit for both the weekdays and the weekends. The yellow and green curves in
Figure 3 show the variations in the regression coefficients on the weekdays and weekends, respectively.
The coefficients of integration, which is positively correlated with urban vibrancy, are positive on
weekdays and weekends. The degree of integration reflects the centrality of road traffic and the
potential of a given segment as a destination. Therefore, improving the degree of road integration is
conducive to enhancing the vibrancy of a city in general. According to the changes in the curve, the
effects of integration reach a peak during the working hours on the weekdays and are relatively low at
night. The reason for this is potentially because the degree of network integration is higher in work
areas, and residents need to agglomerate in areas with good network development. In contrast, the
changes in the estimated coefficients are relatively stable on the weekends without work.
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The degree of functional mixing is used to express the functional diversity of a TAZ. Many
theoretical studies have mentioned that the degree of functional mixing is an important element
for improving local vibrancy [7,8]. In this study, the estimated coefficients of the functional mixing
degree are negative during the working hours of a day, which may have an inhibitory effect on urban
vibrancy; this finding is different from the results of many previous theoretical studies in addition
to common sense. These results are explained as follows. During the daytime on weekdays, the
demand of residents for urban function is relatively singular because they place work as their first
priority; thus, a high degree of functional mixing does not attract people, while the work function
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occupies a relatively small portion and inhibits the vibrancy of the city. Meanwhile, on the weekends,
the estimated coefficients are positive; people are affected by factors such as entertainment, leisure
and social contact, and the demand for diversified functions increases. Therefore, a high degree of
functional mixing is conducive to enhancing urban vibrancy.

Residence, traffic, commerce and leisure all positively affect urban vibrancy on the weekdays and
weekends. The general trend of the influence of the residential density on vibrancy is greater during
the night than during the day, and the influence on the weekends is greater than that on the weekdays,
thereby reflecting the living habits of Shenzhen residents to some extent. The traffic density during the
workday has larger effects on the vibrancy of the city than that during the weekends. There are two
peaks at approximately 10:00 and approximately 19:00; these peaks are apparently associated with
commuting peaks. With the formation of Shenzhen’s polycentric structure, urban residential areas and
urban working areas are spatially separated; accordingly, the demand to travel to work increases the
effect of traffic on vibrancy. During the weekends, especially in the evening, residents tend to rest and
participate in recreational activities either at home or in their neighbourhood, while they avoid places
with heavy traffic. Therefore, the influence of traffic is reduced. The effects of commerce are larger
during the weekends than during the weekdays in general, while the changes in the trend are larger
during the weekdays. Two low values exist at 9:00 and 18:00, which are also affected by the working
hours. These two time periods are more dependent on the traffic density, and the business spending
ability is weakened at these times. The influence of the leisure function on the vibrancy of Shenzhen is
relatively stable during both the daytime and the night-time; to some extent, this finding indicates that
Shenzhen, a bustling city, provides an abundant nightlife for its residents.

The coefficients of the distance to the city centre on working days are negative; hence, the farther
the distance is, the weaker the vibrancy of the city. In addition, the effects of the city centre reach a
peak during the daytime on weekdays; this is possibly because the central region of Shenzhen is a
comprehensive area that encompasses enterprise, business and political functions. These places close
to the central region are relatively prosperous; here, the vibrancy of the city increases. In contrast, the
coefficients of the distance to the airport on weekdays and weekends are all negative, indicating that
the city vibrancy improves with the attenuation of the distance from the airport. More importantly, the
magnitude of the improvement in the vibrancy on weekends is greater than that during the daytime on
weekdays, suggesting that peoples’ demands for travel to locations outside the city and the demands
of people arriving from outside the city are higher during non-working hours.

2. Spatial differences

Taking the TAZ as the statistical unit, we calculated the average values of the regression coefficients
over a period of 24 h both on weekdays and on weekends and used the natural breaks (Jenks) method
to visualize the grading of categories, in which the differences between categories are significant, while
the differences within classes are small [59,60]. The boundary of the classification of each factor was
manually set to zero to distinguish positive and negative differences, which can intuitively reflect
the enhancement or the restraint of various effects on the city’s vibrancy. The spatial distributions of
the estimated coefficients of the indicators are shown from Figures 4–11. These figures show that the
average value of the regression coefficient of the same index may have positive or negative differences
to varying degrees among the different TAZs. In addition, these figures indicate that the effects of the
same factors exhibit significant spatial variations that cannot be generalized in this research. Moreover,
the influences of the same index on the weekdays and weekends are different, but the same indicators
on weekdays and weekends for each TAZ have a similar trend overall. Hence, the reasons for the
spatial differences in the variables depend much more on the characteristics of each TAZ.
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Figure 10. Spatial distribution of the estimated coefficients of the distance to the city centre:
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Figure 11. Spatial distribution of the estimated coefficients of the distance to the airport: (a) weekdays;
and (b) weekends.

In terms of the form of the urban transportation network, the regions that are positively correlated
with urban vibrancy are focused mainly in central Shenzhen. In the process of urban construction,



Sustainability 2018, 10, 4565 16 of 21

Shenzhen has always emphasized the construction of multi-centre urban development structures,
which are the main clusters of urban functions. A good road network is needed as a skeleton to
support the flow of the population to these places. The degree of integration mainly measures the
development of the urban road network, describes the centrality of roads, and indicates the potential
of roads as destinations. Figure 4 demonstrates that a region with a high degree of integration exhibits
a high accessibility. For multiple central regions undertaking important urban functions, enhancing
the degree of integration of the road network can significantly improve the urban vibrancy in those
regions. In contrast, the places that display negative effects of integration on vibrancy are mostly
ecological control areas, which usually have fewer people and facilities.

For the degree of functional mixing (Figure 5), the weekends have larger values than the weekdays,
which is consistent with the results of the temporal dimensional analysis. With the exception of
passive–active weekdays, improving the functional diversity can achieve better urban vibrancy. The
mixing degree is significantly positively correlated with urban vibrancy in some regions, such as the
Futian Central Business District (CBD). In the downtown areas of Nanshan and Luohu, the degree of
functional mixing has negative impacts. This finding is inconsistent with the scenario mentioned in
many studies in which an increase in the mixing degree of core functions can effectively improve the
urban vibrancy. One of the main reasons for this is that there are some key functions of planning in
these areas, and crowd gathering is mainly attributed to these key functions rather than other functions.

As shown in Figure 6, the positive and negative influences of the living (residence) function
on different local areas are not identical. For the living function, the number of TAZs with positive
effects on weekends is higher than that on weekdays, which is in accordance with the results of
the change in the trend of the temporal dimension coefficient. In addition, the negative effects of
the living function on urban vibrancy are focused in the ecological control areas of Shenzhen that
contain important sources of water, mountains, green space and ecological environments; in these
areas, excessive development is prohibited, and few residential areas and urban residents exist. In
contrast, the positive effects of residence throughout Shenzhen are similar; this finding reveals that the
residential land use is basically distributed for citizens of Shenzhen.

From the spatial distribution of the traffic function shown in Figure 7, the influence of traffic
is very obvious; the effects in the city centre and sub-centres are negative, and those outside the
downtown areas are positive. This is because centres usually contain more companies, businesses and
other important functional areas that are spatially separated from the surrounding main living areas.
The main function of the city centre to attract a gathering population is the demand to work, especially
on weekdays. The demand to travel to areas in the city centre relies more on transportation to reach
these areas. Hence, the relationship between traffic and vibrancy in these areas is positive. In contrast,
for each core region, the facilities are relatively complete in the vicinity of residential areas; as a result,
the residents have no need to spend excessive amounts of money on transportation to travel to other
places. Moreover, traffic facilities can introduce congestion and noise. Therefore, the traffic function in
these areas has a negative impact.

The influence of the commerce function on urban vibrancy is positive in most areas of Shenzhen,
particularly in the central regions (Figure 8). This finding shows that the commerce function plays
an important role in enhancing urban vibrancy in prosperous and important areas. However, fewer
crowds gather in remote areas, that is, less accessible and less developed areas or ecologically controlled
areas; thus, the effect of the commerce function on the vibrancy of these areas is negative. The spatial
distribution of the influence of commerce suggests that the spatial heterogeneity of POIs coincide with
the supply for commerce and business that would lead to differential facilities to attract and retain
human activity.

The influence of the leisure function on urban vibrancy contrasts with that of the commerce
function in many areas except major central districts (Figure 9). The reason is that commercial
consumption is not well developed in relatively remote regions. However, as a result of the natural
ecological environment, these places have many famous tourist attractions. Therefore, the leisure
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function attracts the flow of the population and enhances urban vibrancy. The most apparent places in
Shenzhen are some areas in Yantian, Longhua, southwestern Nanshan and Dapeng, which have many
famous tourist attractions.

With regard to the influences of the geographical conditions on urban vibrancy, the distance to
the city centre shows a negative correlation with vibrancy in many TAZs (Figure 10). This correlation
shows that the vibrancy is higher closer to the city centre, that is, the greater the distance is from the
city centre, the lower the vibrancy is. However, in some areas, the distance to the city centre is still
positively correlated with the vibrancy. Most of these areas are ecological control areas, where the
determinants of vibrancy are natural conditions more than geographical location factors.

The influence of the distance to the airport on vibrancy is mostly negative, indicating that a
smaller distance to the airport correlates to a higher city vibrancy (Figure 11). In general, the areas
with negative effects are focused mainly in multiple core regions, suggesting that the residents in these
areas have a higher demand for foreign travel. Yantian suffers from an ageing problem; hence, the
residents have few opportunities and demand to travel outside the city. The greater is the distance
from the airport, the more positive is the vibrancy of the city. Notably, in the city centre, the effect of
the distance from the airport is positive because the distance from the airport is not the most important
or significant factor of vibrancy.

5.4. Planning Implications

By modelling the spatiotemporal relationships between urban vibrancy and its relevant
influencing factors based on mobile phone data and GTWR, this study quantitatively expressed
the influences of various factors on urban vibrancy at high spatial and temporal resolutions. According
to the empirical results, this article provides certain insights into urban form planning and urban
vibrancy improvement; these insights mainly include the following points:

(1) The foundation of urban planning is people oriented. The underlying reasons for urban dynamics
are the activities of people in a city, and the effects of many factors on urban vibrancy depend on
the related functions and activities of city residents regardless of whether those residents exert
an active or passive demand. Therefore, learning the rules of human activity is necessary and
constitutes the foundation for improving urban life. This article proposes the use of data from the
perspective of human perception, which can provide effective support for other fields of urban
study and planning.

(2) Improvements to urban vibrancy should be adapted to the local conditions. According to the
results obtained by GTWR, the impacts of the same index on the urban vibrancy framework
vary in different local areas and time periods and cannot be generalized. Investigating the local
conditions is therefore important to formulate relevant planning schemes.

(3) Overall, a good traffic network is positively correlated with urban vibrancy, especially during
the daytime on weekdays. Therefore, urban vibrancy can be enhanced by reasonably planning
the traffic network, improving the integration of roads and the travel degree, and increasing the
potential of a region to become an activity destination and movement channel. The functional
form of a city also possesses a very important influence on the vibrancy of the city. Specific
measures to improve the vibrancy of the city include increasing the functions related to “the third
type of places” [61], such as business consumption, tourism and leisure, improving the degree
of regional functional mixing and enhancing the diversity of functions. Many facilities outside
the city centre provide a wide range of personal items to urban consumers, making life in the
suburbs more active by retaining social engagement activities according to the time and location.
Our results shed lights on the importance of the new Chinese government programme in 2016
that aims to construct open communities, thereby easing land use and increasing the degree
of functional mixing. Therefore, promoting spatial restructuring to adapt the city to industrial
upgrading and linkage development for office buildings and service industries can ensure the
efficient utilization of regional urban functions.
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(4) In general, the city centre can exhibit better vibrancy if it exhibits a diversity of functional
combinations and a dynamic sustainable development. In addition, constructing a polycentric
urban structure is a powerful way to improve the vibrancy of downtown areas that are far from
the city centre. On the one hand, unified planning with attention to detail and optimizing the
internal structure in the Futian CBD is important, as this approach can consolidate the position
of the city centre area and enhance the ontological vibrancy of the CBD. On the other hand,
constructing a multi-axis, multi-centre urban development frame with a strong network is also
important. The geographical location conditions of each region should be evaluated according to
the locations of important urban facilities, and the layout should be planned accordingly.

6. Conclusions

Urban vibrancy has long constituted a popular research topic; accordingly, accurately and
effectively measuring urban vibrancy and exploring the factors that influence urban vibrancy have
always been key points in urban study and planning [7]. With the development of big data-related
theories and technologies, the study of urban vibrancy has gradually changed from qualitative
summaries to quantitative calculations. Thus, this study used mobile phone data to extract the hourly
population distribution on weekdays and weekends in each TAZ to represent the local vibrancy. Based
on the kernel density analysis method, real-time population data are visualized, and the evolutionary
characteristics of the spatial and temporal distributions of the city’s vibrancy on different characteristic
days and different time periods are presented. With regard to the spatiotemporal nonstationarity
of the data, GTWR was used to explore the influences of various factors on urban vibrancy with
high temporal and spatial resolutions, and the urban vibrancy and influencing factor equations were
quantitatively obtained. The estimated coefficients with different temporal and spatial dimensions
are visualized to illustrate how multiple factors affect urban vibrancy differently in local areas at
different times. By assessing and measuring urban vibrancy, urban designers and planners may be
able to address the quality of the pedestrian environment, which may facilitate progress towards more
integrated, appealing, inclusive and walking-conducive cities.

Generally speaking, this paper can beneficially fit into the wide framework composed of
geographic information systems (GIS), space syntax and urban study and planning. The achievements
and innovations in this paper include the following:

(1) Quantitative calculations and visualizations display the dynamic changes of the population of
Shenzhen at different times with different characteristics. This article emphasizes the importance
of human activities throughout the city and measures the local vibrancy at a fine scale. More
importantly, mobile phone signal data have numerous advantages; for example, they are collected
in real time with a small sample deviation and differences among many groups.

(2) A framework of the factors that influence urban vibrancy was constructed. In addition, from an
urban morphological perspective, an indicator system of urban vibrancy influencing factors was
constructed from three aspects: the traffic network morphology, urban function morphology, and
urban geographical location. The value of each indicator was quantitatively calculated through
theories and methods such as space syntax and information entropy; furthermore, a regression
model was constructed as an explanatory variable, and urban vibrancy was represented by
the number of people per hour. The descriptions of phenomena based on observations and
experience were transformed into calculations of urban vibrancy based on theories and methods.

(3) A regression model of urban vibrancy and its various influencing factors was established, and the
influence of each factor on urban vibrancy was expressed quantitatively. GTWR was adopted to
delve into the influencing factors of time and the effects of their changes. In addition, the higher
degree of fitting can more effectively explain the vibrancy of Shenzhen and the influencing factors
of the factors in different situations.
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This study has several limitations that deserve further research. With regard to the spatial accuracy,
at present, mobile phone data are obscured by a series of confidentiality requirements; consequently,
the accuracy is not allowed to be smaller than the spatial TAZ unit. Under the permissions of
future objective conditions, a grid unit on a more detailed scale can be used to replace the TAZ for
higher-resolution experimental research [7]. In addition, from the perspective of urban morphology,
the current indexes of the proposed framework are not sufficient due to data limitations. Many other
factors play important roles in urban form, including the building density and plot ratio. In the
future, under the conditions of data availability, we will continue to enrich the framework of research
indicators and study urban vibrancy from a more complete perspective.
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