Street Trees in a Chinese Forest City: Structure, Benefits and Costs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. i-Tree Streets
2.4. Structure
2.4.1. Importance Value
2.4.2. Age Structure
2.5. Function and Value Calculations
2.5.1. Energy Savings
2.5.2. Carbon Reduction
2.5.3. Air Pollutants Removal
2.5.4. Storm Water Runoff Reduction
2.5.5. Property Value
2.6. Expenditure
3. Results
3.1. Structure
3.1.1. Tree Numbers, Species Composition and Importance Values
3.1.2. Age Structure
3.2. Function and Value
3.2.1. Energy Savings
3.2.2. Carbon Reduction
3.2.3. Air Pollutants Removal
3.2.4. Stormwater Runoff Reduction
3.2.5. Property Value
3.2.6. Total Annual Benefits and Benefit-Cost Ratio (BCR)
3.2.7. Structural Value
4. Discussion
4.1. Structure
4.2. Function and Value
4.3. Management Implications
4.4. Limitations and Uncertainty
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
HDDs | Heating degree days |
CDDs | Cooling degree days |
DBH | Diameter at breast height |
BVOCs | Biogenic volatile organic compounds |
IV | Importance value |
BCR | Benefit-cost ratio |
References
- United Nations. World Urbanization Prospects; The 2014 Revision; United Nations: New York, NY, USA, 2014; Available online: http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf (accessed on 15 March 2017).
- Alberti, M.; Marzluff, J.M. Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban Ecosyst. 2004, 7, 241–265. [Google Scholar] [CrossRef]
- Gregg, J.W.; Jones, C.G.; Dawson, T.E. Urbanization effects on tree growth in the vicinity of New York City. Nature 2003, 424, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef]
- Cai, C.; Peng, Z.; Wang, C. The ecological benefit of urban forest and trees and its value. World For. Res. 2004, 17, 17–20. (In Chinese) [Google Scholar]
- Chen, W.Y.; Jim, C.Y. Cost-benefit analysis of the leisure value of urban greening in the new Chinese city of Zhuhai. Cities 2008, 25, 298–309. [Google Scholar] [CrossRef]
- Chen, W.Y.; Jim, C.Y. Assessment and valuation of the ecosystem services provided by urban forests. In Ecology Planning and Management of Urban Forests: International Perspectives; Carreiro, M.M., Song, Y.C., Wu, J.G., Eds.; Springer Verlag: New York, NY, USA, 2008; pp. 53–83. ISBN 978-0-387-71424-0. [Google Scholar]
- Nowak, D.J.; Hoehn, R.E.; Bodine, A.R.; Greenfield, E.J.; O’Neil-Dunne, J. Urban forest structure, ecosystem services and change in Syracuse, NY. Urban Ecosyst. 2016, 19, 1455–1477. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R. The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK. Urban For. Urban Green. 2013, 12, 282–286. [Google Scholar] [CrossRef]
- McPherson, E.G.; Simpson, J.R. A comparison of municipal forest benefits and costs in Modesto and Santa Monica, California, USA. Urban For. Urban Green. 2002, 1, 61–74. [Google Scholar] [CrossRef]
- McPherson, E.G.; van Doorn, N.; de Goede, J. Structure, function and value of street trees in California, USA. Urban For. Urban Green. 2016, 17, 104–115. [Google Scholar] [CrossRef]
- Soares, A.L.; Rego, F.C.; McPherson, E.G.; Simpson, J.R.; Peper, P.J.; Xiao, Q. Benefits and costs of street trees in Lisbon, Portugal. Urban For. Urban Green. 2011, 10, 69–78. [Google Scholar] [CrossRef]
- Xiao, Q.; McPherson, E.G. Rainfall interception by Santa Monica’s municipal urban forest. Urban Ecosyst. 2002, 6, 291–302. [Google Scholar] [CrossRef]
- Georgi, J.N.; Dimitriou, D. The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Build. Environ. 2010, 45, 1401–1414. [Google Scholar] [CrossRef] [Green Version]
- Kuruneri-Chitepo, C.; Shackleton, C.M. The distribution, abundance and composition of street trees in selected towns of the Eastern Cape, South Africa. Urban For. Urban Green. 2011, 10, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Nagendra, H.; Gopal, D. Street trees in Bangalore: Density, diversity, composition and distribution. Urban For. Urban Green. 2010, 9, 129–137. [Google Scholar] [CrossRef]
- Thomsen, P.; Bühler, O.; Kristoffersen, P. Diversity of street tree populations in larger Danish municipalities. Urban For. Urban Green. 2016, 15, 200–210. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, J.; Ke, Y.; Xiao, J. Assessing the structure and stability of street trees in Lhasa, China. Urban For. Urban Green. 2012, 11, 432–438. [Google Scholar] [CrossRef]
- Konijnendijk, C.C. The Forest and the City: The Cultural Landscape of Urban Woodland; Springer: Berlin, Germany, 2008; ISBN 978-1-4020-8370-9. [Google Scholar]
- Mullaney, J.; Lucke, T.; Trueman, S.J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 2015, 134, 157–166. [Google Scholar] [CrossRef]
- McPherson, G.; Simpson, J.R.; Peper, P.J.; Maco, S.E.; Xiao, Q.F. Municipal forest benefits and costs in five US cities. J. For. 2005, 103, 411–416. [Google Scholar]
- Chang, Y.S.; Arndt, R.L.; Calori, G.; Carmichael, G.R.; Streets, D.G.; Su, H.P. Air quality impacts as a result of changes in energy use in China’s Jiangsu Province. Atmos. Environ. 1998, 32, 1383–1395. [Google Scholar] [CrossRef]
- Liu, C.; Shen, X.; Zhou, P.; Che, S.; Zhang, Y.; Shen, G. Urban forestry in China: Status and prospects. UA-Mag. 2004, 13, 15–17. [Google Scholar]
- Zhang, Y.; Yu, X. Current research state and development of urban forestry. J. South China Univ. Trop. Agric. 2007, 13, 38–42. (In Chinese) [Google Scholar]
- Wang, Z.; Chen, J.; Qiao, X.; Yang, P.; Tian, F.; Huang, L. Distribution and sources of polycyclic aromatic hydrocarbons from urban to rural soils: A case study in Dalian, China. Chemosphere 2007, 68, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, H.; Zhang, Q.; Zhang, X. Chemical characteristics of rainwater in northeast China, a case study of Dalian. Atmos. Res. 2012, 116, 151–159. [Google Scholar] [CrossRef]
- McPherson, E.G. Selecting reference cities for i-Tree Streets. Arboric. Urban For. 2010, 36, 230–240. [Google Scholar]
- Liaoning Price Bureau. Electricity Grid Tariff Schedule of Liaoning Province. 2017. Available online: http://www.lnprice.gov.cn/ (accessed on 1 August 2017). (In Chinese)
- Zhang, X.; Lou, F.; Zhang, X. Carbon emissions and economic impacts of natural gas price regulation in China: Based on the incomplete competition CGE model. China Popul. Resour. Environ. 2016, 26, 76–84. (In Chinese) [Google Scholar]
- Du, Y. A Analysis on Community Characteristics and Benefits Comparison of Urban Landscape Woods in Hefei City. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2013. (In Chinese). [Google Scholar]
- McPherson, E.G.; Simpson, J.R.; Peper, P.J.; Gardner, S.L.; Vargas, K.E.; Xiao, Q. Northeast Community Tree Guide: Benefits, Costs, and Strategic Planting; General Technical Reports PSW-GTR-202; US Department of Agriculture: Albany, CA, USA, 2007.
- Peper, P.J.; McPherson, E.G.; Mori, S.M. Equations for predicting diameter, height, crown width, and leaf area of San Joaquin valley street trees. J. Arboric. 2001, 27, 306–317. [Google Scholar]
- Peper, P.J.; McPherson, E.G.; Simpson, J.R.; Gardner, S.L.; Vargas, K.E.; Xiao, Q. City of New York Municipal Forest Resource Assessment; Internal Technical Report; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Davis, CA, USA, 2007.
- Millward, A.A.; Sabir, S. Structure of a forested urban park Implications for strategic management. J. Environ. Manag. 2010, 91, 2215–2224. [Google Scholar] [CrossRef] [PubMed]
- Richard, N.A. Diversity and stability in a street tree population. Urban Ecol. 1982, 7, 159–171. [Google Scholar] [CrossRef]
- Heisler, G.M. Energy savings with trees. J. Arboric. 1986, 12, 113–125. [Google Scholar]
- Heisler, G.M.; Brazel, A.J. The urban physical environment: Temperature andurban heat islands. In Urban Ecosystem Ecology. Agronomy Monograph 55; Aitkenhead-Peterson, J., Volder, A., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2010; pp. 29–56. [Google Scholar]
- McPherson, E.G.; Simpson, J.R. Potential energy savings in buildings by an urban tree planting programme in California. Urban For. Urban Green. 2003, 2, 73–86. [Google Scholar] [CrossRef]
- McPherson, E.G.; Simpson, J.R. Guidelines for Calculating Carbon Dioxide Reductions and through Urban Forestry Programs; General Technical Report PSW-171; U.S. Department of Agriculture Forest Service Pacific Southwest Research Station: Albany, CA, USA, 1999.
- Akbari, H. Shade trees reduce building energy use and CO2 emissions from power plants. Environ. Pollut. 2002, 116, 119–126. [Google Scholar] [CrossRef]
- McPherson, E.G.; Nowak, D.; Heisler, G.; Grimmond, S.; Souch, C.; Grant, R.; Rowntree, R. Quantifying urban forest structure, function, and value: The Chicago Urban Forest Climate Project. Urban Ecosyst. 1997, 1, 49–61. [Google Scholar] [CrossRef]
- McHale, M.R.; Burke, I.C.; Lefsky, M.A.; Peper, P.J.; McPherson, E.G. Urban forest biomass estimates: Is it important to use allometric relationships developed specifically for urban trees? Urban Ecosyst. 2009, 12, 95–113. [Google Scholar] [CrossRef]
- Pillsbury, N.; Thompson, R. Tree Volume Equations for Fifteen Urban Species in California; Report; Urban Forest Ecosystems Institute, California Polytechnic State University: San Louis Obispo, CA, USA, 1998. [Google Scholar]
- Nowak, D.J. Air pollution removal by Chicago’s urban forest. In Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project; McPherson, E.G., Nowak, D.J., Rowntree, R.A., Eds.; General Technical Report NE-186; Forest Service, USDA: Washington, DC, USA, 1994; pp. 63–81. [Google Scholar]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Urban woodlands: Their role in reducing the effects of particulate pollution. Environ. Pollut. 1998, 99, 347–360. [Google Scholar] [CrossRef]
- Nowak, D.J.; Civerolo, K.L.; Rao, S.T.; Sistla, G.; Luley, C.J.; Crane, D.E. A modeling study of the impact of urban trees on ozone. Atmos. Environ. 2000, 34, 1601–1613. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E.; Walton, J.T.; Bond, J. A Ground-Based Method of Assessing Urban Forest. Arboric. Urban For. 2008, 34, 347–358. [Google Scholar]
- Benjamin, M.T.; Winer, A.M. Estimating the ozone-forming potential of urban trees and shrubs. Atmos. Environ. 1998, 32, 53–68. [Google Scholar] [CrossRef]
- Scott, K.I.; McPherson, E.G.; Simpson, J.R. Air pollutant uptake by Sacrameto’s urban forest. J. Arboric. 1997, 24, 224–234. [Google Scholar]
- Xiao, Q.F.; McPherson, E.G.; Ustin, S.L.; Grismer, M.E.; Simpson, J.R. Winter rainfall interception by two mature open-grown trees in Davis, California. Hydrol. Process. 2000, 14, 763–784. [Google Scholar] [CrossRef]
- Schroeder, H.W.; Cannon, W.N. The esthetic contribution of trees to residential streets in Ohio towns. J. Arboric. 1983, 9, 237–243. [Google Scholar]
- Wolf, K.L. Business district streetscapes, trees, and consumer response. J. For. 2005, 103, 396–400. [Google Scholar]
- Donovan, G.H.; Butry, D.T. Market based approaches to tree valuation. Arborist News 2008, 17, 52–55. [Google Scholar]
- Donovan, G.H.; Butry, D.T. Trees in the city: Valuing street trees in Portland, Oregon. Landsc. Urban Plan. 2010, 94, 77–83. [Google Scholar] [CrossRef]
- Santamour, F.S., Jr. Trees for urban planting: Diversity, uniformity, and common sense. In Proceedings of the 7th Conference Metropolitan Tree Improvement Alliance (METRIA), Lisle, IL, USA, 11–12 June 1990; Morton Arboretum: Lisle, IL, USA, 1990; Volume 7, pp. 57–65. [Google Scholar]
- Anderson, L.M.; Cordell, H.K. Influence of Trees on Residential Property Values in Athens, Georgia (USA): A survey based on actual sales prices. Landsc. Urban Plan. 1988, 15, 153–164. [Google Scholar] [CrossRef]
- Millward, A.A.; Sabir, S. Benefits of a forested urban park: What is the value of Allan Gardens to the city of Toronto, Canada? Landsc. Urban Plan. 2011, 100, 177–188. [Google Scholar] [CrossRef]
- Ma, N. Study on Structure and Ecological Benefits of Street Trees Based on i-Tree Model-a Case Study of Shenyang. Master’s Thesis, Chinese Academy of Sciences, Beijing, China, 2011. [Google Scholar]
- Zhang, Y.; Zhou, C.; Dong, Y.; Wang, Y. Composition and ecological benefits of street trees in Shinan District of Qingdao City, Shandong Province based on i-Tree Model. Chin. J. Ecol. 2013, 32, 1739–1747. (In Chinese) [Google Scholar]
- McPherson, E.G.; Gable, M.; Jahn, D.; Ames, D.; Remcheck, M. City of Pittsburgh, Pennsylvania Municipal Forest Resource Analysis; Center for Urban. Forest Research, USDA Forest Service, Pacific Southwest Research Station: Redding, CA, USA, 2008.
- McPherson, E.G.; Kotow, L. A municipal forest report card: Results for California, USA. Urban For. Urban Green. 2013, 12, 134–143. [Google Scholar] [CrossRef]
- Peper, P.J.; McPherson, E.G.; Simpson, J.R.; Vargas, K.E.; Xiao, Q. City of Indianapolis Municipal Forest Resource Assessment; Internal Technical Report; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Davis, CA, USA, 2008.
Species | Total Tree Numbers | % of Total Tree Numbers | % of Total Leaf Area | % of Total Canopy Cover | Importance Value |
---|---|---|---|---|---|
Platanus acerifolia | 14,836 | 25.7 | 33.8 | 36.8 | 32.1 |
Ginkgo biloba | 16,537 | 28.7 | 9.3 | 14.2 | 17.4 |
Sophora japonica | 5579 | 9.7 | 10.4 | 7.2 | 9.1 |
Populus canadensis | 2026 | 3.5 | 11.4 | 9.3 | 8.1 |
Platanus occidentalis | 3608 | 6.3 | 7.3 | 8.0 | 7.2 |
Robinia pseudoacacia | 2710 | 4.7 | 8.1 | 7.4 | 6.7 |
Salix babylonica | 2659 | 4.6 | 6.0 | 4.4 | 5.0 |
Fraxinus chinensis | 2490 | 4.3 | 4.3 | 4.1 | 4.2 |
Sabina chinensis | 2607 | 4.5 | 1.3 | 1.0 | 2.3 |
Salix matsudana | 986 | 1.7 | 2.9 | 2.2 | 2.3 |
Acer negundo | 840 | 1.5 | 1.4 | 1.2 | 1.3 |
Cedrus deodara | 418 | 0.7 | 0.9 | 1.0 | 0.9 |
Eucommia ulmoides | 407 | 0.7 | 0.7 | 0.7 | 0.7 |
Populus alba | 276 | 0.5 | 0.7 | 0.7 | 0.6 |
Sabina chinensis K. | 535 | 0.9 | 0.2 | 0.3 | 0.5 |
Koelreuteria paniculata | 226 | 0.4 | 0.1 | 0.2 | 0.3 |
Acer truncatum | 188 | 0.3 | 0.2 | 0.2 | 0.2 |
Liriodendron chinense | 129 | 0.2 | 0.2 | 0.2 | 0.2 |
Paulownia tomentosa | 47 | 0.1 | 0.2 | 0.2 | 0.1 |
Cerasus serrulata | 108 | 0.2 | 0.1 | 0.1 | 0.1 |
Pyrus ussuriensis | 57 | 0.1 | 0.1 | 0.1 | 0.1 |
Morus alba | 70 | 0.1 | 0.1 | 0.1 | 0.1 |
Diospyros lotus | 73 | 0.1 | 0.1 | 0.1 | 0.1 |
Platycladus orientalis | 96 | 0.2 | 0.0 | 0.0 | 0.1 |
Ailanthus altissima | 50 | 0.1 | 0.1 | 0.1 | 0.1 |
Albizzia julibrissin | 64 | 0.1 | 0.0 | 0.1 | 0.1 |
Evodia daniellii | 64 | 0.1 | 0.0 | 0.1 | 0.1 |
Armeniaca sibirica | 13 | 0.0 | 0.0 | 0.0 | 0.0 |
Total trees | 57,699 | 100.0 | 100.0 | 100.0 | 100.0 |
Species | Total Electricity (GJ) | Electricity ($) | Total Natural Gas (GJ) | Natural Gas ($) | Total ($) | % of Total $ | Avg. $/Tree |
---|---|---|---|---|---|---|---|
G. biloba | 1778 | 35,770 | 21,804 | 222,081 | 257,851 | 15.3 | 15.6 |
P. acerifolia | 4496 | 90,426 | 49,404 | 503,188 | 593,615 | 35.2 | 40.0 |
S. japonica | 894 | 17,976 | 11,116 | 113,214 | 131,191 | 7.8 | 23.5 |
P. occidentalis | 980 | 19,710 | 10,941 | 111,441 | 131,151 | 7.8 | 36.3 |
R. pseudoacacia | 1008 | 20,271 | 11,147 | 113,530 | 133,801 | 7.9 | 49.4 |
S. babylonica | 556 | 11,190 | 6623 | 67,460 | 78,650 | 4.7 | 29.6 |
S. chinensis | 117 | 2353 | 1438 | 14,650 | 17,003 | 1.0 | 6.5 |
F. chinensis | 488 | 9814 | 6256 | 63,716 | 73,530 | 4.4 | 29.5 |
P. canadensis | 1018 | 20,478 | 10,685 | 108,832 | 129,310 | 7.7 | 63.8 |
S. matsudana | 280 | 5636 | 3101 | 31,585 | 37,221 | 2.2 | 38.1 |
Other species | 723 | 14,552 | 8496 | 86,531 | 101,083 | 6.0 | 27.6 |
Total | 12,339 | 248,176 | 141,011 | 1,436,228 | 1,684,404 | 100.0 | 29.2 |
Species | Total Stored CO2 (t) | Total Stored ($) | Sequestered (t) | Sequestered ($) | Decomposition Release (t) | Maintenance Release (t) | Total Release ($) | Avoided (t) | Avoided ($) | Net Total (t) | Total ($) | % of Total $ | Avg. $/Tree |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P. acerifolia | 10,334 | 1,549,168 | 726 | 108,774 | −158 | −64 | −33,217 | 1706 | 255,810 | 12,544 | 331,368 | 35.4 | 22.3 |
G. biloba | 3340 | 500,740 | 368 | 55,183 | −75 | −45 | −17,928 | 675 | 101,191 | 4264 | 138,446 | 14.8 | 8.4 |
R. pseudoacacia | 2262 | 339,043 | 194 | 29,115 | −51 | −12 | −9335 | 383 | 57,344 | 2776 | 77,124 | 8.2 | 28.4 |
P. canadensis | 4450 | 667,104 | 229 | 34,327 | −88 | −13 | −15,148 | 386 | 57,932 | 4964 | 77,111 | 8.2 | 38.1 |
S. japonica | 2288 | 342,973 | 206 | 30,817 | −49 | −17 | −9811 | 339 | 50,854 | 2767 | 71,860 | 7.7 | 12.9 |
P. occidentalis | 1990 | 298,333 | 153 | 23,011 | −34 | −14 | −7148 | 372 | 55,760 | 2468 | 71,622 | 7.7 | 19.8 |
S. babylonica | 1501 | 225,089 | 118 | 17,756 | −34 | −10 | −6492 | 211 | 31,655 | 1788 | 42,918 | 4.6 | 16.1 |
F. chinensis | 566 | 84,821 | 66 | 9844 | −13 | −8 | −3063 | 185 | 27,763 | 796 | 34,544 | 3.7 | 13.9 |
S. matsudana | 962 | 144,169 | 55 | 8230 | −22 | −4 | −3902 | 106 | 15,943 | 1097 | 20,272 | 2.2 | 20.8 |
A. negundo | 569 | 85,354 | 42 | 6317 | −13 | −3 | −2344 | 59 | 8827 | 655 | 12,801 | 1.4 | 15.2 |
Other species | 1611 | 241,558 | 160 | 23,985 | −27 | −11 | −5839 | 260 | 38,994 | 1992 | 57,140 | 6.1 | 10.5 |
Total | 29,873 | 4,478,353 | 2317 | 347,358 | −561 | −201 | −114,226 | 4683 | 702,073 | 36,111 | 935,205 | 100.0 | 16.2 |
Species | Deposition (kg) | Deposition ($) | Avoided (kg) | Avoided ($) | BVOCs Emissions (kg) | BVOCs Emissions ($) | Total (kg) | Total ($) | % of Total $ | Avg. $/Tree |
---|---|---|---|---|---|---|---|---|---|---|
P. acerifolia | 5911 | 70,094 | 7893 | 75,444 | −2804 | −14,280 | 11,000 | 131,258 | 34.4 | 8.8 |
G. biloba | 2277 | 26,997 | 3235 | 31,010 | −288 | −1469 | 5223 | 56,538 | 14.8 | 3.4 |
P. canadensis | 1495 | 17,730 | 1763 | 16,826 | 0 | 0 | 3258 | 34,556 | 9.1 | 17.1 |
R. pseudoacacia | 1190 | 14,111 | 1773 | 16,949 | 0 | 0 | 2963 | 31,060 | 8.2 | 11.5 |
S. japonica | 1177 | 13,976 | 1633 | 15,666 | −170 | −864 | 2641 | 28,778 | 7.6 | 5.2 |
P. occidentalis | 1280 | 15,178 | 1729 | 16,534 | −603 | −3070 | 2406 | 28,641 | 7.5 | 7.9 |
S. babylonica | 720 | 8547 | 1002 | 9599 | −98 | −499 | 1624 | 17,647 | 4.6 | 6.6 |
F. chinensis | 653 | 7748 | 901 | 8649 | 0 | 0 | 1554 | 16,397 | 4.3 | 6.6 |
S. matsudana | 364 | 4328 | 493 | 4713 | −46 | −236 | 811 | 8805 | 2.3 | 9.0 |
A. negundo | 209 | 2473 | 284 | 2723 | −42 | −213 | 451 | 4983 | 1.3 | 5.9 |
Other species | 1070 | 12,790 | 1226 | 11,742 | −414 | −2108 | 1883 | 22,424 | 5.9 | 4.1 |
Total | 16,345 | 193,972 | 21,932 | 209,855 | −4465 | −22,740 | 33,812 | 381,088 | 100.0 | 6.6 |
Species | Total Rainfall Interception (m3) | Total ($) | % of Total $ | Avg. $/Tree |
---|---|---|---|---|
P. acerifolia | 75,974 | 160,561 | 34.9 | 10.8 |
G. biloba | 24,776 | 52,360 | 11.4 | 3.2 |
P. canadensis | 22,077 | 46,657 | 10.2 | 23.0 |
S. japonica | 19,611 | 41,445 | 9.0 | 7.4 |
R. pseudoacacia | 16,492 | 34,853 | 7.6 | 12.9 |
P. occidentalis | 16,388 | 34,633 | 7.5 | 9.6 |
S. babylonica | 11,656 | 24,633 | 5.4 | 9.3 |
F. chinensis | 8876 | 18,758 | 4.1 | 7.5 |
S. matsudana | 5693 | 12,031 | 2.6 | 12.3 |
S. chinensis | 3476 | 7345 | 1.6 | 2.8 |
Other species | 12,387 | 26,179 | 5.7 | 7.2 |
Total | 217,404 | 459,457 | 100.0 | 8.0 |
Species | Total ($) | % of Total $ | Avg. $/Tree |
---|---|---|---|
P. acerifolia | 395,614 | 27.2 | 26.7 |
G. biloba | 227,539 | 15.7 | 13.8 |
S. japonica | 159,430 | 11.0 | 28.6 |
R. pseudoacacia | 144,095 | 9.9 | 53.2 |
P. canadensis | 115,050 | 7.9 | 56.8 |
P. occidentalis | 92,522 | 6.4 | 25.6 |
S. babylonica | 73,816 | 5.1 | 27.8 |
F. chinensis | 72,970 | 5.0 | 29.3 |
S. chinensis | 56,390 | 3.9 | 21.6 |
S. matsudana | 29,650 | 2.0 | 30.4 |
Other species | 86,099 | 5.9 | 23.6 |
Total | 1,453,175 | 100 | 25.2 |
Benefits | Total ($) | $/Tree | % of Total Benefits |
---|---|---|---|
Energy | 1,684,404 | 29.2 | 34.3 |
CO2 | 935,205 | 16.2 | 19.0 |
Air Quality | 381,088 | 6.6 | 7.8 |
Stormwater | 459,457 | 8.0 | 9.4 |
Property value | 1,453,175 | 25.2 | 29.6 |
Total benefits | 4,913,328 | 85.2 | |
Total costs | 1,526,302 | 26.5 | |
Net benefits | 3,387,026 | 58.7 | |
Benefit-cost ratio | 3.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yao, J.; Yu, S.; Miao, C.; Chen, W.; He, X. Street Trees in a Chinese Forest City: Structure, Benefits and Costs. Sustainability 2018, 10, 674. https://doi.org/10.3390/su10030674
Wang X, Yao J, Yu S, Miao C, Chen W, He X. Street Trees in a Chinese Forest City: Structure, Benefits and Costs. Sustainability. 2018; 10(3):674. https://doi.org/10.3390/su10030674
Chicago/Turabian StyleWang, Xueyan, Jing Yao, Shuai Yu, Chunping Miao, Wei Chen, and Xingyuan He. 2018. "Street Trees in a Chinese Forest City: Structure, Benefits and Costs" Sustainability 10, no. 3: 674. https://doi.org/10.3390/su10030674
APA StyleWang, X., Yao, J., Yu, S., Miao, C., Chen, W., & He, X. (2018). Street Trees in a Chinese Forest City: Structure, Benefits and Costs. Sustainability, 10(3), 674. https://doi.org/10.3390/su10030674