A Coupling Relationship between the Eco-Environment Carrying Capacity and New-Type Urbanization: A Case Study of the Wuhan Metropolitan Area in China
Abstract
:1. Introduction
2. The Interactive Coupling Relationship of the Eco-Environment Carrying Capacity and Urbanization
3. Materials and Methods
3.1. Data Preprocessing
3.2. Method
3.2.1. Index System of the Eco-Environment Carrying Capacity
3.2.2. New-Type Urbanization Index System
3.2.3. Coupling Model
4. Results
4.1. Spatial Distribution Characteristics of the Eco-Environment Carrying Capacity
4.2. Spatial Distribution Characteristics of New-Type Urbanization
4.3. Spatial Distribution Characteristics of the Coupling and Coordination Development Degree
5. Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lederbogen, F.; Kirsch, P.; Haddad, L.; Streit, F.; Tost, H.; Schuch, P.; Wüst, S.; Pruessner, J.C.; Rietschel, M.; Deuschle, M.; et al. City living and urban upbringing affect neural social stress processing in humans. Nature 2011, 474, 498–501. [Google Scholar] [CrossRef]
- Fang, C.; Liu, H.; Li, G. International progress and evaluation on interactive coupling effects between urbanization and the eco-environment. J. Geogr. Sci. 2016, 26, 1081–1116. [Google Scholar] [CrossRef] [Green Version]
- García-Nieto, A.P.; Geijzendorffer, I.R.; Baró, F.; Roche, P.K.; Bondeau, A.; Cramer, W. Impacts of urbanization around Mediterranean cities: Changes in ecosystem service supply. Ecol. Indic. 2018, 91, 589–606. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Hu, Y.; Wu, J. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 2017, 607–608, 706–714. [Google Scholar] [CrossRef]
- Bengston, D.N.; Fletcher, J.O.; Nelson, K.C. Public policies for managing urban growth and protecting open space: Policy instruments and lessons learned in the United States. Landsc. Urban Plan. 2004, 69, 271–286. [Google Scholar] [CrossRef]
- Yue, W.; Liu, Y.; Fan, P. Measuring Urban Sprawl and Its Drivers in Large Chinese Cities: The Case of Hangzhou. Land Use Policy 2013, 31, 358–370. [Google Scholar] [CrossRef]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Lowe, M.R.; Peterson, M.S. Effects of Coastal Urbanization on Salt-Marsh Faunal Assemblages in the Northern Gulf of Mexico. Mar. Coast. Fish. 2014, 6, 89–107. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Zhao, W.; Huang, Y.; Cheng, S.; Liu, C. Research on the Coupling Coordination Relationship between Urbanization and the Air Environment: A Case Study of the Area of Wuhan. Atmosphere 2015, 6, 1539–1558. [Google Scholar] [CrossRef] [Green Version]
- Wachsmuth, D.; Cohen, D.A.; Angelo, H. Expand the frontiers of urban sustainability. Nature 2016, 536, 391–393. [Google Scholar] [CrossRef]
- Mohan, M.; Kandya, A. Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data. Sci. Total Environ. 2015, 506–507, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Cumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; von Cramon-Taubadel, S.; Tscharntke, T. Implications of agricultural transitions and urbanization for ecosystem services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, J.; Wang, T. Spatio-temporal distribution research on the ecological response of urbaniza-tion in Wuhan Metropolitan Area. China Popul. Resour. Environ. 2016, 26, 137–143. [Google Scholar]
- Reid, W.V.; Chen, D.; Goldfarb, L.; Hackmann, H.; Lee, Y.T.; Mokhele, K.; Ostrom, E.; Raivio, K.; Rockström, J.; Schellnhuber, H.J. Earth System Science for Global Sustainability: Grand Challenges. Science 2010, 330, 916–917. [Google Scholar] [CrossRef] [PubMed]
- Bonan, G.B.; Doney, S.C. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science 2018, 359, eaam8328. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Seto, K.C.; Emerson, R.; Gorelick, S.M. The impact of urbanization on water vulnerability: A coupled human-environment system approach for Chennai, India. Glob. Environ. Chang. 2013, 23, 229–239. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Paul, S.; Ghosh, S.; Mathew, M.; Devanand, A.; Karmakar, S.; Niyogi, D. Increased Spatial Variability and Intensification of Extreme Monsoon Rainfall due to Urbanization. Sci. Rep. 2018, 8, 3918. [Google Scholar] [CrossRef]
- Rodríguez-Echeverry, J.; Echeverría, C.; Oyarzún, C.; Morales, L. Impact of land-use change on biodiversity and ecosystem services in the Chilean temperate forests. Landsc. Ecol. 2018, 33, 439–453. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Z.X. Natural and human impacts on ecosystem services in Guanzhong—Tianshui economic region of China. Environ. Sci. Pollut. Res. 2016, 23, 6803–6815. [Google Scholar] [CrossRef] [PubMed]
- Pickard, B.R.; Van Berkel, D.; Petrasova, A.; Meentemeyer, R.K. Forecasts of urbanization scenarios reveal trade-offs between landscape change and ecosystem services. Landsc. Ecol. 2017, 32, 617–634. [Google Scholar] [CrossRef]
- Kumar, P.; Masago, Y.; Mishra, B.K.; Fukushi, K. Evaluating future stress due to combined effect of climate change and rapid urbanization for Pasig-Marikina River, Manila. Groundw. Sustain. Dev. 2018, 6, 227–234. [Google Scholar] [CrossRef]
- Konar, M.; Evans, T.P.; Levy, M.; Scott, C.A.; Troy, T.J.; Vörösmarty, C.J.; Sivapalan, M. Water resources sustainability in a globalizing world: Who uses the water? Hydrol. Process. 2016, 30, 3330–3336. [Google Scholar] [CrossRef]
- Henderson, J.V.; Storeygard, A.; Deichmann, U. Has climate change driven urbanization in Africa? J. Dev. Econ. 2017, 124, 60–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galletti, C.S.; Ii, B.L.T.; Myint, S.W. Land changes and their drivers in the cloud forest and coastal zone of Dhofar, Oman, between 1988 and 2013. Reg. Environ. Chang. 2016, 16, 1–13. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, C.; Wang, G.; Bao, S. An integrated sustainable development approach to modeling the eco-environmental effects from urbanization. Ecol. Indic. 2011, 11, 1599–1608. [Google Scholar] [CrossRef]
- Shahbaz, M.; Loganathan, N.; Muzaffar, A.T.; Ahmed, K.; Jabran, M.A. How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model. Renew. Sustain. Energy Rev. 2016, 57, 83–93. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Tayyebi, A.; Doucette, J.; Pekin, B.K.; Braun, D.; Plourde, J. A big data urban growth simulation at a national scale: Configuring the GIS and neural network based Land Transformation Model to run in a High Performance Computing (HPC) environment. Environ. Model. Softw. 2014, 51, 250–268. [Google Scholar] [CrossRef]
- Zhou, C.; Feng, X.G.; Tang, R. Analysis and Forecast of Coupling Coordination Development among the Regional Economy-Ecological Environment-Tourism Industry—A Case Study of Provinces along the Yangtze Economic Zone. Economic Geography 2016, 32, 73–84. [Google Scholar]
- Chen, X.F.; Guo, J.F.; Yao, S.M. Study on the Coupling Between Ecological Capacity and New Urbanization in Yangtze River Delta Agglomeration: Based on the Leopold’s Earth Ethics. Resour. Environ. Yangtze Basin 2018, 4, 715–724. [Google Scholar]
- Wang, S.J.; Ma, H.; Zhao, Y.B. Exploring the relationship between urbanization and the eco-environment—A case study of Beijing–Tianjin–Hebei region. Ecol. Indic. 2014, 45, 171–183. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Lambin, E.; Lenton, T.; Scheffer, M.; Folke, C.; Schellnhuber, H. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; Vries, W.D.; Wit, C.A.D. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- Ready, R.C.; Bishop, R.C. Endangered Species and the Safe Minimum Standard. Am. J. Agric. Econ. 1991, 73, 309–312. [Google Scholar] [CrossRef]
- Gao, J.X. The basic theoretical exploration of regional ecology. China Environ. Sci. 2013, 33, 1252–1262. [Google Scholar]
- McKinney, S.A.; Joo, C.; Taekjip, H. Analysis of Single-Molecule FRET Trajectories Using Hidden Markov Modeling. Biophys. J. 2006, 91, 1941–1951. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Bayer, L.B.; Chuwah, C.; Ganzeveld, L.; Hazeleger, W.; Hurk, B.V.D.; Van Noije, T.; Oneill, B.; Strengers, B.J. A comprehensive view on climate change: Coupling of earth system and integrated assessment models. Environ. Res. Lett. 2012, 7, 24012–24021. [Google Scholar] [CrossRef]
- Chan, K.W.; Hu, Y. Urbanization in China in the 1990s: New Definition, Different Series, and Revised Trends. China Rev. 2003, 3, 49–71. [Google Scholar]
- Rees, W.E. Revisiting carrying capacity: Area-based indicators of sustainability. Popul. Environ. 1996, 17, 195–215. [Google Scholar] [CrossRef]
- Foley, J.; Defries, R.; Asner, G.; Barford, C.; Bonan, G.; Carpenter, S.; Chapin, F.; Coe, M.; Daily, G.; Gibbs, H. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.; Rahman, M.S.; Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Industrial metal pollution in water and probabilistic assessment of human health risk. J. Environ. Manag. 2017, 185, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Ohman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Qiao, R. Analysis on variation in farmers welfare after rural-urban land conversion. China Popul. Resour. Environ. 2011, 21, 99–105. [Google Scholar]
- Lane, M. The carrying capacity imperative: Assessing regional carrying capacity methodologies for sustainable land-use planning. Land Use Policy 2010, 27, 1038–1045. [Google Scholar] [CrossRef] [Green Version]
- Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Holling, C.S.; Jansson, B.O.; Levin, S.; Maler, L.G.; Perrings, C. Economic Growth, Carrying Capacity, and the Environment. Science 1996, 1, 104–110. [Google Scholar]
- Fang, C.; Zhou, C.; Wang, Z. Sustainable development strategy and priorities of spatially differentiated development of urban agglomerations along the Yangtze River Economic Belt. Prog. Geogr. 2015, 34, 1398–1408. [Google Scholar]
- Sun, L.; Xing, X.; Zhou, D. The improvement of entropy methods. Stat. Decis. 2010, 21, 153–154. [Google Scholar]
- Zhu, X.; Wei, G. Discussion on the fine standard of dimensionless method in entropy method. Stat. Decis. 2015, 12, 12–15. [Google Scholar]
- Wolfslehner, B.; Vacik, H. Evaluating sustainable forest management strategies with the Analytic Network Process in a Pressure-State-Response framework. J. Environ. Manag. 2008, 88, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sekovskia, I.; Dennison, W.C. Megacities in the coastal zone: Using a driver-pressure-state-impact-response framework to address complex environmental problems. Estuar. Coast. Shelf Sci. 2012, 96, 48–59. [Google Scholar] [CrossRef]
- Hughey, K.F.; Cullen, R.; Kerr, G.N.; Cook, A.J. Application of the pressure-state-response framework to perceptions reporting of the state of the New Zealand environment. J. Environ. Manag. 2004, 70, 85–93. [Google Scholar] [CrossRef]
- Pirrone, N.; Trombino, G.; Cinnirella, S.; Algieri, A.; Bendoricchio, G.; Palmeri, L. The Driver-Pressure-State-Impact-Response (DPSIR) approach for integrated catchment-coastal zone management: Preliminary application to the Po catchment-Adriatic Sea coastal zone system. Reg. Environ. Chang. 2005, 5, 111–137. [Google Scholar] [CrossRef]
- Ma, L.; Niu, S.; Li, Y. Quantitative analysis of coupling between urbanization and ecological environ-ment in Gansu Province. Urban Dev. Stud. 2010, 17, 52–58. [Google Scholar]
- Peng, J.; Wu, J.; Pan, Y.; Han, Y. Evaluation for Regional Ecological Sustainability Based on PSR Model: Conceptual Framework. Prog. Geogr. 2012, 31, 933–940. [Google Scholar]
- Shan, Z.; Huang, Y. An Analysis of the Concept, Goals, Contents, Planning Strategies and Misunderstandings of New-type urbanization. Urban Plan. Forum 2013, 2, 16–22. [Google Scholar]
- Cao, W.; Zhang, X.; Yiyong, P.; Zhang, C. Coordinate Development among Population, Land and Economy Urbanization in Developed Area: The Case of Jiangsu Province. China Popul. Resour. Environ. 2012, 4, 141–146. [Google Scholar]
- Wang, L.; Li, J. Quality Evaluation and Mechanism of Capital City Urbanization in North-West China Based on New Urbanization. Econ. Geogr. 2014, 34, 55–61. [Google Scholar]
- Siciliano, G. Urbanization strategies, rural development and land use changes in China: A multiple-level integrated assessment. Land Use Policy 2012, 29, 165–178. [Google Scholar] [CrossRef]
- Liao, C. Quantitative judgement and classification system for coordinated development of environment and economy: A case study of the City Group in the Pearl River Delta. Trop. Geogr. 1999, 19, 171–177. [Google Scholar]
- Liu, Y.; Song, X. Coupling degree model and its forecasting model of urbanization and ecological environment. J. China Univ. Min. Technol. 2005, 34, 91–96. [Google Scholar]
- Lu, J.; Chang, H.; Wang, Y. Dynamic evolution of provincial energy economy and environment coupling in China’s regions. China Popul. Resour. Environ. 2017, 27, 60–68. [Google Scholar]
- Gao, J. The exploration of essential theories about regional ecology. Chin. Sci. Bull. 2018, 63, 693–700. (In Chinese) [Google Scholar] [CrossRef]
- Jenks, G.F. The Data Model Concept in Statistical Mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Yao, X.; Zeng, J.; Li, W. Spatial correlation characteristics of urbanization and land ecosystem service value in Wuhan Urban Agglomeration. Trans. Chin. Soc. Agric. Eng. 2015, 31, 249–256. [Google Scholar]
- Chen, L.J.; Zhen-Tang, K.E.; Wang, J.S. Investigation, Evaluation and Exploitation of Red Tourism Resources in Huanggang City. Hubei Agric. Sci. 2012, 51, 5517–5520. [Google Scholar]
- Yin, X.Y.; Hong, Z.; Gan, M.Y. Study on product characteristics and developing modes of red tourism. Hum. Geogr. 2005, 2, 34–37. [Google Scholar]
- Wang, W.; Zhang, T.; Wang, X.; Wen, C. Spatial and temporal pattern of urban ecological carrying capacity in Yangtze River Economic Zone. Resour. Environ. Yangtze Basin 2017, 26, 1963–1971. [Google Scholar]
- Vörösmarty, C.J.; Mcintyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Running, S. A measurable planetary boundary for the biosphere. Science 2012, 337, 1458–1459. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Ma, H.; Wang, J. A Regional Categorization for “New-Type Urbanization” in China. PLoS ONE 2015, 10, e0134253. [Google Scholar] [CrossRef] [PubMed]
- Cu, M. The relationship of coupling coordination between urbanization and eco-environment—A case of urban cluster in the Central Plains. Econ. Geogr. 2015, 35, 72–78. [Google Scholar]
- Dinda, S. Environmental Kuznets Curve Hypothesis: A Survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef] [Green Version]
- Kijima, M.; Nishide, K.; Ohyama, A. Economic models for the environmental Kuznets curve: A survey. J. Econ. Dyn. Control 2010, 34, 1187–1201. [Google Scholar] [CrossRef]
- Stevenson, R.J. A revised framework for coupled human and natural systems propagating thresholds and managing environmental problems. Phys. Chem. Earth 2011, 36, 342–351. [Google Scholar] [CrossRef]
- Reinette, B.; Carpenter, S.R.; Brock, W.A. Turning back from the brink: Detecting an impending regime shift in time to avert it. Proc. Natl. Acad. Sci. USA 2009, 106, 826–831. [Google Scholar] [Green Version]
- Staver, A.C.; Archibald, S.; Levin, S. Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states. Ecology 2011, 92, 1063–1072. [Google Scholar] [CrossRef]
- Beck, M.B. Environmental foresight and structural change. Environ. Model. Softw. 2005, 20, 651–670. [Google Scholar] [CrossRef]
- Polhill, J.G.; Filatova, T.; Voinov, A. Modelling systemic change in coupled socio-environmental systems. Environ. Model. Softw. 2016, 75, 318–332. [Google Scholar] [CrossRef]
- Filatova, T.; Polhill, J.G.; Ewijk, S.V. Regime shifts in coupled socio-environmental systems: Review of modelling challenges and approaches. Environ. Model. Softw. 2015, 75, 333–347. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Batistella, M.; Defries, R.; Dietz, T.; Fu, F.; Hertel, T.; Cesar Izaurralde, R.; Lambin, E.F.; Li, S.; et al. Framing Sustainability in a Telecoupled World. Ecology and Society 2013, 36, 7870–7885. [Google Scholar] [CrossRef]
- Newton, K. Is small really so beautiful? Is big really so ugly? Size, effectiveness, and democracy in local government. Polit. Stud. 2010, 30, 190–206. [Google Scholar] [CrossRef]
- Basolo, V. US Regionalism and Rationality. Urban Stud. 2003, 40, 447–462. [Google Scholar] [CrossRef]
- Sun, B.; Li, X.; Zhang, Y. Research on multi-center collaborative development of Wuhan City Circle. Reg. Econ. Rev. 2016, 6, 86–91. [Google Scholar]
- Li, X.; Sun, B. Regional integration of the Yangtze River middle reaches urban agglomerations: Measuring and comparison. Resour. Environ. Yangtze Basin 2013, 22, 996–1103. [Google Scholar]
System | First Grade Index | Basic Grade Index | Weight |
---|---|---|---|
Eco-environment Carrying capacity | Pressure | Energy consumption (tons of standard coal) per 104 Yuan output value | 0.0538 |
Water consumption per 104 Yuan worth of GDP (m3) | 0.0776 | ||
Discharged volume of industrial SO2 per capita (kg/capital) | 0.0606 | ||
Discharge of wastewater per capita (ton/capital) | 0.0398 | ||
Land deterioration index (%) | 0.0517 | ||
Fertilizer use intensity (kg/hm2) | 0.0287 | ||
Value of noise pollution (db) | 0.0652 | ||
State | Per capita water resources (m3/person) | 0.0655 | |
Per capita agricultural land (m2/capital) | 0.0423 | ||
Organism abundance index (%) | 0.1100 | ||
Vegetation cover index (%) | 0.0443 | ||
Rivers density index (%) | 0.0938 | ||
Proportion of days with good air quality (%) | 0.0557 | ||
Response | Sewage treatment rate (%) | 0.0377 | |
Industrial solid waste comprehensively rate (%) | 0.0456 | ||
Garbage harmless treatment rate (%) | 0.1023 | ||
Proportion of environmental protection expenditure to GDP (%) | 0.0252 | ||
New-type Urbanization | Population urbanization | Proportion of the urban population to the total population (%) | 0.0404 |
Urban population density (persons/km2) | 0.0751 | ||
Economy urbanization | Per capita GDP (Yuan) | 0.0567 | |
Proportion of the value of the secondary and tertiary industry to GDP (%) | 0.0302 | ||
Proportion of the added value of the high-tech industry in GDP (%) | 0.0876 | ||
Proportion of foreign investment actually utilized to GDP (%) | 0.0728 | ||
Space urbanization | Proportion of built-up areas to urban areas (%) | 0.0729 | |
Per-unit area financial revenue (104 Yuan/km2) | 0.1720 | ||
Per-unit area investment in fixed assets (104 Yuan/km2) | 0.0892 | ||
Social urbanization | Proportion of public security and employment expenditure to financial expenditure (%) | 0.0851 | |
Proportion of education expenditure to GDP (%) | 0.0423 | ||
Numbers of sickbeds per 104 persons | 0.0281 | ||
Gas utilization rate (%) | 0.0316 | ||
Urban–rural integration | Ratio of urban households’ to rural households’ per capita disposable income (%) | 0.0627 | |
Ratio of urban households’ to rural households’ per capita consumption expenditure (%) | 0.0287 | ||
Ratio of urban households’ to rural households’ Engel coefficient (%) | 0.0246 |
Type | Value Interval (D) | Subtype |
---|---|---|
The coordinated development | 0.9001–1.0000 | The best coordinated development |
0.8001–0.9000 | The good coordinated development | |
0.7001–0.8000 | The moderate coordinated development | |
0.6001–0.7000 | The elementary coordinated development | |
Excess | 0.5001–0.6000 | The reluctant coordinated development |
0.4001–0.5000 | The edge of maladjustment | |
Maladjustment | 0.3001–0.4000 | The mild maladjustment |
0.2001–0.3000 | The moderate maladjustment | |
0.1001–0.2000 | The severe maladjustment | |
0.0000–0.1000 | The extreme maladjustment |
Region | Eco-Environment Carrying Capacity f(x) | New-Type Urbanization g(y) | The Coupling Degree C | The Overall Benefit T | The Coupling and Coordination Development Degree D |
---|---|---|---|---|---|
Wuhan | 0.4269 | 0.8021 | 0.8223 | 0.6145 | 0.7108 |
Huangshi | 0.5352 | 0.3081 | 0.8602 | 0.4216 | 0.6023 |
Ezhou | 0.3149 | 0.3512 | 0.9941 | 0.3330 | 0.5754 |
Xiaogan | 0.3909 | 0.2431 | 0.8944 | 0.3170 | 0.5325 |
Huanggang | 0.6135 | 0.2247 | 0.6161 | 0.4191 | 0.5082 |
Xianning | 0.6770 | 0.1300 | 0.2921 | 0.4035 | 0.3433 |
Xiantao | 0.5032 | 0.1905 | 0.6349 | 0.3469 | 0.4693 |
Qianjiang | 0.4399 | 0.2773 | 0.8999 | 0.3586 | 0.5681 |
Tianmen | 0.3759 | 0.2369 | 0.8998 | 0.3064 | 0.5251 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.; Hu, C. A Coupling Relationship between the Eco-Environment Carrying Capacity and New-Type Urbanization: A Case Study of the Wuhan Metropolitan Area in China. Sustainability 2018, 10, 4671. https://doi.org/10.3390/su10124671
Song M, Hu C. A Coupling Relationship between the Eco-Environment Carrying Capacity and New-Type Urbanization: A Case Study of the Wuhan Metropolitan Area in China. Sustainability. 2018; 10(12):4671. https://doi.org/10.3390/su10124671
Chicago/Turabian StyleSong, Min, and Can Hu. 2018. "A Coupling Relationship between the Eco-Environment Carrying Capacity and New-Type Urbanization: A Case Study of the Wuhan Metropolitan Area in China" Sustainability 10, no. 12: 4671. https://doi.org/10.3390/su10124671
APA StyleSong, M., & Hu, C. (2018). A Coupling Relationship between the Eco-Environment Carrying Capacity and New-Type Urbanization: A Case Study of the Wuhan Metropolitan Area in China. Sustainability, 10(12), 4671. https://doi.org/10.3390/su10124671