A Hybrid Approach to Explore the Risk Dependency Structure among Agribusiness Firms
Abstract
:1. Introduction
2. Literature Review
2.1. Risk Management of Agricultural Firms
2.2. Proposed Methods
3. Methodology
3.1. Definition of Extreme Risk Dependence
3.2. Measurement of Loss Dependence Based on Copula and POT Models
3.3. Dependence Structure of Losses Based on Network and Minimum Spanning Trees
4. Empirical Study
4.1. Background
4.2. Data Collection
4.3. Results
5. Theoretical and Managerial Implications
6. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Chen, G. Status analysis and development countermeasures of Chinese agricultural listed companies. Guangdong Agric. Sci. 2011, 38, 194–198. [Google Scholar]
- Girdžiūtė, L. Risks in agriculture and opportunities of their integrated evaluation. Procedia Soc. Behav. Sci. 2012, 62, 783–790. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Guo, H. Optimization research on evaluation index system of agricultural enterprises risk. In Proceedings of the 3rd International Conference on Computer Research and Development (ICCRD 2011), Shanghai, China, 11–13 March 2011; 4, pp. 192–195. [Google Scholar]
- Pearson, L.J.; Nelsonc, R.; Crimp, S.; Langridge, J. Review: Interpretive review of conceptual frameworks and research models that inform Australia’s agricultural vulnerability to climate change. Environ. Model. Softw. 2011, 26, 113–123. [Google Scholar] [CrossRef]
- Hardaker, J.B.; Huirne, R.B.M.; Anderson, J.R. Coping with Risk in Agriculture, 2nd ed.; CABI Publishing: Wallingford, UK, 2004. [Google Scholar]
- Ladanyi, M. Risk methods and their applications in agriculture. Appl. Ecol. Environ. Res. 2007, 6, 147–164. [Google Scholar] [CrossRef]
- Helbing, D. Globally networked risks and how to respond. Nature 2013, 497, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Soboh, R.; Lansink, A.O.; Giesen, G.W.J.; Van Dijk, G.V. Performance measurement of the agricultural marketing cooperatives: The gap between theory and practice. Appl. Econ. Perspect. Policy 2009, 31, 446–469. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, W. Performance evaluation of China’s agricultural listed companies based on DEA model. Asian Agric. Res. 2012, 4, 1–12. [Google Scholar]
- Varga, J.; Sipiczki, Z. The financing of the agricultural enterprises in Hungary between 2008 and 2011. Procedia Econ. Finance 2015, 30, 923–931. [Google Scholar] [CrossRef]
- Gorb, O.; Yasnolob, I.; Protsiuk, N. Organizational economic mechanism of management of food industry enterprises competitiveness. Ann. Agrar. Sci. 2016, 14, 191–195. [Google Scholar] [CrossRef]
- Cui, L.; Wu, K.; Tseng, M. Exploring a novel agricultural subsidy model with sustainable development: A Chinese agribusiness in Liaoning province. Sustainability 2017, 9, 19. [Google Scholar] [CrossRef]
- Shi, B.; Meng, B.; Yang, H.; Wang, J.; Shi, W. A novel approach for reducing attributes and its application to small enterprise financing ability evaluation. Complexity 2018, 2018, 1–17. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Wang, J. Construction and empirical analysis of agricultural science and technology enterprises investment risk evaluation index system. IERI Procedia 2012, 2, 485–491. [Google Scholar] [CrossRef]
- Kelkar, U.; Narula, K.K.; Sharma, V.P.; Chandna, U. Vulnerability and adaptation to climate variability and water stress in Uttarakhand State, India. Global Environ. Change: Hum. Policy Dimens. 2008, 18, 564–574. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, L. Coping behavior with exchange rate risk of foreign-related enterprises: a survey of 130 agricultural firms. J. Int. Trade 2011, 1, 148–157. [Google Scholar]
- Wang, Z.; Wang, J.; Wang, J. Risk assessment of agricultural drought disaster in southern China. Discrete Dyn. Nat. Soc. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Patton, A.J. A review of copula models for economic time series. J. Multivar. Anal. 2012, 110, 4–18. [Google Scholar] [CrossRef]
- Aloui, R.; Aissa, M.S.B.; Nguyen, D.K. Global financial crisis, extreme interdependences, and contagion effects: The role of economic structure? J. Bank. Finance 2011, 35, 130–141. [Google Scholar] [CrossRef]
- Hu, C.; Chen, X.; Hua, Y. Extreme risk spillover effect between banking and real estate in China. J. Residuals Sci. Technol. 2016, 13, 1–9. [Google Scholar]
- Gower, J.C.; Ross, G. Minimum Spanning trees and single linkage cluster analysis. Appl. Stat. 1969, 18, 54–64. [Google Scholar] [CrossRef]
- Hobbs, J.; Schaupp, L.C.; Gingrich, J. Terrorism, militarism, and stock returns. J. Financial Crime 2016, 23, 70–86. [Google Scholar] [CrossRef]
- Bourdeaubrien, M.; Kryzanowski, L. The impact of natural disasters on the stock returns and volatilities of local firms. Quart. Rev. Econom. Finance 2017, 63, 259–270. [Google Scholar] [CrossRef]
- Valizadeh, P.; Karali, B.; Ferreira, S. Ripple effects of the 2011 Japan earthquake on international stock markets. Res. Int. Bus. Finance 2017, 41, 556–576. [Google Scholar] [CrossRef]
- Harwood, J.L.; Heifner, R.G.; Coble, K.H.; Perry, J.E.; Agapi, S. Managing Risk in Farming: Concepts, Research, and Analysis; Agricultural Economic Report No. 774; United States Department of Agriculture, Economic Research Service (AER-774): Washington, DC, USA, 1999; p. 130.
- Lopez-Nicolas, A.; Pulido-Velazquez, M.; Macian-Sorribes, H. Economic risk assessment of drought impacts on irrigated agriculture. J. Hydrol. 2017, 550, 580–589. [Google Scholar] [CrossRef]
- Jacobus, D. New paradigm of managing risks: risk and control self-assessment. Agric. Agric. Sci. Precedia 2015, 3, 32–34. [Google Scholar] [CrossRef]
- Mu, P.; Zheng, X. Research on the tail dependence of agriculture listed companies. J. Agric. Sci. 2010, 2, 111–118. [Google Scholar] [CrossRef]
- You, J.; Ando, T. A statistical modelling methodology for the analysis of term structure of credit risk and its dependency. Expert Syst. Appl. 2013, 40, 4897–4905. [Google Scholar] [CrossRef]
- Embrechts, P.; McNeil, A.; Straumann, D. Correlation and dependence in risk management: properties and pitfalls. In Risk Management: Value at Risk and Beyond; Dempster, D.H.M., Ed.; Cambridge University Press: New York, NY, USA, 2002; Volume 7, pp. 176–223. [Google Scholar]
- Patton, A.J. On the out-of-sample importance of skewness and asymmetric dependence for asset allocation. J. Financial Econom. 2004, 2, 130–168. [Google Scholar] [CrossRef]
- Polanski, A.; Stoja, E.; Zhang, R. Multidimensional risk and risk dependence. J. Bank. Finance 2013, 37, 3286–3294. [Google Scholar] [CrossRef]
- Longin, F.; Solnik, B. Extreme correlation of international equity markets. J. Finance 2001, 56, 649–676. [Google Scholar] [CrossRef]
- Hartmann, P.; Straetmans, S.; De Vries, C.G. Asset market linkages in crisis periods. Rev. Econ. Stat. 2004, 86, 313–326. [Google Scholar] [CrossRef]
- Xu, J.; Yu, F. The risk dependence structure between the futures and spot market-a mixture copula approach. In Proceedings of the Sixth International Conference on Business Intelligence and Financial Engineering, Hangzhou, China, 14–16 November 2013; pp. 254–257. [Google Scholar]
- Schweitzer, F.; Fagiolo, G.; Sornette, D.; Vega-Redondo, F.; Vespignani, A.; White, D.R. Economic networks: The new challenges. Science 2009, 325, 422–425. [Google Scholar] [PubMed]
- Jin, X.; Wu, Y.; Jin, C. Research on stock network modeling and risk propagation based on complex network analysis. In Proceedings of the 49th Hawaii International Conference on IEEE (HICSS 2016), Kauai, HI, USA, 05–08 January 2016; pp. 1188–1194. [Google Scholar]
- Mantegna, R.N. Hierarchical structure in financial markets. Eur. Phys. J B 1999, 11, 193–197. [Google Scholar] [CrossRef]
- Brida, J.G.; Risso, W.A. Multidimensional Minimal Spanning Tree: the Dow Jones case. Physica A-Stat. Mech. Appl. 2008, 387, 5205–5210. [Google Scholar] [CrossRef]
- Lee, J.; Youn, J.; Chang, W. Intraday volatility and network topological properties in the Korean stock market. Physica A-Stat. Mech. Appl. 2012, 391, 1354–1360. [Google Scholar] [CrossRef]
- Pericoli, M.; Sbracia, M. A primer on financial contagion. J. Econ. Surv. 2003, 17, 571–608. [Google Scholar] [CrossRef]
- Seth, N.; Sighania, M. Financial market contagion: selective review of reviews. Qual. Res. Financial Mark. 2017, 9, 391–408. [Google Scholar] [CrossRef]
- Nazlioglu, S. World oil and agricultural commodity prices: evidence from nonlinear causality. Energy Policy 2011, 39, 2935–2943. [Google Scholar] [CrossRef]
- Balkema, A.A.; De Haan, L. Residual life time at great age. Ann. Probab. 1974, 2, 792–804. [Google Scholar] [CrossRef]
- Pickands, J., III. Statistical inference using extreme order statistics. Ann. Stat 1975, 3, 119–131. [Google Scholar]
- Patton, A.J. Estimation of multivariate models for time series of possibly different lengths. J. Appl. Econom. 2006, 21, 147–173. [Google Scholar] [CrossRef]
- Prim, R.C. Shortest connection networks and some generalizations. Bell Labs Tech. J. 1957, 36, 1389–1401. [Google Scholar] [CrossRef]
- Chesney, M.; Reshetar, G.; Karaman, M. The impact of terrorism on financial markets: An empirical study. J. Bank. Finance 2011, 35, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Worthington, A.C.; Valadkhani, A. Measuring the impact of natural disasters on capital markets: An empirical application using intervention analysis. Appl. Econom. 2004, 36, 2177–2186. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Kutan, A.M. The impact of natural disasters on stock markets: Evidence from Japan and the US. Comp. Econom. Stud. 2013, 55, 672–686. [Google Scholar] [CrossRef]
- Gao, B.; Chan, W.; Li, H. On the increasing inequality in size distribution of China’s listed companies. China Econom. Rev. 2015, 36, 25–41. [Google Scholar] [CrossRef]
- Xing, M.; Chen, J.; Pan, F.; Tian, L. Strategies for accelerating technological innovation of agricultural enterprises in Hubei Province, taking the successful experiences of technological innovation of Yuan Long-ping High-Tech Agriculture Co.,Ltd as a reference. Hubei Agric. Sci. 2013, 52, 5950–5953. [Google Scholar]
Industry | Ticker Symbol | Security |
---|---|---|
Agriculture | 000998 | Yuan Longping High-Tech Agriculture Co., Ltd. |
002041 | ShanDongDenghai Seeds Co., Ltd. | |
300087 | Winall Hi-Tech Seed Co. Ltd. | |
600108 | Gansu Yasheng Industrial Group Co., Ltd. | |
600313 | Zhongnongfa Seed Industry Group Co., Ltd. | |
600354 | Gansu Dunhuang Seed Co., Ltd. | |
600359 | Xinjiang Talimu Agriculture Development Co., Ltd. | |
600371 | WanXiang Doneed Co., Ltd. | |
600506 | XinJiang Korla Pear Co., Ltd. | |
600540 | Xinjiang Sayram Modern Agriculture Co., Ltd. | |
600598 | Heilongjiang Agriculture Co., Ltd. | |
601118 | China Hainan Rubber Industry Group Co., Ltd. | |
Forestry | 000592 | Zhongfu Straits (Pingtan) Development Co., Ltd. |
002200 | Yunnan Yuntou Ecology and Environment Technology Co., Ltd. | |
600265 | Yunnan Jinggu Forestry Co., Ltd. | |
Animal Husbandry | 000735 | Luoniushan Co., Ltd. |
002234 | Shandong Minhe Animal Husbandry Co., Ltd. | |
002299 | Fujian Sunner Development Co., Ltd. | |
002321 | Henan Huaying Agricultural Development Co., Ltd. | |
002458 | Shandong Yisheng Livestock and Poultry Breeding Co., Ltd. | |
002477 | Chuying Agro-pastoral Group Co., Ltd. | |
002505 | Hunan Dakang International Food and Agriculture Co., Ltd. | |
300106 | Xinjiang Western Animal Husbandry Co., Ltd. | |
600965 | Fortune Ng Fung Food (Hebei) Co., Ltd. | |
600975 | Hunan New Wellful Co., Ltd. | |
Fishery | 000798 | CNFC Overseas Fisheries Co., Ltd. |
002069 | Zoneco Group Co., Ltd. | |
002086 | Shandong Oriental Ocean Sci-Tech Co., Ltd. | |
002447 | Dalian Yi Qiao Sea Cucumber Co., Ltd. | |
300094 | Zhanjiang Guolian Aquatic Products Co., Ltd. | |
600097 | Shanghai Kaichuang Marine International Co., Ltd. | |
600257 | Dahu Aquaculture Co., Ltd. |
No. | Ticker Symbol | Mean | Std.Dev | Max | Min | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
1 | 000998 | 0.052 | 3.059 | 10.015 | −10.028 | 0.212 | 2.590 |
2 | 002041 | −0.013 | 2.823 | 9.106 | −11.133 | −0.360 | 2.760 |
3 | 300087 | 0.123 | 3.125 | 9.091 | −11.088 | −0.266 | 2.243 |
4 | 600108 | −0.050 | 2.924 | 9.154 | −11.176 | −0.641 | 3.125 |
5 | 600313 | −0.054 | 2.825 | 9.189 | −29.418 | −0.709 | 5.137 |
6 | 600354 | −0.081 | 2.990 | 9.160 | −11.271 | −0.476 | 2.809 |
7 | 600359 | −0.087 | 3.209 | 9.142 | −11.158 | −0.435 | 2.346 |
8 | 600371 | −0.022 | 3.315 | 9.126 | −11.144 | −0.380 | 2.383 |
9 | 600506 | 0.0270 | 3.075 | 9.125 | −11.148 | −0.519 | 2.848 |
10 | 600540 | −0.050 | 3.163 | 9.117 | −11.170 | −0.684 | 3.332 |
11 | 600598 | −0.041 | 2.960 | 9.146 | −11.155 | −0.593 | 3.495 |
12 | 601118 | −0.092 | 3.270 | 9.149 | −11.176 | −0.303 | 2.029 |
13 | 000592 | −0.002 | 3.414 | 9.162 | −11.172 | −0.272 | 1.750 |
14 | 002200 | −0.077 | 2.978 | 9.114 | −11.134 | −0.684 | 2.490 |
15 | 600265 | 0.032 | 2.445 | 9.124 | −9.337 | −0.299 | 1.267 |
16 | 000735 | −0.054 | 3.015 | 9.170 | −11.186 | −0.376 | 2.749 |
17 | 002234 | −0.003 | 3.339 | 9.133 | −11.150 | −0.274 | 1.839 |
18 | 002299 | −0.044 | 2.449 | 9.528 | −10.103 | 0.002 | 2.164 |
19 | 002321 | −0.086 | 3.246 | 9.163 | −11.155 | −0.409 | 2.292 |
20 | 002458 | −0.025 | 3.486 | 9.123 | −11.137 | −0.118 | 1.786 |
21 | 002477 | 0.009 | 2.959 | 9.127 | −11.131 | −0.317 | 2.533 |
22 | 002505 | 0.015 | 2.936 | 9.165 | −11.196 | −0.140 | 2.994 |
23 | 300106 | −0.033 | 3.145 | 9.285 | −11.135 | −0.576 | 2.503 |
24 | 600965 | 0.027 | 2.918 | 9.133 | −11.139 | −0.243 | 3.204 |
25 | 600975 | 0.002 | 3.176 | 9.285 | −11.162 | −0.309 | 2.494 |
26 | 000798 | −0.052 | 3.309 | 9.149 | −11.145 | −0.569 | 2.574 |
27 | 002069 | −0.045 | 2.899 | 9.173 | −11.143 | −0.439 | 2.792 |
28 | 002086 | −0.028 | 3.138 | 9.113 | −11.140 | −0.476 | 2.789 |
29 | 002447 | 0.009 | 2.972 | 9.209 | −11.155 | −0.922 | 3.829 |
30 | 300094 | −0.021 | 2.797 | 9.119 | −19.999 | −0.672 | 4.446 |
31 | 600097 | −0.045 | 2.559 | 9.111 | −11.683 | −0.401 | 3.379 |
32 | 600257 | −0.042 | 3.134 | 9.151 | −11.166 | −0.404 | 2.496 |
No. | Ticker Symbol | ||||
---|---|---|---|---|---|
1 | 000998 | 0.184 | 2.015 | 0.109 | 2.127 |
2 | 002041 | 0.096 | 3.164 | 0.033 | 1.792 |
3 | 300087 | 0.236 | 1.680 | −0.260 | 2.938 |
4 | 600108 | 0.129 | 2.533 | −0.000 | 1.844 |
5 | 600313 | 0.089 | 3.495 | −0.112 | 1.745 |
6 | 600354 | 0.149 | 2.478 | 0.029 | 1.790 |
7 | 600359 | 0.217 | 1.806 | −0.012 | 2.087 |
8 | 600371 | 0.242 | 1.628 | 0.0290 | 2.138 |
9 | 600506 | 0.096 | 3.434 | −0.194 | 2.457 |
10 | 600540 | 0.147 | 2.596 | 0.099 | 1.753 |
11 | 600598 | 0.102 | 2.894 | −0.077 | 2.256 |
12 | 601118 | 0.136 | 2.772 | −0.255 | 2.884 |
13 | 000592 | 0.010 | 9.105 | 0.034 | 0.018 |
14 | 002200 | 0.095 | 3.678 | −0.074 | 1.502 |
15 | 600265 | 0.089 | 3.122 | −0.071 | 1.448 |
16 | 000735 | 0.160 | 2.191 | 0.005 | 2.064 |
17 | 002234 | 0.257 | 1.621 | −0.075 | 2.409 |
18 | 002299 | 0.119 | 2.464 | 0.054 | 1.580 |
19 | 002321 | 0.141 | 2.719 | −0.133 | 2.454 |
20 | 002458 | 0.268 | 1.325 | −0.256 | 3.421 |
21 | 002477 | 0.118 | 3.167 | −0.121 | 2.117 |
22 | 002505 | 0.144 | 2.307 | 0.0118 | 2.234 |
23 | 300106 | 0.097 | 3.103 | −0.252 | 2.778 |
24 | 600965 | 0.205 | 1.666 | 0.137 | 1.806 |
25 | 600975 | 0.225 | 1.731 | 0.043 | 2.064 |
26 | 000798 | 0.209 | 1.920 | −0.002 | 2.113 |
27 | 002069 | 0.100 | 3.0794 | −0.196 | 2.406 |
28 | 002086 | 0.148 | 2.567 | −0.005 | 2.077 |
29 | 002447 | 0.190 | 1.957 | −0.061 | 1.911 |
30 | 300094 | 0.096 | 3.103 | −0.165 | 2.176 |
31 | 600097 | 0.144 | 2.089 | 0.094 | 1.519 |
32 | 600257 | 0.242 | 1.537 | −0.017 | 2.119 |
Agriculture | Forestry | Animal Husbandry | Fishery | |
---|---|---|---|---|
Agriculture | 0.989 | 0.911 | 0.993 | 0.994 |
Forestry | 0.911 | 0.969 | 0.893 | 0.912 |
Animal Husbandry | 0.993 | 0.893 | 1 | 1 |
Fishery | 0.994 | 0.912 | 1 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Z.; Wu, K.-J.; Cui, L.; Lim, M.K. A Hybrid Approach to Explore the Risk Dependency Structure among Agribusiness Firms. Sustainability 2018, 10, 533. https://doi.org/10.3390/su10020533
Lei Z, Wu K-J, Cui L, Lim MK. A Hybrid Approach to Explore the Risk Dependency Structure among Agribusiness Firms. Sustainability. 2018; 10(2):533. https://doi.org/10.3390/su10020533
Chicago/Turabian StyleLei, Zhimei, Kuo-Jui Wu, Li Cui, and Ming K Lim. 2018. "A Hybrid Approach to Explore the Risk Dependency Structure among Agribusiness Firms" Sustainability 10, no. 2: 533. https://doi.org/10.3390/su10020533
APA StyleLei, Z., Wu, K. -J., Cui, L., & Lim, M. K. (2018). A Hybrid Approach to Explore the Risk Dependency Structure among Agribusiness Firms. Sustainability, 10(2), 533. https://doi.org/10.3390/su10020533