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Abstract: The present work was aimed at assessing the possible use of ripe plantain fruit peel as
a green-base catalyst in synthesizing Azadirachta indica oil methyl esters (AIOME). The free fatty
acid content of the oil (5.81 wt %) was initially reduced to 0.90 wt % using methanol: oil at 2.19 v/v,
Fe2(SO4)3 at 6 wt %, time of 15 min and temperature of 65 ◦C. The pretreated oil was converted to
AIOME in a transesterification process with calcined ripe plantain peel ash (CRPPA) at 700 ◦C as
catalyst. The process was modeled by artificial neural network and optimized using genetic algorithm.
The effectiveness of the developed CRPPA is ascribable to its high K content and microstructural
transformation. The reliability of the model obtained was confirmed with a high coefficient of
determination (R2) of 0.996 and a low mean relative percentage deviation (MRPD) of 8.10%. The best
operating variables combination for the process was methanol:oil of 0.73 v/v, CRPPA of 0.65 wt %
and time of 57 min while the temperature was kept constant at 65 ◦C with a corresponding AIOME
yield of 99.2 wt %. The results of this work demonstrated the potentials of ripe plantain peels and
neem oil as cheap feedstocks for biodiesel production.

Keywords: artificial neural network; biodiesel; heterogeneous catalyst; modeling;
optimization; transesterification

1. Introduction

Biodiesel production is now a topical issue and a subject which has been receiving huge attention
worldwide for the past two decades. The reasons for this spike are well documented [1]. The prospect
of biodiesel as a replacement for petro-diesel is largely due to its renewable nature, less pollutant
emissions, miscibility with petro-diesel, and inherent lubricity [2]. However, studies have shown
that the contest with respect to the issue of food versus fuel debate can be adequately addressed by
employing the use of oils that are non-edible or wastes [3]. The current trends on biobased catalyst
development has also shown that the higher cost of biodiesel over petro-diesel may be reduced
using heterogeneous catalysts coupled with the advantages such as reusability and easily separable
from biodiesel.
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Previous studies have reported various improved yields of biodiesel using biobased catalysts
which were calcined at varying temperatures. In addition, optimization tools have been employed to
facilitate the predictions of operating and reaction parameters necessary to achieve optimum yield.
Onoji et al. [4] reported the production of biodiesel using rubber seed oil, methanol, and calcined rubber
seed kernel wastes at 800 ◦C and achieved 83.06% yield using response surface methodology (RSM).
We recently demonstrated that by using cocoa pod husk ash calcined at 700 ◦C as the catalyst, 99.3 wt %
biodiesel yield could be achieved using neem oil and methanol via the transesterification process,
which was optimized using RSM [5]. In Tan et al. [6], waste cooking oil, methanol, and Ostrich-eggshell
ash calcined at 1000 ◦C were used to attain 96 wt % biodiesel yield in a transesterification reaction
carried out at room temperature while 96 wt % yield biodiesel was obtained from yellow oleander
oil and methanol using burnt banana trunk as catalyst [7], however both studies were not optimized.
In a separate study, both RSM and artificial neural network (ANN) were used to optimize the
transesterification reaction of yellow oleander oil and methanol using unripe plantain peel ash calcined
at 500 ◦C as catalyst. The study showed that 95% yield of biodiesel can be achieved in this process [8];
the study also showed that ANN was better than RSM in terms of accuracy and predictive capabilities.
Table 1 shows a brief review of various base heterogeneous catalysts previously investigated together
with the vegetable oils, conditions of transesterification, and biodiesel yields obtained.

Table 1. Comparison of heterogeneous catalysts for fatty acid methyl esters production
via transesterification.

Heterogeneous
Catalyst Type Feedstock Surface

Area (m2/g)
Catalyst Dosage

(wt %)
Alcohol/Oil

Ratio
Temperature

(◦C)
Time
(min)

Yield
(wt %) Reference

Rubber seed shell Rubber seed oil 352.51 2.2 0.2 a 60 60 83.11 b [4]

Cocoa pod husks Neem oil 2.76 0.65 0.73 a 65 57 99.3 b [5]

Ostrich-egg shell Waste cooking oil 71.00 1.5 12 c 65 120 96 b [6]

Chicken-egg shell Waste cooking oil 54.60 1.5 12 c 65 120 94 b [6]

Unripe plantain peels Yellow oleander oil NR 2.8 0.3 a 60 75 94.97 b [8]

Banana peels Napoleon’s plume oil 4.442 2.75 7.6 c 65 69.02 98.50 b [9]

Banana peels Waste cooking oil 14.036 2 6 c 60 180 100 b [10]

Coconut husk Jatropha oil — 7 12 c 45 45 99.86 d [11]

Torrey ash Jatropha oil 9.622 5.0 9 c 65 300 89.43 d [12]

River snail shells Palm oil 3.495 5 12 c 65 90 98.50 b [13]

Waste chicken bones Waste cooking oil 98.54 5 15 c 65 240 89.33 b [14]

Sea sand Soybean oil 4.60 7.5 12 c 60 360 97.50 d [15]

Pyrolyzed rice husk Waste cooking oil 4.00 5 20 c 110 900 87.57 b [16]

Coal fly ash-derived
sodalite Soy oil 10.00 4 12 c 65 120 95.50 b [17]

a—volume ratio, b—production yield (wt%), c—molar ratio, d—methyl ester content (wt %).

It should be noted that ANN is a machine learning tool, which mimics the biological processing
ability like the human brain. It can handle simulation of very complex and non-linear systems
due to its capability to use learning algorithms and establish the relationship between input and
output variables [18]. One key advantage of ANN is that it can be used to predict outputs of
a new input data set once a data set has been trained well by a neural network. ANNs have been
successfully applied as a modeling tool in many research areas, including esterification [19] and
transesterification [8,20,21] processes. In the work of Betiku and Ajala [8] in which the efficacy
of ANN was tested, the authors used calcined unripe plantain peel as a heterogeneous catalyst,
yellow oleander oil and methanol for the transesterification reaction. Whereas, Avramovic et al. [20]
applied ANN to the transesterification reaction in which synthetic CaO as a heterogeneous catalyst,
sunflower oil and ethanol were used. While Sarve et al. [21] employed ANN in the ultrasound-assisted
transesterification using barium hydroxide as a heterogeneous catalyst, sesame oil and methanol.
In order to maximize or minimize the response of an objective function, models generated using ANN
are usually coupled with an optimization tool such as genetic algorithm, GA [20,22], particle swarm



Sustainability 2018, 10, 707 3 of 15

optimization, PSO [23], rotation inherit optimization, RIO [24], to achieve this by optimizing the
operating input variables involved.

Plantain (Musa paradisiacal) is a common staple food in West Africa, which is consumed boiled,
fried, roasted, or baked. Although people do eat unripe plantain in some countries, it is noteworthy
that people generally prefer ripe ones. About half of the World’s plantain production comes from West
and Central Africa, and Nigeria is one of the leading producers [25]. In 2014, the World production was
30.7 million metric tons, of which Nigeria produced 3.04 million metric tons [25]. The high consumption
of plantain fruits in Nigeria in particular and by extension in West Africa, produces solid wastes in the
form of peels, which are typically discarded and only a small fraction of them are fed to goats locally.

Although we have previously shown the potential of unripe plantain fruit peel ash as catalyst
for yellow oleander biodiesel production [8], it could be argued that catalyst development from the
plantain may have a negative impact on food security from this source as it was earlier highlighted that
plantain are generally consumed when ripened. Thus, this present work focused on the development of
a catalyst from ripe plantain fruit peels with emphasis on the catalyst characterization which was hither
to not reported in our previous study but may be a useful resource with respect to future development
of this catalyst. The developed catalyst was used for production of biodiesel using Azadirachta indica
(neem) oil. The transesterification process used for the biodiesel production was modeled using ANN.
GA integrated with the developed model was used to establish the best operating input parameters
for maximum biodiesel yield. The quality of the biodiesel produced was compared with standard
specifications (ASTM D 6751 and DIN EN 14214).

2. Materials and Methods

2.1. Materials

Ripe plantain (M. paradisiacal) fruit peels used in this work were collected from restaurants within
the Obafemi Awolowo University campus, Ile-Ife, Nigeria. The neem oil employed for this study was
procured from the National Research Institute for Chemical Technology, Zaria, Kaduna State, Nigeria.
All the chemicals and reagents used for this study were of analytical grades.

2.2. Catalyst Preparation from Ripe Plantain Peels

The ripe plantain peels collected were initially washed 3 times with distilled water and cut to
small pieces after which they were oven-dried at 80 ◦C for 24 h. The dried pieces of peels were ground
to powder using a porcelain pestle and mortar. A portion of the powder was ashed by open burning,
part of which was calcined in a muffle furnace at varying temperature (500, 700, 900, and 1100 ◦C) for
4 h [5,9]. The calcined ripe plantain peel ash (CRPPA) samples produced were homogenized using
a pestle and mortar and were stored in corked plastic vessels for further analysis. The rest of the
ground (burnt and unburnt plantain) peel samples were stored for further analysis [5,9].

2.3. Characterization of Heterogeneous Catalyst

AURIGA high resolution SEM coupled with a CDU-lead detector at 5 kV with tungsten filament
(Zeiss Germany) integrated with energy dispersive X-ray spectroscopy (EDS) was used to investigate
the microstructural morphology and the elemental composition of the unburnt, burnt and CRPPA
samples at the temperatures investigated [5,9]. The elemental compositions reported in this work
are mean of three replicates determined at different locations on the sample microstructures from
SEM [5]. The porosity and surface area of the CRPPA were determined via Brunauer-Emmett-Teller
(BET) method of adsorption of nitrogen gas with the aid of Micromeritics instrument (ASAP 2020).
While the total pore volume and the average pore size of the CRPPA were measured by the
Barret-Joyner-Halenda (BJH) method. FT-IR spectrophotometer (Thermo-Nicolet iS10) coupled with
attenuated total reflectance (ATR) was used to identify the active surface functional groups present in
the raw plantain peel (RPP), open-air burnt RPP and CRPPA samples. The FT-IR spectra of the samples
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were obtained in the wavelength range of 4000–400 cm−1 [5]. For amorphous and crystalline structures
determination, XRD structures were obtain using a D8 Advance diffractometer (Bruker AXS, Karlsruhe,
Germany) with Cu-Kα radiation (λKα1 = 1.5406 Å) integrated with a detector (LynxEye PSD) [5].

2.4. Experimental Design for the Transesterification Process

The central composite design (CCD) of RSM was applied for the experimental design for the
transesterification process. A three-factor-five-level fractional factorial design (Table 2) was used to
generate 20 experimental conditions (Table 3) employed in investigating the effect of methanol:oil
(0.23:1–1.07:1 v/v), catalyst loading (0.65–4.85 wt %) and time (24.77–75.23 min) on the yield of methyl
esters using the pretreated neem oil. The CCD was composed of 6 axial points, 8 factorial points and
6 central points to provide information regarding the interior of the experimental region.

Table 2. Independent factors used for CCD in transesterification of neem oil.

Factor Unit
Coded Factor Levels

−α −1 0 1 +α

Methanol/oil ratio (X1) v/v 0.23 0.40 0.65 0.90 1.07
Catalyst loading (X2) wt % 0.65 1.50 2.75 4.00 4.85

Reaction time (X3) min 24.77 35 50 65 75.23

Table 3. CCD, observed, predicted and residual values for transesterification of neem oil.

Run Methanol/Oil Ratio
(v/v)

Catalyst Loading
(wt %)

Reaction Time
(min)

Observed AIOME
(wt %)

Predicted AIOME
(wt %)

1 * 0.65 (0) 0.65 (−α) 50.00 (0) 97.00 97.00
2 0.65 (0) 2.75 (0) 50.00 (0) 98.50 98.55
3 0.40 (−1) 4.00 (1) 65.00 (1) 94.50 94.50
4 0.90 (1) 1.50 (−1) 65.00 (1) 98.80 98.80
5 0.23 (−α) 2.75 (0) 50.00 (0) 85.50 85.50
6 0.65 (0) 4.85 (+α) 50.00 (0) 97.00 97.00
7 0.65 (0) 2.75 (0) 50.00 (0) 98.30 98.55

8 * 0.90 (1) 4.00 (1) 35.00 (−1) 91.00 91.00
9 0.40 (−1) 4.00 (1) 35.00 (−1) 97.40 97.40

10 0.65 (0) 2.75 (0) 75.23 (+α) 97.10 97.10
11 0.65 (0) 2.75 (0) 50.00 (0) 99.30 98.55
12 0.90 (1) 4.00 (1) 65.00 (1) 93.70 93.70
13 0.65 (0) 2.75 (0) 24.77 (−α) 97.40 97.40
14 0.90 (1) 1.50 (−1) 35.00 (−1) 95.00 95.00

15 * 1.07 (+α) 2.75 (0) 50.00 (0) 95.00 95.00
16 0.40 (−1) 1.50 (−1) 35.00 (−1) 97.80 97.80
17 0.65 (0) 2.75 (0) 50.00 (0) 98.40 98.55
18 0.65 (0) 2.75 (0) 50.00 (0) 98.60 98.55
19 0.40 (−1) 1.50 65.00 (1) 97.80 97.80
20 0.65 (0) 2.75 50.00 (0) 98.20 98.55

α = 1.682, asterisk (*) runs represent the testing set while without the asterisk are the training set.

2.5. Model Development and Optimization

The modeling of the transesterification process in this present study was executed using Neural
Power CPC-X Software (version 2.5). AIOME yield prediction was investigated by evaluating the
performance of both the multilayer full feedforward (MFFF) and multilayer normal feed forward
(MNFF) neural networks. The neural networks were trained by incremental back propagation (IBP)
learning algorithm. The architecture used consisted of an input layer with three neurons (methanol:oil,
catalyst loading and time), an output layer with one neuron (AIOME yield), and a hidden layer.
The sigmoid transfer function (Equation (1)) and pure-linear transfer function (Equation (2)) were
selected for the hidden and output layers, respectively. Each neural network was trained using a default
stopping criteria of 100,000 iterations [8,22]. Other parameters were chosen as the default values of the
software. The number of hidden neurons was determined by testing several neural networks iteratively
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until the root mean square error (RMSE) value of the output was minimized [8,22]. The experimental
data set was divided into two subsets: training set and testing set [21].

ψ(x) =
1

1 + e−x (1)

ψ(x) = x (2)

The efficacy of the developed model was assessed by comparing predicted responses with
experimental responses. To choose the best model, the coefficient of determination (R2) and mean
relative percentage deviation (MRPD) were determined using Equations (3) and (4), respectively:

R2 = 1 −
n

∑
i=1

( (
xi,cal − xi,exp

)2(
xavg,exp − xi,exp

)2

)
(3)

MRPD (%) =

(
1
n

n

∑
i=1

(
xi,exp − xi,cal

xi,exp

))
× 100 (4)

where n is the number of experimental data, xi,cal is the predicted values, xi,exp is the experimental
values, and xavg,exp is the average experimental values.

Optimization of the operating variables for the transesterification process was carried out using
Neural Power CPC-X Software (version 2.5). The three operating variables that denote the inputs
for the developed model, were optimized using the GA method. The developed model was coupled
with GA and used to predict the optimal condition of the input variables for maximum AIOME yield.
The predicted optimum values were validated by carrying out triplicate experiments using these
values, and the average observed values obtained were compared with the predicted responses [22].

2.6. Biodiesel Synthesis via Two-Step Transesterification

Although a two-step transesterification process was adopted for the methyl esters synthesis,
we previously showed that the acid value of the neem oil used in this study could be reduced from
5.81% to 0.90% in the first-step pretreatment process using methanol:oil of 2.19 v/v, Fe2(SO4)3 of 6 wt %,
reaction time of 15 min and temperature of 65 ◦C [5]. This step is critical to avoid the saponification
reaction, which poses a separation problem [9]. For the second step (transesterification process), specific
quantities of the pretreated neem oil and methanol were measured into a 250-mL three-necked glass
reactor connected to a reflux system and were allowed to mix for 5 min [9]. Further, a specific quantity
of the CRPPA was added into the mixture in the glass reactor and the reaction was carried out for
a specific period of time as stipulated in the design matrix (Table 3) at temperature of 65 ◦C [26–28].
After separation of the mixture at the end of the reaction, the AIOME produced was washed three
times with warm distilled water at 50 ◦C to remove residuals [9]. The washed AIOME was further
dried using sodium sulfate. The biodiesel yield was determined by Equation (5).

AIOME yield (wt%) =
Weight of AIOME produced

Weight of pretreated oil used
× 100 (5)

2.7. Characterization of AIOME

The physical, chemical and fuel properties of the AIOME produced were determined as previously
described by Betiku et al. [22]. The fuel properties such as flash point, pour point, and cloud point were
determined via ASTM D 93, ASTM D 97, and ASTM D 2500, respectively. The fatty acid profile of the
AIOME was analyzed by gas chromatography as described in our earlier studies [22]. To investigate
possible leaching of group I metals (Na, K) and group II metals (Ca, Mg) from the CRPPA into the
biodiesel during synthesis, the concentrations of the metallic elements in both washed and unwashed
biodiesel products were determined using atomic adsorption spectrophotometry [5].
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3. Results and Discussion

3.1. CRPPA Characterization

Table 4 shows the results of the EDS analysis carried out between 500 and 1100 ◦C. The results
demonstrated that the calcination temperature significantly affected the elemental composition of the
CRPPA. The major elements present in the CRPPA samples were O, Mg, P, S, K, Si, and Cl. Except for
900 ◦C, K had the highest mass fraction irrespective of the calcination temperature applied, but its
highest mass fraction was observed at 700 ◦C (Table 4). Thus, the mass production of the ash was
carried out at 700 ◦C and this was used afterwards as catalyst for the biodiesel synthesis. One can
therefore speculate that K was the chief active element responsible for the catalytic action of the CRPPA
in the AIOME synthesis.

Table 4. Elemental composition of CRPPA.

Temperature O Mg P S K Ca Si Cl Al

(◦C) (wt %)

500 38.99 0.80 1.23 0.00 43.49 0.00 7.41 8.09 0.00
700 36.43 1.15 1.84 0.47 51.02 0.00 2.51 6.27 0.29
900 45.81 0.55 2.80 0.66 39.20 3.23 5.56 1.46 0.00

1100 40.91 0.41 5.38 1.39 47.38 0.00 1.78 2.29 0.46

It has been shown that K has the highest concentration of all metals present in calcined cocoa
pod husk [5], banana fruit peel [9,29], and unripe plantain fruit peel [8,29,30]. K was revealed to have
the highest mass fraction in cocoa pod husk [5], ripe banana fruit peel [9], and unripe plantain fruit
peel [8] when calcined at 500 ◦C for 4 h, 700 ◦C for 4 h, and 500 ◦C for 3.5 h, respectively.

Figure 1a–c displays the SEM images taken at a magnification of 1000× for raw, open air,
and calcined ripe plantain peel samples. The surface transformation of the catalyst can be seen
from the smooth and flatness nature of the raw plantain peel sample (Figure 1a) to a mix of smaller
aggregates and flat surfaces obtained from the open-air burnt catalyst (Figure 1b) and a spongy and
fibrous microstructure resulting from calcination at 700 ◦C for 4 h. The resulting microstructure is
indicative of the increased surface area of the catalyst due to calcination, which may increase its
catalytic activity.

It should be noted that thermal treatment via calcination prevents leaching of K thereby increasing
the reusability of the catalyst [31].

The pore size, pore volume, and surface area of the CRPPA were measured. The adsorption
average pore width (4 V/A by BET) was determined as 68.35 Å. The single point adsorption total pore
volume of pores less than 2573.24 Å diameter at p/p◦ = 0.992508 was measured as 0.032122 cm3/g.
The BJH adsorption cumulative volume pores between 17.00 and 3000.00 Å was 15.20 m3/g, while the
BJH desorption cumulative volume pores between 17.00 and 3000.00 Å was 15.73 m3/g. The BET
surface area and t-plot external surface area of the CRPPA were 18.80 and 26.54 m2/g, respectively.

The functional groups present in the RPP, open-air burnt RPP and CRPPA (at 700 ◦C) were
determined by FT-IR analysis and the spectrum for each sample is depicted in Figure 2. All the spectra
show various adsorption peaks. The peaks detected at 3300 to 3100 cm−1 in RPP and open-air burnt
RPP samples (Figure 2) are ascribed to bending and stretching vibration of O–H bonds due to the
existence of water molecules [32]. The peaks are however not detected in the CRPPA expectedly due
to the heat treatment at 700 ◦C. While the peaks at 2920 and 2850 cm−1 found in the RPP sample are
allocated strong asymmetric stretching vibration of –CH2 and strong symmetric stretching vibration of
–CH2, respectively [33]. Observed peaks at 1600, 1396 and 1150 cm−1 in all the samples are assigned
to carbonate C–O stretching and bending vibrations [9], which is an indication of the presence of
carbonate. The peak at 1396 cm−1 is very strong in both open-air burnt RPP and CRPPA (Figure 2) and
it is known for K2CO3 [9,31,34,35]. Furthermore, the peaks located at 1005 cm−1 is ascribed to Si–O–Si
asymmetric stretching vibration [34,36]. The peak at 890 cm−1 observed in both open-air burnt RPP
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and CRPPA may be due to an isolated SiO4 vibration in CaMgSiO4 agitated by contact with Ca2+ and
Mg2+ [37].
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XRD diffraction was carried out to identify the crystalline compounds in the raw, open-air burnt,
and calcined RPP samples (Figure 3). As heat treatment of the RPP increased, potassium compounds
steadily increased (Figure 3). This trend has been reported in calcined catalytic biomass materials in
previous studies [5].
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Figure 3. XRD chromatograms of (A) raw, (B) open-air burnt RPP and (C) CRPPA at 700 ◦C samples.

3.2. AIOME Synthesis Using CRPPA

3.2.1. Parameters Optimization for AIOME Synthesis

Various neural network architectures and topologies were developed and tested for prediction
of AIOME yield and the network predictive capabilities were evaluated using R2 and MRPD [8,22].
The results show that out of the six models developed (Table 5), the IBP with sigmoid and linear transfer
functions as hidden and output layers, respectively, was the most efficient algorithm for AIOME yield
prediction (Table 5). A series of network topologies were examined by varying the number of neurons
from 2–8 to determine the optimum number of neurons in the hidden layer (Figure 4). The best
topology (3-4-1), which has three inputs, four neurons as the optimum and one output, was selected
because the R2 for the testing, training, and whole data sets were the highest, while their MRPD values
were the least of all the topologies (Table 5). The network mode developed for the chosen model is
shown in Figure 5. The R2 and MRPD for the training set were 0.996 and 9.57%, respectively while
in the case of testing set, the values were unity and 0.0006%, respectively. The regression plot of the
predicted AIOME yield values against the experimental AIOME yield values (Figure 6) supported
the high value of R2 and low value of MRPD. These results imply that the empirical model derived
from ANN can be used adequately to describe the relationship between the input variables and the
AIOME yield.

Table 5. Effect of different neural network architecture and topologies for AIOME synthesis.

Name Model Learning
Algorithm

Connection
Type

Transfer Function
Hidden Layer

Transfer Function
Output Layer

R2 Whole
Data

MRPD Whole
Data (%)

H55 3-4-1 IBP a MFFF b Sigmoid Linear 0.9962 8.10
H54 3-4-1 IBP MNFF c Sigmoid Linear 0.9962 8.10
G33 3-3-1 IBP MNFF Sigmoid Linear 0.9546 46.82
G45 3-2-1 IBP MFFF Sigmoid Linear 0.9220 71.76
a IBP—incremental back propagation; b MFFF—multilayer full feedforward; c MNFF—multilayer normal feedforward.
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The optimal condition established for AIOME synthesis by integrating the developed model
with GA was methanol:oil of 0.75 v/v, catalyst amount of 0.65 wt % and reaction time of 57 min,
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while keeping the reaction temperature constant at 65 ◦C with a corresponding predicted AIOME yield
of 99.2 wt %. Validation of the prediction was carried out by applying the optimum values to three
independent experimental replicates and the average value of AIOME yield obtained was 99.3 wt %.
These results confirmed the efficacy of the model developed.

Some agricultural wastes have been successfully applied as catalysts for biodiesel synthesis.
For example, calcined banana fruits peel ash was used for Napoleon’s plume (Bauhinia monandra) oil
biodiesel production [9]. It was reported that an optimum biodiesel yield of 98.5 ± 0.18 wt % could
be obtained using catalyst loading of 2.75 wt %, methanol:oil molar ratio of 7.6:1, reaction time of
69.02 min and reaction temperature constant at 65 ◦C. Biodiesel was produced using yellow oleander
oil and unripe plantain fruit peel ash as catalyst by Betiku and Ajala [8]. The transesterification process
was modeled and optimized by ANN-GA. The optimal condition was established as methanol:oil
0.3 v/v, reaction time 1.25 h, catalyst amount 2.8 wt % and reaction temperature of 60 ◦C with biodiesel
yield of 95.09 wt %. Likewise, in our previous studies, neem oil and calcined cocoa pod husk ash were
used to synthesize biodiesel [5]. RSM was used to establish the best operating variables combination
for maximum biodiesel yield, which was reported as methanol:oil of 0.73 v/v, catalyst amount of
0.65 wt %, reaction time of 57 min and reaction temperature of 65 ◦C with an optimum yield of
99.3 wt %. Rubber seed oil and calcined rubber seed shell were both used to produce biodiesel [4].
The authors established the optimal condition using RSM as methanol:oil of 0.20 v/v, catalyst loading
of 2.2 g/g, time of 60 min and reaction temperature of 60 ◦C with an optimum yield of 83.11 wt %.

3.2.2. Interactions of Independent Variables

The interactive effects of the input variables on the AIOME yield were investigated graphically
(Figure 7). Figure 7a represents the three-dimensional plots of reaction time and methanol:oil on the
AIOME yield while keeping the reaction temperature constant.
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The plots show that both methanol:oil and reaction time had a significant effect on the biodiesel
yield. There appears to be an optimum for both variables about 55 min and 0.79 v/v (Figure 7a),
which are close to the optimum predicted values. The three-dimensional plot of catalyst amount
and methanol:oil against biodiesel yield while keeping the reaction temperature constant is depicted
in Figure 7b. The significant influence of catalyst amount and methanol:oil on the AIOME yield is
apparent from this plot. The interaction of reaction time and catalyst amount on biodiesel yield,
while keeping the reaction temperature constant, is displayed in Figure 7c, which shows a significant
interaction between the two variables.

The plots reveal high yield of AIOME can be obtained from reaction time range of 55–65 min and
catalyst amount of 0.65 wt %. The curvature nature of the three-dimensional surfaces suggest significant
interactions of methanol:oil, reaction time, and catalyst amount. Methanol:oil, reaction time and
catalyst amount have been reported to have a strong effect on biodiesel yield [24,38,39]. Although in the
transesterification reaction of oil and methanol, alcohol in excess of the required stoichiometric amount
is needed to shift the equilibrium/reversible reaction towards biodiesel formation [38], its oversupply
in the process may lead to dilution, which may reduce the biodiesel yield. Also, sufficient reaction
time is needed to allow for adequate reactants interaction to form the product [24,38,39]. The time
range selected for this work seems sufficient to obtain maximum AIOME yield.

The importance level of the three variables considered for the transesterification process were
evaluated using Neural Power CPC-X Software (version 2.5) and the results shown in Figure 8.
Methanol:oil with 54.44% was the most important variable, followed by catalyst amount with 26.47%
and then reaction time with 19.09%.
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3.3. AIOME Quality Characterization and Its Fatty Acid Composition

The fuel properties of the AIOME produced using CRPPA were determined and the results are
summarized in Table 6. The properties of the biodiesel produced compared very well with EN 14214
and ASTM D 6751 standard specifications. Also, these properties were similar to those earlier reported
for neem oil biodiesel using calcined cocoa pod husk ash [5]. For example, the kinematic viscosity of
5.0 mm2/s and acid value of 0.45 mg KOH/g oil for the biodiesel were within the limit specified by
the standards. The kinematic viscosity of neem oil biodiesel earlier reported were 4.0 [24,40], 5.3 [5],
and 5.5 mm2/s [24,40], while the acid values earlier reported were 0.22 mg KOH/g oil [24,40] and
0.5 mg KOH/g oil [5].

Table 6. Properties of AIOME in comparison with biodiesel specification standards.

Parameter Mean Value ASTM D6751 EN 14214

Moisture content (%) 0.01 <0.03 0.02
Specific gravity 0.88 0.86–0.90 0.85

Kinematic viscosity (mm2/s) at 40 ◦C 5.0 1.9–6.0 3.5–5.0
Acid value (mg KOH/g oil) 0.45 0.5 max 0.5 max
Iodine value (g I2/100 g oil) 58.6 NS 120 max

Higher heating value (MJ/kg) 48.7 NS NS
Cetane number 81 47 min 51 min

Group I metals (Na + K) (ppm) 1.80 5.0 max 5.0 max
Group II metals (Ca + Mg) (ppm) 0.42 5.0 max 5.0 max

Pour point (◦C) 9 NS NS
Cloud point (◦C) 21 NS NS
Flash point (◦C) 274 130 min 101 min

NS = not specified.

The high value of the flash point (274 ◦C) for the AIOME indicates that it is safe to handle and
store [41]. The feasibility of the CRPPA as a catalyst for biodiesel production was investigated by
conducting a leaching test on the AIOME. The metallic elements analyzed in the washed AIOME
include Na, K, Ca, and Mg. The washed AIOME had Na + K concentration of 1.8 ppm and Ca + Mg
concentration of 0.42 ppm, while the unwashed AIOME had Na + K concentration of 115.6 ppm and
Ca + Mg concentration of 0.96 ppm. The observed values of the washed sample satisfied the ASTM D
6751 standard specification (Table 6), which is an indication that the purification method employed in
this work is effective in removing metallic elements that may have leached into the biodiesel. The fatty
acid profile of the AIOME is presented in Table 7. The results showed that the biodiesel was highly
unsaturated (73.79%) with linoleic acid, oleic acid, palmitic acid, and stearic acid as the major methyl
esters. Earlier reports have revealed that methyl esters from neem oil are highly unsaturated [5,40].

Table 7. Fatty acid profile of AIOME.

Fatty Acid Structure % Composition

Saturated fatty acid

Palmitic C16:0 14.25
Stearic C18:0 10.85

Arachidic C20:0 0.57
Lignoceric C24:0 0.55

Total 26.22

Unsaturated fatty acid

Palmitoleic C16:1 0.05
Oleic C18:1 14.34

Linoleic C18:2 59.10
Linolenic C18:3 0.30

Total 73.79
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4. Conclusions

Biodiesel synthesis was carried out using neem oil, methanol, and calcined plantain fruit peel ash
in a 2-step transesterification process. The neem oil with a high free fatty acid content was first reduced
to 0.90 wt % in an esterification reaction via methanol:oil of 2.19 v/v, Fe2(SO4)3 of 6 wt %, reaction time
of 15 min, and temperature of 65 ◦C. In the second step, ANN was used to model the transesterification
process, while the operating variables in the process were optimized using GA for maximum biodiesel
yield. The best algorithm for the AIOME yield prediction was IBP with sigmoid and linear transfer
functions as hidden and output layers, respectively. The characterization of the CRPPA developed by
XRD, FT-IR, and SEM-EDS showed that its catalytic activities may be due to its high K content and the
microstructural alteration. The model developed has very high prediction accuracy and reliability with
R2 of 0.996 and MRPD of 8.10%. AIOME yield of 99.2 wt % could be obtained using a transesterification
process operating variables combination of methanol:oil of 0.73 v/v, CRPPA of 0.65 wt % and reaction
time of 57 min while maintaining the reaction temperature constant at 65 ◦C. The results of this work
demonstrated that methanol:oil was the most important operating variable for the process and the
biodiesel produced satisfied both the EN 14214 and ASTM D 6751 standard specifications. Although
the potential of unripe plantain peels as catalyst for biodiesel production has been reported, the project
highlights the prospect of ripe plantain peels and neem oil as feedstock for biodiesel production,
thus removing the threat to food security which may arise due to the utilization of unripe plantain.
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Abbreviations

AIOME Azadirachta indica oil methyl esters
ANN artificial neural network
ANOVA analysis of variance
BET Brunauer-Emmett-Teller
BJH Barret-Joyner-Halenda
CCD central composite design
CRPPA calcined ripe plantain peel ash
FT-IR Fourier transform infra-red
GA genetic algorithm
IBP incremental back propagation
MFFF multilayer full feedforward
MNFF multilayer normal feed forward
MRPD mean relative percentage deviation
RPP raw ripe plantain peel
R2 coefficient of determination
RSM response surface methodology
SEM scanning electron microscope
XRD X-ray diffraction
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