Sustainability of Government Social Media: A Multi-Analytic Approach to Predict Citizens’ Mobile Government Microblog Continuance
Abstract
:1. Introduction
2. Background and Theoretical Foundation
2.1. Research Background
Mobile Government Microblog in China
2.2. Theoretical Foundation
2.2.1. The Stimulus–Organism–Response (SOR) Framework
2.2.2. Utilitarian Value and Hedonic Value
3. Research Model and Hypotheses
3.1. Sociality
Social Influence
3.2. Media Characteristics
3.2.1. Perceived Interactivity
3.2.2. Perceived Mobility
3.2.3. Perceived Value
4. Methodology
4.1. Instrument
4.2. Sample
5. Data Analysis and Results
5.1. Assessment of the Measurement Model
5.2. Assessment of the Structural Model
5.3. Neural Network Analysis
6. Discussion
6.1. Interpretation of Results
6.2. Limitation and Future Work
7. Conclusions
7.1. Theoretical Implications
7.2. Practical Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Construct | Measure | Source |
---|---|---|
Social influence (SOI) | 1. People who influence my behavior think that I should use Sina government microblog APP. | [43] |
2. My friends think that I should use Sina government microblog APP. 3. People around me who use Sina government microblog APP have more prestige than those who do not. 4. People who use Sina government microblog APP have a high profile. | ||
Perceived interactivity (PEI) | 1. Sina government microblog APP provides different ways to communicate with others. | [44] |
2. I maintain close social relationships with some members in Sina government microblog APP. | ||
3. I have frequent communication with some members in Sina government microblog APP. | ||
perceived mobility (PEM) | 1. Sina government microblog APP would enable me to access government information anytime, day or night. | [40] |
2. Sina government microblog APP would enable me to obtain government information from home, from the office, on the road, or at other locales. 3. It would be convenient for me to get government information through using Sina government microblog APP. | ||
Hedonic value (HEV) | 1. The mobile government microblog would be ones that I enjoy. 2. The mobile government microblog would make me feel good. | [45] |
3. The mobile government microblog would be ones that I feel relaxed about using. | ||
Utilitarian value (UTV) | 1. Compared to the effort I need to put in, the use of the mobile government microblog would be beneficial to me. | [45] |
2. Compared to the time I need to spend, the use of the mobile government microblog would be worthwhile to me. | ||
Continuance intention (COI) | 1. I intend to continue using Sina government microblog APP to get related information when I need to know government’s services and policies. | [3,40] |
2. I will consider continue using Sina government microblog APP to get related information when I need to know other people’s views to the government. | ||
3. I will continue seeking government service through Sina government microblog APP. |
References
- Yang, S.; Hui, J.; Yao, J.; Chen, Y.; Wei, J. Perceived values on mobile GMS continuance: A perspective from perceived integration and interactivity. Comput. Hum. Behav. 2018, 89, 16–26. [Google Scholar] [CrossRef]
- CNNIC. 42th Statistical Survey Report on Internet Development in China. Available online: http://www.cnnic.net.cn/ (accessed on 2 October 2018).
- Zhao, L.; Lu, Y. Enhancing perceived interactivity through network externalities: An empirical study on micro-blogging service satisfaction and continuance intention. Decis. Support Syst. 2012, 53, 825–834. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Z.; Liu, Y. Key success factors for the launch of government social media platform: Identifying the formation mechanism of continuance intention. Comput. Hum. Behav. 2016, 55, 750–763. [Google Scholar] [CrossRef]
- Panagiotopoulos, P.; Bigdeli, A.Z.; Sams, S. Citizen–government collaboration on social media: The case of Twitter in the 2011 riots in England. Gov. Inf. Q. 2014, 31, 349–357. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, X.; Cao, B.; Zhang, W. Social media policies as responses for social media affordances: The case of China. Gov. Inf. Q. 2016, 33, 313–324. [Google Scholar] [CrossRef]
- Bertot, J.C.; Jaeger, P.T.; Grimes, J.M. Using ICTs to create a culture of transparency: E-government and social media as openness and anti-corruption tools for societies. Gov. Inf. Q. 2010, 27, 264–271. [Google Scholar] [CrossRef]
- Jiang, C.; Zhao, W.; Sun, X.; Zhang, K.; Zheng, R.; Qu, W. The effects of the self and social identity on the intention to microblog: An extension of the theory of planned behavior. Comput. Hum. Behav. 2016, 64, 754–759. [Google Scholar] [CrossRef]
- Kim, T.; Karatepe, O.; Lee, G.; Demiral, H. Do Gender and Prior Experience Moderate the Factors Influencing Attitude toward Using Social Media for Festival Attendance? Sustainability 2018, 10, 3509. [Google Scholar] [CrossRef]
- Mehrabian, A.; Russell, J.A. An Approach to Environment Psychology; MIT: Cambridge, MA, USA, 1974. [Google Scholar]
- Hew, T.S.; Leong, L.Y.; Ooi, K.B.; Chong, Y.L. Predicting Drivers of Mobile Entertainment Adoption: A Two-Stage SEM-Artificial-Neural-Network Analysis. J. Comput. Inf. Syst. 2016, 56, 352–370. [Google Scholar] [CrossRef]
- Chong, Y.L. A two-staged SEM-neural network approach for understanding and predicting the determinants of m-commerce adoption. Expert Syst. Appl. 2013, 40, 1240–1247. [Google Scholar] [CrossRef]
- Arpaci, I. A hybrid modeling approach for predicting the educational use of mobile cloud computing services in higher education. Comput. Hum. Behav. 2019, 90, 181–187. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Marinković, V.; Kalinić, Z. A SEM-neural network approach for predicting antecedents of m-commerce acceptance. Int. J. Inf. Manag. 2017, 37, 14–24. [Google Scholar] [CrossRef]
- Sharma, S.K. Integrating cognitive antecedents into TAM to explain mobile banking behavioral intention: A SEM-neural network modeling. Inf. Syst. Front. 2017, 1–13. [Google Scholar] [CrossRef]
- Liu, W.; Hu, G.; Tang, L.; Wang, Y. China’s global growth in social science research: Uncovering evidence from bibliometric analyses of SSCI publications (1978–2013). J. Informetr. 2015, 9, 555–569. [Google Scholar] [CrossRef]
- Liu, W.; Tang, L.; Gu, M.; Hu, G. Feature report on China: A bibliometric analysis of China-related articles. Scientometrics 2015, 102, 1–15. [Google Scholar] [CrossRef]
- Kandampully, J.; Zhang, T.T.; Bilgihan, A. Customer loyalty: A review and future directions with a special focus on the hospitality industry. Int. J. Contemp. Hosp. Manag. 2015, 27, 379–414. [Google Scholar] [CrossRef]
- Steen Møller, M.; Stahl Olafsson, A. The Use of E-Tools to Engage Citizens in Urban Green Infrastructure Governance: Where Do We Stand and Where Are We Going? Sustainability 2018, 10, 3513. [Google Scholar] [CrossRef]
- Hens, L. Paul James: Urban sustainability in theory and practice: Circles of sustainability. Environ. Dev. Sustain. 2015, 17, 1–2. [Google Scholar] [CrossRef]
- Kim, G.J.; Lee, H.; Son, S.M. A Study on Microblog Service Continuous Use Intention: Focusing on Influence. J. Inf. Syst. 2014, 23, 73–91. [Google Scholar]
- Shareef, M.A.; Kumar, V.; Dwivedi, Y.K.; Kumar, U. Service delivery through mobile-government (mGov): Driving factors and cultural impacts. Inf. Syst. Front. 2016, 18, 315–332. [Google Scholar] [CrossRef]
- Islam, J.U.; Rahman, Z. The impact of online brand community characteristics on customer engagement: An application of Stimulus-Organism-Response paradigm. Telemat. Inform. 2017, 34, 96–109. [Google Scholar] [CrossRef]
- Babin, B.J.; Darden, W.R.; Griffin, M. Work and/or Fun: Measuring Hedonic and Utilitarian Shopping Value. J. Consum. Res. 1994, 20, 644–656. [Google Scholar] [CrossRef]
- Overby, J.W.; Lee, E.-J. The effects of utilitarian and hedonic online shopping value on consumer preference and intentions. J. Bus. Res. 2006, 59, 1160–1166. [Google Scholar] [CrossRef]
- Batra, R.; Ahtola, O.T. Measuring the Hedonic and Utilitarian Sources of Consumer Attitudes. Mark. Lett. 1991, 2, 159–170. [Google Scholar] [CrossRef]
- Yang, K.; Lee, H.J. Gender differences in using mobile data services: Utilitarian and hedonic value approaches. J. Res. Interact. Mark. 2013, 4, 142–156. [Google Scholar] [CrossRef]
- Anderson, K.C.; Knight, D.K.; Pookulangara, S.; Josiam, B. Influence of hedonic and utilitarian motivations on retailer loyalty and purchase intention: A facebook perspective. J. Retail. Consum. Serv. 2014, 21, 773–779. [Google Scholar] [CrossRef]
- Bitner, M.J. Servicescapes: The Impact of Physical Surroundings on Customers and Employees. J. Mark. 1992, 56, 57–71. [Google Scholar] [CrossRef]
- Yang, S.; Lu, Y.; Gupta, S.; Cao, Y.; Zhang, R. Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Comput. Hum. Behav. 2012, 28, 129–142. [Google Scholar] [CrossRef]
- Karahanna, E.; Straub, D.W.; Chervany, N.L. Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Q. 1999, 23, 183–213. [Google Scholar] [CrossRef]
- Ratten, V.; Khosrow-Pour, M. The Development of Social E-Enterprises, Mobile Communication and Social Networks: A Social Cognitive Perspective of Technological Innovation. J. Electron. Commer. Organ. 2013, 11, 68–77. [Google Scholar] [CrossRef]
- Hong, S.J.; Tam, K.Y. Understanding the Adoption of Multipurpose Information Appliances: The Case of Mobile Data Services. Inf. Syst. Res. 2006, 17, 162–179. [Google Scholar] [CrossRef]
- Thorson, K.S.; Rodgers, S. Relationships between Blogs as EWOM and Interactivity, Perceived Interactivity, and Parasocial Interaction. J. Interact. Advert. 2006, 6, 5–44. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Y.; Wei, J. Social capital on mobile SNS addiction: A perspective from online and offline channel integrations. Internet Res. 2016, 26, 982–1000. [Google Scholar] [CrossRef]
- Dolen, W.M.V.; Dabholkar, P.A.; Ruyter, K.D. Satisfaction with Online Commercial Group Chat: The Influence of Perceived Technology Attributes, Chat Group Characteristics, and Advisor Communication Style. J. Retail. 2007, 83, 339–358. [Google Scholar] [CrossRef]
- Kesari, B.; Atulkar, S. Satisfaction of mall shoppers: A study on perceived utilitarian and hedonic shopping values. J. Retail. Consum. Serv. 2016, 31, 22–31. [Google Scholar] [CrossRef]
- Mallat, N.; Rossi, M.; Tuunainen, V.; Öörni, A. The impact of use context on mobile services acceptance: The case of mobile ticketing. Inf. Manag. 2009, 46, 190–195. [Google Scholar] [CrossRef]
- Torkzadeh, G.; Dhillon, G. Measuring Factors that Influence the Success of Internet Commerce. Inf. Syst. Res. 2002, 13, 187–204. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.L.; Chan, F.K.Y.; Hu, P.J.H. Managing Citizens’ Uncertainty in E-Government Services: The Mediating and Moderating Roles of Transparency and Trust. Inf. Syst. Res. 2016, 27, 87–111. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Kostakos, V.; Goncalves, J.; Hosio, S.; Hu, F. An empirical investigation of mobile government adoption in rural China: A case study in Zhejiang province. Gov. Inf. Q. 2014, 31, 432–442. [Google Scholar] [CrossRef]
- Kim, Y.H.; Dan, J.K.; Wachter, K. A study of mobile user engagement (MoEN): Engagement motivations, perceived value, satisfaction, and continued engagement intention. Decis. Support Syst. 2013, 56, 361–370. [Google Scholar] [CrossRef]
- Lu, J.; Yao, J.E.; Yu, C.-S. Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. J. Strat. Inf. Syst. 2005, 14, 245–268. [Google Scholar] [CrossRef]
- Wang, E.S.; Wang, M.C. Social support and social interaction ties on internet addiction: Integrating online and offline contexts. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Han, I. The role of utilitarian and hedonic values and their antecedents in a mobile data service environment. Expert Syst. Appl. 2011, 38, 2311–2318. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Market. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Abdullah, D.; Jayaraman, K.; Kamal, S.B.M. A Conceptual Model of Interactive Hotel Website: The Role of Perceived Website Interactivity and Customer Perceived Value toward Website Revisit Intention. Procedia Econ. Finance 2016, 37, 170–175. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X. How Environmental Uncertainty Moderates the Effect of Relative Advantage and Perceived Credibility on the Adoption of Mobile Health Services by Chinese Organizations in the Big Data Era. Int. J. Telemed. Appl. 2016, 2016, 3618402. [Google Scholar] [CrossRef]
- Kim, H.J. Multi-Stakeholders in Public and Cultural Diplomacies as Seen through the Lens of Public-Private Partnerships: A Comparative Case Study of Germany and South Korea. J. Contemp. East. Asia 2018, 17, 68–93. [Google Scholar]
Measure | Item | Count | Percentage (%) |
---|---|---|---|
Gender | Male | 145 | 48.2 |
Female | 156 | 51.8 | |
Age (years old) | 18 or below | 2 | 0.7 |
>18 and ≤25 | 73 | 24.3 | |
>26 and ≤35 | 179 | 59.5 | |
35 or above | 47 | 15.6 | |
Education | High school or below | 18 | 6.0 |
Junior college | 74 | 24.6 | |
Undergraduate | 181 | 60.1 | |
Master | 21 | 7.0 | |
Doctor or above | 7 | 2.2 | |
Occupation | Worker | 118 | 39.2 |
Manager | 59 | 19.6 | |
Teacher | 33 | 11.0 | |
Doctor | 9 | 3.0 | |
Freelancer | 23 | 7.6 | |
Student | 30 | 10.0 | |
Civil servant | 19 | 6.3 | |
Self - employed | 5 | 1.7 | |
Others | 5 | 1.7 | |
Use mobile microblog experience (year) | ≤1 | 44 | 14.6 |
>1 and ≤3 | 113 | 37.5 | |
>3and ≤5 | 99 | 32.9 | |
>5 | 45 | 15.0 | |
Total | 301 | 100 |
Factor | Item | Loading | CA | CR | AVE |
---|---|---|---|---|---|
SOI | SOI1 | 0.872 | 0.887 | 0.922 | 0.746 |
SOI2 | 0.859 | ||||
SOI3 | 0.868 | ||||
SOI4 | 0.856 | ||||
PEI | PEI1 | 0.869 | 0.850 | 0.909 | 0.769 |
PEI2 | 0.892 | ||||
PEI3 | 0.870 | ||||
PEM | PEM1 | 0.898 | 0.868 | 0.917 | 0.786 |
PEM2 | 0.876 | ||||
PEM3 | 0.885 | ||||
HEV | HEV1 | 0.907 | 0.896 | 0.935 | 0.827 |
HEV2 | 0.913 | ||||
HEV3 | 0.908 | ||||
UTV | UTV1 | 0.919 | 0.829 | 0.921 | 0.854 |
UTV2 | 0.929 | ||||
COI | COI1 | 0.886 | 0.844 | 0.906 | 0.762 |
COI2 | 0.854 | ||||
COI3 | 0.879 |
HEV | UTV | COI | PEI | PEM | SOI | |
---|---|---|---|---|---|---|
HEV | 0.909 | |||||
UTV | 0.614 | 0.924 | ||||
COI | 0.653 | 0.693 | 0.873 | |||
PEI | 0.653 | 0.591 | 0.683 | 0.877 | ||
PEM | 0.607 | 0.662 | 0.683 | 0.570 | 0.886 | |
SOI | 0.695 | 0.558 | 0.569 | 0.668 | 0.456 | 0.864 |
Factors | SOI | PEI | PEM | HEV | UTV | COI |
---|---|---|---|---|---|---|
SOI1 | 0.767 | 0.172 | 0.140 | 0.235 | 0.077 | 0.302 |
SOI2 | 0.804 | 0.144 | 0.176 | 0.184 | 0.058 | 0.231 |
SOI3 | 0.802 | 0.243 | 0.154 | 0.199 | 0.167 | 0.100 |
SOI4 | 0.655 | 0.315 | 0.029 | 0.339 | 0.308 | 0.090 |
PEI1 | 0.141 | 0.708 | 0.383 | 0.261 | 0.126 | 0.219 |
PEI2 | 0.339 | 0.739 | 0.201 | 0.141 | 0.089 | 0.267 |
PEI3 | 0.386 | 0.704 | 0.057 | 0.225 | 0.188 | 0.228 |
PEM1 | 0.189 | 0.262 | 0.783 | 0.141 | 0.162 | 0.220 |
PEM2 | 0.077 | 0.112 | 0.793 | 0.194 | 0.165 | 0.250 |
PEM3 | 0.162 | 0.117 | 0.772 | 0.242 | 0.188 | 0.210 |
HEV1 | 0.320 | 0.232 | 0.211 | 0.743 | 0.200 | 0.175 |
HEV2 | 0.353 | 0.128 | 0.240 | 0.728 | 0.198 | 0.259 |
HEV3 | 0.268 | 0.258 | 0.292 | 0.755 | 0.059 | 0.215 |
UTV1 | 0.246 | 0.155 | 0.304 | 0.169 | 0.795 | 0.226 |
UTV2 | 0.182 | 0.203 | 0.357 | 0.238 | 0.632 | 0.388 |
COI1 | 0.246 | 0.151 | 0.332 | 0.207 | 0.196 | 0.717 |
COI2 | 0.146 | 0.286 | 0.264 | 0.153 | 0.221 | 0.706 |
COI3 | 0.188 | 0.294 | 0.274 | 0.280 | 0.144 | 0.669 |
Model 1 Input neuron: SOI, PEI, PEM Output neuron: UTV | Model 2 Input neuron: SOI, PEI, PEM Output neuron: HEV | |||
---|---|---|---|---|
Network | Training | Testing | Training | Testing |
1 | 0.2018 | 0.2082 | 0.1960 | 0.1899 |
2 | 0.1994 | 0.2039 | 0.1925 | 0.1988 |
3 | 0.2097 | 0.2088 | 0.1942 | 0.2009 |
4 | 0.2019 | 0.2097 | 0.1930 | 0.2007 |
5 | 0.2013 | 0.2088 | 0.1931 | 0.2014 |
6 | 0.2073 | 0.2046 | 0.1951 | 0.2034 |
7 | 0.2015 | 0.2072 | 0.1856 | 0.1948 |
8 | 0.1989 | 0.2018 | 0.1939 | 0.1887 |
9 | 0.1957 | 0.1913 | 0.1955 | 0.1984 |
10 | 0.2125 | 0.2115 | 0.1785 | 0.1823 |
Mean | 0.2030 | 0.2056 | 0.1917 | 0.1959 |
Standard deviation | 0.0049 | 0.0055 | 0.0052 | 0.0065 |
Model 3 Input neuron: UTV, HEV Output neuron: COI | ||
---|---|---|
Network | Training | Testing |
1 | 0.2007 | 0.2049 |
2 | 0.2049 | 0.1904 |
3 | 0.2059 | 0.2028 |
4 | 0.2072 | 0.2092 |
5 | 0.1999 | 0.2070 |
6 | 0.2001 | 0.2007 |
7 | 0.1987 | 0.2034 |
8 | 0.2004 | 0.2017 |
9 | 0.2047 | 0.2029 |
10 | 0.2064 | 0.2066 |
Mean | 0.2029 | 0.2030 |
Standard deviation | 0.0030 | 0.0049 |
Model 1 Input neuron: SOI, PEI, PEM Output neuron: UTV | Model 2 Input neuron: SOI, PEI, PEM Output neuron: HEV | |||||
---|---|---|---|---|---|---|
Network | SOI | PEI | PEM | SOI | PEI | PEM |
1 | 0.307 | 0.326 | 0.367 | 0.375 | 0.295 | 0.33 |
2 | 0.348 | 0.325 | 0.326 | 0.388 | 0.242 | 0.369 |
3 | 0.245 | 0.411 | 0.343 | 0.331 | 0.319 | 0.350 |
4 | 0.361 | 0.309 | 0.330 | 0.323 | 0.322 | 0.355 |
5 | 0.342 | 0.345 | 0.313 | 0.305 | 0.345 | 0.350 |
6 | 0.269 | 0.324 | 0.407 | 0.393 | 0.267 | 0.340 |
7 | 0.331 | 0.328 | 0.341 | 0.390 | 0.284 | 0.325 |
8 | 0.308 | 0.306 | 0.385 | 0.317 | 0.327 | 0.356 |
9 | 0.351 | 0.314 | 0.335 | 0.337 | 0.340 | 0.323 |
10 | 0.302 | 0.339 | 0.359 | 0.385 | 0.301 | 0.314 |
Mean | 0.316 | 0.333 | 0.351 | 0.354 | 0.304 | 0.341 |
Normalized Importance (%) | 90.2 | 94.9 | 100 | 100 | 85.8 | 93.3 |
Model 3 Input neuron: UTV, HEV Output neuron: COI | ||
---|---|---|
Network | UTV | HEV |
1 | 0.531 | 0.469 |
2 | 0.558 | 0.442 |
3 | 0.561 | 0.439 |
4 | 0.619 | 0.381 |
5 | 0.557 | 0.443 |
6 | 0.527 | 0.473 |
7 | 0.544 | 0.456 |
8 | 0.537 | 0.463 |
9 | 0.555 | 0.445 |
10 | 0.672 | 0.328 |
Mean | 0.566 | 0.434 |
Normalized Importance (%) | 100 | 76.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Zeng, X. Sustainability of Government Social Media: A Multi-Analytic Approach to Predict Citizens’ Mobile Government Microblog Continuance. Sustainability 2018, 10, 4849. https://doi.org/10.3390/su10124849
Yang S, Zeng X. Sustainability of Government Social Media: A Multi-Analytic Approach to Predict Citizens’ Mobile Government Microblog Continuance. Sustainability. 2018; 10(12):4849. https://doi.org/10.3390/su10124849
Chicago/Turabian StyleYang, Shuiqing, and Xianwu Zeng. 2018. "Sustainability of Government Social Media: A Multi-Analytic Approach to Predict Citizens’ Mobile Government Microblog Continuance" Sustainability 10, no. 12: 4849. https://doi.org/10.3390/su10124849
APA StyleYang, S., & Zeng, X. (2018). Sustainability of Government Social Media: A Multi-Analytic Approach to Predict Citizens’ Mobile Government Microblog Continuance. Sustainability, 10(12), 4849. https://doi.org/10.3390/su10124849