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Abstract: The Belt and Road Initiative (BRI) provides immense opportunities for agro-waste
utilization among countries situated along the routes. However, there is a lack of design of
motivational mechanisms to put it into managerial practice. This study uses agro-straw as the typical
agro-waste to structure a hybrid of multi-objective optimization and system dynamics simulation for
optimizing the structure of straw-to-electricity supply chain and designing motivational mechanisms
to enhance its sustainability. Since existing studies on the design of motivation mechanisms mainly
stressed static motivation, two different dynamic subsidy mechanisms are devised in this study to
facilitate the stable collaboration among stakeholders involved in the supply chain. A case study is
provided to demonstrate the hybrid method. Discussion about the limitations of the study lays the
foundation for further improvement.

Keywords: agro-waste; Belt and Road Initiative; supply chain management; multi-objective
optimization; system dynamics

1. Introduction

The Belt and Road Initiative (BRI) is a proposition of China for regional economic cooperation
under the development of economic globalization [1]. It aims at reinforcing efficient policy coordination
to construct an open, encompassing and shared economic mode [2]. Agriculture is the dominating
industry of the national economy for countries along BRI routes. Agricultural development inevitably
produces a substantial amount of agro-wastes, of which agro-straw is a major portion that accounts for
80.5% of the total [3–5]. Due to the biomass abundance in agro-straws, proper energy recovery could
be a win–win strategy for both the economy and the environment.

The BRI also places special emphasis on transitioning the industry chain to a new energy and
low carbon design [6,7]. Nevertheless, straw biomass use has yet to reveal a large-scale industrial
pattern which is mainly due to the sparse distribution of straw and the high external cost of its
reuse [8–10]. In addition, the existing motivational mechanisms for farmers and biomass power
plants have inadequate effectiveness resulting in straw shortage and insufficient social investment
in the industry [11,12]. From this perspective, the following study conducts structural optimization
of the supply chain of straw biomass for energy utilization to lower the overall cost and carbon
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emissions in the supply chain for promoting its sustainable development. Consequently, this study
designs motivational mechanisms that finely adjust the level of supply chain engagement by different
stakeholders to steer supply chain operations towards stability.

The remaining parts of the study are structured as follows: Section 2 gives a literature review
regarding supply chain management of straw biomass utilization. Section 3 presents the optimization
and system dynamics model. Section 4 addresses the case background and data source. Results and
discussions are given in Section 5. Lastly, conclusions and research limitations are expressed in
Section 6.

2. Literature Review

Currently, studies on the supply chain management of straw biomass utilization focus on
two aspects: supply chain network optimization and design of motivational mechanisms for supply
chain stakeholders [13]. Mobini et al. [14] used discrete event simulations and integrated factors,
such as the equilibrium moisture content and carbon emissions, to optimize the logistic routes of the
straw biomass supply chain. Meanwhile, Yu et al. [15] computed and decomposed straw collection
costs and incorporated the GIS model for planning the allocation of biomass power plants. Zhao and
Li [16] conducted a similar study, where costs of logistics and associated carbon emissions were used
as the objective functions to construct a 0–1 bi-objective integer programming model for determining
the allocation of biomass power plants. The GIS model was also employed by Chiueh et al. [17] who
analyzed the impacts of straw drying pre-treatment on the supply chain cost and carbon emissions
to optimize the transportation routes. Then, Delivand et al. [18] adopted GIS and multi-objective
decision-making to optimize the logistic network for southern Italy’s straw-to-electricity supply
chain based on the logistic cost minimization. Roni et al. [19] built a hub-and-spoke supply chain
network and undertook supply chain structure optimization by using biomass co-firing as the energy
source. Turki et al. [20] further transformed the hub-and-spoke supply chain into a closed-loop supply
chain, and proposed optimization model to enhance its sustainability. Vance et al. [21] used P-graph
Framework with minimizing cost, ecological footprint, and energy input to design a reverse supply
chain based on agro-waste electricity generation. Examining the costs of minimal biomass electricity
generation was also an objective for Singh [22]. He also used factors such as average fuel distribution
or straw collection as the constraints for determining the optimum capacity of biomass power plants
and the straw collection radius.

In terms of the motivational mechanism design for supply chain stakeholders, Yan et al. [23]
devised a subsidy scheme for biomass power plants based on the principal-agent theory while
considering the impacts of straw collection and storage costs on the plants. The agent-based approach
was also employed by Luo et al. [24] to combine with game theory for analyzing the villagers’
willingness of providing straw feedstocks for the biomass-based power supply chain. Xue and
Wang [25] built a dynamic model based on the game theory to redesign the motivation mechanisms.
Furthermore, they discussed the balance among government subsidies for farmers, brokers and
biomass power plants. Game theory was also applied to a dynamic model developed in the study
by Wen et al. [26] which focused on analyzing the impacts of straw power plants on the straw
acquisition. Using two-person game theory, i.e., two supply chain stakeholders, brokers and villagers’
committee, Zhang et al. [27] designed a synergistic mechanism for both parties to undertake straw
collection together.

These above mentioned studies, while quite useful in informing our approach, do not address
issues raised in management implementation of the optimized supply chain, i.e., there is a lack of design
of motivational mechanisms to put it into managerial practice. In such case, this study articulated
external policy incentives with the supply chain optimization. Additionally, existing studies on the
design of motivation mechanisms mainly stressed on static motivation, rarely considered the influences
of dynamic incentives on the stakeholders involve in supply chain. This study adopts a hybrid of
multi-objective optimization and system dynamics to investigate possible influences of different
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incentives (subsidies) on the supply chain. The integration of these two methods guide the transition to
low-carbon supply chains and design the optimal supply chain structure of straw biomass utilization,
thus to enhancing the sustainability of the supply chain. Accompanied with proper dynamic subsidy
schemes that facilitate supply chain management practices, it aims at providing a theoretical basis for
countries under the Belt and Road Initiative to construct a reverse supply chain of agro-wastes.

3. Model Construction

3.1. Model Assumptions

The stakeholders of the supply chain in this study mainly consists of the farmers, centralized
collection center, bio-energy plants and residents as shown in Figure 1. The centralized collection
center determines the straw collection radius based on straw demand and its purchase from the
farmers at a specific price before pre-treating and storing the straw altogether. Afterwards, the straw
is transported to bio-energy plants for power generation, which is then connected to the regional
power grid.
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Figure 1. The proposed straw-to-electricity supply chain network.

Given this context, the following assumptions are proposed regarding the supply chain design,
which are by analogy to Garg [28] and Zhao et al. [29]:

(1) The straw inventory is fixed.
(2) The straw wastes are homogeneous where differences among crops are neglected and evenly

distributed across the collection regions.
(3) The locations of all potential straw collection regions, centralized collection and transportation

sites as well as the logistic routes are given in advance.

The parameter notations and definitions are given in Table 1:

Table 1. Notation for sets, input parameters and decision variables.

Nomenclature

sets
i Sets of potential straw collecting site
k Key bio-energy plant
j Sets of operated incinerators

Input parameters
Cci Collecting cost per tonne straw in collecting site i
Cik Unit transportation cost from collecting site i to bio-energy plant
Lik distance between collecting site i to bio-energy plant
Csi Storage cost of collecting site i
Ec Electricity generation cost of per tonne straw
Cmj maintenance cost when the number of operated incinerator is j
EMi Emission factor of straw collection, per tonne straw in collecting site i
EMik Emission factor of transportation from i to k
EMco Emission factor per tonne straw combustion for electricity generation
EMsi Emission factor of ith straw storage
EMj Emission factor of incinerators operation when amount of incinerators j are operated
EMd Emission factor of straw direct burning
Caps

min, Caps
max The maximum and lower limited operational capacity of the bio-energy plant

Caci
max The maximum straw production amount

aj The needed amount of straw collecting sites when amount of incinerators j are operated
b The amount of incinerators operated simultaneously

Decision variable
xik Amount of straw transported from collecting site i to bio-energy plant
xi Binary variable when the potential collecting site i is selected
zj Binary variable when amount of incinerators j are operated
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3.2. Bi-Objective Optimization Model

The optimization model is complied with two objectives: (1) minimization of total economic cost;
and (2) minimization of carbon emissions of the supply chain network.

The economic cost indicates the costs of straw collection, transportation, storage, and power plant
operations and maintenance. Its objective function is given as follows:

OBJ1 = Cc + Ct + Cs + Ce + Cm (1)

where
Cc = ∑ iCci·x3/2

ik (2)

Tc = ∑ ixik·cik·Lik (3)

Sc = ∑ iCsi·xi (4)

Ec = ∑ iEc·xik (5)

Mc = ∑ jCmj·zj (6)

In the above formulae, Cc denotes the straw collection cost, which is proportional to the straw
collection volume to the 1.5th power [30]; Tc is the transportation cost; Sc is the storage cost;
Ec represents the cost of electricity generation, which consists of the operation costs of incinerators
and generator sets as well as the cost of exhaust gas processing; and Mc denotes the operation and
maintenance cost, which is related to the capacity of the installed incinerators.

In this study, carbon emission concerns are the direct emissions during events such as straw
collection, pre-treatment, transportation and incineration. The objective function is given as follows:

OBJ2 = CEc + CEt + CEco + CEs + CEo − CEavoided (7)

where
CEc = ∑ iEMi·xik (8)

CEt = ∑ ixik·EMik·Lik (9)

CEco = ∑ ixik·EMco (10)

CEs = ∑ ixi·EMsi (11)

CEo = ∑ izj·EMj (12)

CEavoided = ∑ iEMd·xik (13)

In the above formulae, CEc denotes the direct carbon emissions during straw collection. It includes
carbon emissions due to energy consumption during pre-treatment procedures such as cutting,
briquetting and packing in the loading trucks. CEt is the transportation emissions, CEco is the emissions
during straw burning, CEs denotes the carbon emissions during warehouse storage, CEo refers to the
carbon emissions during the operation of the generator sets caused by the electricity consumption of
the generators per se, and CEavoided stands for the carbon emissions during the unorganized burning
of straw of the same mass as well as for the direct emissions avoidable by incineration.

3.3. Constraints

Some generic constraints are given in the optimization model based on the decision variables
including capacity limit constraint, operations limit and the constraints of decision variables.

(1) Capacity limit constraint:

∑ sCaps
min ≤∑ ixik ≤∑ sCaps

max (14)
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xik ≤ Caci
mas (15)

Formula (14) suggests that the total volume of straw biomass utilization must range between the
minimum volume stipulated by biomass power plants and the current maximum capacity. Formula (15)
proposes that the amount of straw that can be gathered by each collecting site must not exceed the
local production amount.

(2) Operations limits:

∑ ixi = ∑ jaj·zj (16)

∑ jzj = b (17)

According to Formula (16), power plants determine the maximum production capacity of straw
biomass based on the number of operated biomass boilers, thus ascertaining the number of straw
collecting sites. Formula (17) means that the confirmed number of operated boilers in the biomass
power plants is fixed.

(3) Constraints of decision variables:
xik ≥ 0 (18)

xi, zj ∈ {0, 1} (19)

Formula (18) determines that the decision variable xik is a positive value, while Formula (19)
defines xi, zj as binary integer variables.

3.4. Solution of the Optimization Model

The study employs “Normalized Normal Constraint Method” (NNC) to obtain the Pareto
frontier, which was proposed by Messac et al. This method is advantageous because it can obtain
a well-distributed set of Pareto solutions with high stability and effectiveness [31]. As a result, a Pareto
solution can be selected as a relatively satisfactory solution of the optimization model according to the
decision-makers’ preference. The solution is given as follows:

Let the solution of OBJ1 and OBJ2 be µ1 and µ2. For the single-objective solutions of OBJ1 and
OBJ2, the optimal objective functions are µ1∗ and µ2∗, respectively, and the optimal solutions are x1∗

and x2∗, respectively. The normalization design metrics are obtained through objective normalization
using the following formula:

µ =

{
µ1(x)− µ1

(
x1∗)

µ1(x2∗)− µ1(x1∗)
,

µ2(x)− µ2
(
x2∗)

µ2(x1∗)− µ2(x2∗)

}
(20)

The Utopia line is defined based on Formula (21), which shows the direction for obtaining the
Pareto frontier, as shown in Figure 2:

N = µ2∗ − µ1∗ = [1, 0]− [0, 1] = [1,−1] (21)

Based on the number of required Pareto solutions, m, the increment along the Utopia line is
δ = 1/(m− 1); the weight coefficients, α1j, α2j, are as follows:

0 ≤ α1j, α2j ≤ 1; α1j + α2j = 1 (22)

A set of evenly distributed points on the Utopia line is then obtained:

X j = α1jµ
1∗ + α2jµ

2∗ (23)

Through solving the following optimization model, the Pareto solutions are obtained:

min
x

µ2 (24)



Sustainability 2018, 10, 868 6 of 17

s.tN
(
µ− X j

)T ≤ 0; µ = [µ1(x), µ2(x)]T (25)
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3.5. Systems Dynamics Model Construction

After obtaining the optimal supply chain structure by using the multi-objective programming
model, this study designed external motivational mechanisms to facilitate its effective operation with
the aid of system dynamics. It is a method for simulating the time-varying behavior and feedback
mechanisms in complex systems using system modeling and dynamic simulation [32]. The straw
biomass supply chain in this study can be deemed as a complex dynamic system. Upon the introduction
of government motivation measures, complex interaction among the interests of main supply chain
stakeholders, including the power plants, farmers, and residents, influences the operation of the supply
chain. Therefore, this study attempts to divide the supply chain under the influence of government
subsidy into three sub-systems: (1) those of residents’ electricity consumption; (2) farmers’ straw
supply; and (3) electricity production. The key relationships involved in the three sub-systems are
based upon common consensus, and mainly derived from the existing studies. For example, increase
of installed capacity may give rise to a growth of revenue of power plants [33]. This study further
restructures these relationships to formulate the specific causal loop diagrams as follows:

Figure 3a shows the residents’ electricity consumption sub-system, which includes a balancing
loop and a reinforcing loop. To explain, a balancing loop occurs by subsidizing the biomass power
plants, and the government lowers the market price of electricity and stimulates the residents’ demand
for straw bio-electricity. As a result, the revenue of the power plants increases and then expands the
capacity of their installed incinerators. With a reinforcing loop, increase in the installed capacity raises
the revenue of the power plants which leads to their expansion.

Figure 3b illustrates the farmers’ sub-system. It mainly consists of a reinforcing loop because,
by subsidizing the farmers, the government increases the farmers’ revenue and then their straw supply.
In turn, this lowers the acquisition price of straw and reduces the operations costs of the biomass power
plants, which results in boosting their profit. This expands their installed capacity and eventually the
demand for straw.

Figure 3c shows the electricity production sub-system. It mainly contains a balancing loop where
the increase in installed capacity narrows the gap between the real capacity and the expected capacity.
As a result, the former gradually approaches the default level of the latter.
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sub-system of bio-energy Plant.

As shown in Figure 4, according to the causal loop diagram, the STELLA software package
is adopted to build a stock–flow diagram for quantifying the interrelations among main variables.
The SD model constructed uses the carbon emissions of the supply chain as the main observation
indicator. The variables involved in the model are divided into the three groups of stock, flow and
auxiliary variable. The details are shown in Table 2, and the corresponding equations are listed in the
Appendix A.

Table 2. Key variables of the SD model.

Key Variable Type Key Variable Type

Operational capacity Stock Revenue of electricity sales Auxiliary variable
Capacity increment rate Flow Profit increment rate Flow

Expected capacity Constant Economic profit of bio-energy plant Stock
Gap Auxiliary variable Price of agro-straw Auxiliary variable

Adjusted time Auxiliary variable Supply increment from farmers Auxiliary variable
Investment rate Auxiliary variable Low carbon consciousness of farmers Auxiliary variable

Electricity production Auxiliary variable Carbon emission reduction rate Flow
Subsidy electricity price Auxiliary variable Carbon reduction Stock
Market electricity price Auxiliary variable Subsidy for farmers Auxiliary variable

Demand increment for bio-electricity Auxiliary variable Revenue increment rate of farmers Flow
Revenue of farmers Stock
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4. Case Study and Data Source

This case study concerns a straw-to-electricity supply chain in southwest China led by a key
bio-energy plant in Cangxi County, Guangyuan City, Sichuan Province. It is under expansion and
equipped with two 75 t/h straw boilers. It processes 260,000 tonnes of straw annually, which represents
less than 1/5 of the installed capacity. This study decides on four potential straw collection sites labeled
as A, B, C, and D while considering other factors such as the straw production volume and traffic
in neighboring townships or towns. Their geographic locations are shown in Figure 5. These sites
gather straw within a certain radius and transport the pre-treated straws to the bio-energy plant for
power generation. Then, the plant is connected to the urban power grid to supply electricity to Cangxi
County as well as to neighboring townships and towns. The plant’s net price of electricity is set at
0.75 RMB/kwh. The government provides a subsidy of 0.25 RMB/kwh [34].

The input parameters in this study are mainly obtained through field survey and review of related
statistics. Among them, the parameters input into the multi-objective programming model are mostly
collected by investigating the bio-energy plant in addition to reviewing its environmental impact
and energy conservation reports, as shown in Table 3. The input parameters for system dynamics
simulation are largely originated from the multi-objective programming model solutions and partially
from market survey, as shown in Table 4.
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Table 3. Data for the input parameters of the optimization model.

Input Parameters of the Total Cost

Cci
(Yuan/t)

Csi
(Yuan)

Cik
(Yuan/t·km)

Ec
(Yuan/t)

Cmj
(Yuan)

Capsmin
(t)

Capsmax
(t)

Cacomax
(t)

Collecting site A 47 17000 6.21 × × × × 480

Collecting site B 35.3 16800 6.21 × × × × 1080

Collecting site C 44.91 20500 6.21 × × × × 768

Collecting site D 69.3 20000 6.21 × × × × 336

Bio-energy plant × × × 510
14,790 (basic capacity)

22,185 (medium capacity)
29,580 (high capacity)

710
1070
1430

1800
2700
3600

Input Parameters of the Carbon Emissions

Emi
(kgCO2/t)

EMik
(kgCO2/t·km)

EMco
(kgCO2/t)

EMsi
(kgCO2)

EMj
(kgCO2)

EMd
(kgCO2/t)

Collecting site A 1.73 2.73 15.7 1440 × 331.75

Collecting site B 1.05 2.73 15.7 1517 × 331.75

Collecting site C 1.47 2.73 15.7 1405 × 331.75

Collecting site D 1.22 2.73 15.7 1360 × 331.75

Bio-energy plant × × × ×
8568 (basic capacity)

12852 (medium capacity)
17136 (high capacity)

×

Table 4. Measurement of the SD input parameters.

Input Parameter Value Measurement

Expected capacity 1.314 Million tonne/year
The capacity of a single incinerator is 75 t/h;
the expected capacity is the capacity of three
incinerators running at the maximum limit

Initial value of
operational capacity 0.669 million tonne/year From the optimization model

Adjusted time Lookup function From the energy conservation assessment report of
the plant

Market price of bio-electricity 0.75 RMB/kwh [34]

Maximum demand increment for
bio-electricity 300 million kwh/year From the market survey

Supply increment of agro-straw 1.3 Million tonne/year From the market survey

5. Results and Discussion

5.1. Pareto Solutions and the Relatively Optimal Solution

This study uses Lingo 11 software (LINDO Systems, Inc., Chicago, USA) to seek solutions for the
integer programming model and obtain the Pareto frontier. Figure 6 clearly demonstrates the tradeoff
between cost and carbon emission. For the proposed supply chain, all possible Pareto solutions
concerning cost and carbon emissions are given in Table 5.

To pinpoint the relatively optimal solution from a set of Pareto solutions, this study proposes
using “Binary Dominant Matrix” to weight the optimization objectives based on their significance.
Concerning the Belt and Road Initiative’s strategies needs, which are the green and sustainable
transitioning of the supply chain, this study assumes that reduction of carbon emissions is more
important than that of supply chain cost, as shown in Table 6. Under this condition, the optimal
operating parameters of the supply chain are set out in Figure 7.
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Table 5. Pareto solutions of the optimization model.

(ff1, ff2) Carbon Emissions (kg) Total Costs (Yuan)

(1, 0) −176,847 984,374
(0.95, 0.05) −198,010 1,127,841
(0.9, 0.1) −218,751 1,274,682

(0.85, 0.15) −239,110 1,424,580
(0.8, 0.2) −264,982 1,530,375

(0.75, 0.25) −285,715 1,677,288
(0.7, 0.3) −306,155 1,826,541

(0.65, 0.35) −320,895 2,021,415
(0.6, 0.40) −346,223 2,131,542
(0.55, 0.45) −370,637 2,249,003
(0.5, 0.5) −390,649 2,401,680

(0.45, 0.55) −410,621 2,554,673
(0.4, 0.6) −430,301 2,710,014

(0.35, 0.65) −449,783 2,866,932
(0.3, 0.7) −469,075 3,025,364

(0.25, 0.75) −488,186 3,185,253
(0.2, 0.8) −507,121 3,346,546

(0.15, 0.85) −525,887 3,509,192
(0.1, 0.9) −544,490 3,673,145

(0.05, 0.95) −562,932 3,838,383

Table 6. Binary dominance matrix for weighting.

Carbon Emissions Total Costs Score Weight

Carbon emission × 1 2 0.667
Total costs 0 × 1 0.333
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5.2. Subsidy Performance

The operations cost of the supply chain increases as the scale of straw-based bio-electricity expands.
Without the intervention of external motivation, a supply chain can hardly operate independently.
This is due to the current lack of subsidies for farmers which has led to straw shortage and increased
straw collection costs involved in the supply chain [35,36]. For bio-energy plants, the biomass subsidy
in practice is at a uniform level of 0.25 RMB/kwh. Since it is not adjustable to the actual supply chain
operations, there is insufficient stimulation for bioenergy utilization. Therefore, this study attempts to
introduce dynamic subsidy and observe its impact on the reduction in carbon emissions of the straw
biomass supply chain resulting in the optimal subsidy pattern.

Two subsidy scenarios are proposed for bio-energy plants and farmers respectively, with reference
to the subsidy implementation research of Wang et al. [37] and Zhao et al. [38]. Under these scenarios,
several sub-scenarios are added. To explain, the two scenarios involve flat rate subsidy, linear
growth subsidy and adverse sloped subsidy (Table 7). Flat rate subsidy is set at a constant annual
rate with operational capacity. The quota of linear growth subsidy is proportional to the biomass
processing capacity of the power plant, whereas the quota of adverse sloped subsidy increases with
the volume of electricity generation and decreases when the operational scale reaches a certain level.
The objective of these scenarios is to use a subsidy to stimulate supply chain stakeholders to participate
in straw-to-electricity production. The subsidies are gradually reduced when the supply chain appears
to be relatively stable. The reduction takes place to avoid reliance on subsidies and reduce financial
implications of the government.

Table 7. Design of the dynamic subsidies.

Type Curves of Subsidies Equation
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For the sake of both the supply chain stakeholders and the government return, this study
selected the carbon emissions reduction per unit subsidy as the observation indicator to identify
the optimal subsidy mechanism. Figure 8 illustrates the carbon emissions reduction per unit subsidy
for the bio-energy plant and farmers. It is evident in Figure 8a,b that the flat rate subsidy is least
effective in emissions reduction at the onset of the motivation scheme, but it surpasses the other
two gradually around the twentieth year. In contrast, the linear growth and the adverse sloped are
more effective in emissions reduction at the onset, but their performances decline after the fourth year.
Overall, during the prediction cycle of thirty years, the linear growth subsidy is the most effective in
emissions reduction.

Figure 9 shows that when a linear growth subsidy is given to both parties, the carbon emissions
reduction per unit subsidy for farmers is evidently more effective than for the bio-energy plant.
The simulation results also confirm the research conclusions drawn by Xue and Wang, who have
pointed out that subsidies for farmers prevail over those for bio-energy plants [25].
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5.3. Discussion

The case example is employed to demonstrate the application of the hybrid method,
which promotes transition to supply chain of waste straws for energy utilization through the structural
optimization and motivational mechanism design, thus to enhance sustainability of the supply chain.
The results provide insight into construction of a reverse supply chain of agro-wastes for countries
under the Belt and Road Initiative, and facilitating the supply chain management practices. Based on
the results, even if the farmers are provided with a linear growth subsidy, the government is required
to continuously increase the subsidy. Hence, its financial burden cannot be mitigated effectively in
the long run. To solve this issue, the government may consider implementing policies that combine
taxation and subsidies for the stakeholders of the straw-to-electricity supply chain. Using subsidies
would ensure successful operations during the supply chain’s early stages. Additionally, collecting
taxes from stakeholders when the supply chain operations stabilize would cover the government
expense on subsidies.

Moreover, the actual supply chain operations involve the interactive behaviors among
stakeholders. For instance, whether the farmers are effectively receiving incentives is related to
how their interests coincide with the bio-energy plant. In this study, the subsidy only acts on the
stakeholders, such as the bio-energy plant and farmers, separately, instead of taking their interactions
into account. Studies have shown that coordination among stakeholders on the supply chain network
has great potential of increase of eco-efficiency [39]. Therefore, it is recommended that incentive
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policies apply to multiple stakeholders at the same time to maximize their synergistic effects and
enhance the sustainability of supply chain.

There are also some uncertainties in this study. Firstly, as this is a predictive study, the constructed
model may not be verified. Specifically, some changes in parameters are based only on empirical
assumptions. Secondly, the system boundaries of the straw-to-electricity supply chain are simplified.
Some intermediate stages are left out such as the cultivation of straw crops and the conversion of straw
into resources. This has uncertain impacts on the research results and should be discussed in depth by
further studies.

6. Conclusions

In conjunction with the Belt and Road Initiative, this study proposes a hybrid method of
multi-objective optimization and system dynamics simulation to combine the structural optimization
of a straw-to-electricity supply chain with its associated motivation mechanisms design. It obtains
optimal operations parameters by using total supply chain cost and carbon emissions minimization
as the objectives. Based on the optimal supply chain structure designed in this study, dynamic
government subsidy mechanisms are introduced to facilitate the supply chain management and
operations. Two scenarios are constructed with bio-energy plant subsidies and also ones for farmers.
In these scenarios, the subsidy schemes are further divided into three approaches: flat rate subsidy,
linear growth subsidy, and adverse sloped subsidy. Use of the system dynamics simulation reveals that
providing the farmers with the linear growth subsidy yields the relatively optimal outcome of carbon
emissions reduction. It is expected that the results may provide the evidence to guide the agro-wastes
reutilization and enhance the eco-efficiency of the supply chain management of countries along the
Belt and Road routes.

However, several limitations in this study can be improved by further studies. In terms of
incentive policies, this study merely considers the government subsidy and neglects other motivational
measures and combined policy instruments. In addition, the interactive behaviors among stakeholders
involving in straw power generation are omitted during modeling. Finally, the model constructed
in this study is static and neglects the seasonal characteristics of straw production as well as the
consequent changes in stock. Under the motivational mechanism, further studies may incorporate
more policy-related scenarios for analysis and adopt the game theory to simulate the interactions
among stakeholders. Researchers may also integrate the uncertainty simulation technique for further
supply chain optimization.
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Appendix A

operational capacity(t) = operational capacity(t-dt) + (capacity increment rate)dt
capacity increment rate = gap/adjusted time

Gap = expected capacity − operational capacity
adjusted time = GRAPH (investment rate)

(0.00, 40), (0.10, 36.33), (0.20, 33), (0.30, 29.5), (0.40, 26.17), (0.50, 22.67), (0.60, 19.17), (0.70, 15.68), (0.80, 12.18),
(0.90, 8.675), (1.0, 5.350)

investment rate = (profit increment rate −min(profit increment rate))/(max(profit increment rate) −
min(profit increment rate))

profit increment rate = revenue of electricity − Operational capacity price of agro-straw
economic profit of bio-energy plant(t) = Economic profit of bio-energy plant(t-dt) + (profit increment rate)

electricity production = Operational capacity·500
revenue of electricity= (demand increment for bioelectricity + electricity production)·0.75

marketing electricity price = 0.75 − subsidy electricity price
demand increment for bioelectricity = GRAPH (market electricity price)

(0.45, 298.50), (0.48, 270), (0.51, 240), (0.54, 210), (0.57, 180), (0.60, 150), (0.63, 118.5), (0.66, 90), (0.69, 60),
(0.72, 30), (0.75, 1.5)

Price of agro-straw = GRAPH (supply increment from farmers)
(0.80, 299), (0.92, 279), (1.04, 259), (1.16, 239), (1.28, 219), (1.40, 199), (1.52, 179), (1.64, 159), (1.76, 139),

(1.88, 119), (2.00, 100)
supply increment from farmers = if Revenue of farmers < 2700 Then low carbon consciousness of farmers

(0.9 − 0.086·0.001·Revenue of farmers)
Else low carbon consciousness of farmers·(0.147·10 − 3·Revenue of farmers + 0.272)

low carbon consciousness of farmers = (Carbon reduction −min(Carbon reduction))/(max(Carbon
reduction) −min(Carbon reduction))

carbon reduction(t) = Carbon reduction(t-dt) + (carbon reduction rate)dt
carbon reduction rate = 663.49·electricity production − 39.92·Operational capacity

revenue of farmers(t) = Revenue of farmers(t-dt) + (revenue increment rate)dt
revenue increment rate = (price of agro-straws + subsidy for farmers)·Operational capacity
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