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Abstract: In this paper, provincial panel data for China during 1995–2015 and the time substitution
data envelopment analysis (DEA) model were used to measure the influences of China’s carbon
emissions reduction policy on economic growth under various reduction targets and to determine
optimal economic growth and optimal carbon emissions of each province. In addition, this paper
empirically examines the factors that influence the optimal economic growth and carbon emissions.
The results indicate that not all provinces will suffer from a loss in gross domestic product (GDP)
when confronted by the constraints of carbon emissions reductions. Certain provinces can achieve a
win-win situation between economic growth and carbon emissions reductions if they are allowed to
reallocate production decisions over time. Provinces with higher environmental efficiency, higher per
capita GDP, smaller populations, and lower energy intensity might suffer from a larger loss in GDP.
Therefore, they should set lower carbon emissions reduction targets.

Keywords: carbon emissions reduction policy; optimal economic growth; optimal carbon emissions;
time substitution DEA model

1. Introduction

China’s economic transition has suffered from constraints generated by both resources and the
environment. With the acceleration of industrialization and urbanization and the upgrading of the
consumption structure, the demand of China’s energy has experienced a rapid increase. However,
the limitation of China’s domestic resource capacity has led to an increasing number of energy and
environmental problems on China’s economic growth. In pursuit of sustainable development, the
promotion of energy conservation and emissions reductions is a long-term, arduous task for China’s
national development strategy. China is actively investigating a development path and a mode of
building a conservation-oriented society. At the Copenhagen Climate Summit, China and other
contracting parties reached a binding agreement on greenhouse gas reductions in the post-Kyoto
era to reduce the intensity of carbon dioxide emissions per unit of gross domestic product (GDP)
in 2020 by 40–45% compared with that in 2005. The State Council’s “12th Five-Year Plan” and
“13th Five-Year Plan” for energy conservation and emissions reductions also clearly outlined specific
objectives and tasks related to conserving energy and reducing emissions. However, considering that
energy conservation and emissions reduction may slow economic growth, certain policymakers show
a lack of motivating power in energy conservation and emissions reductions.
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In this paper, we use the time substitution data envelopment analysis (DEA) model to analyze
the economic growth effect and optimal carbon emissions under the various constraints of carbon
emissions reduction targets. We want to discover what costs China must pay to achieve energy
conservation and emissions reduction targets and uncover China’s emissions reduction policy on
economic growth. What should China do to choose appropriate targets and design an optimal path for
energy conservation and emissions reduction? The structure of the remainder of the paper is organized
as follows: The next section provides a review of the relevant literature. Section 3 introduces the time
substitution approach under the directional distance function framework. Section 4 describes the
database used in this study. Section 5 discusses the estimated optimal GDP, the optimal carbon
emissions, and influencing factors in detail. Section 6 draws some conclusions and provides
policy implications.

2. Literature Review

The relationship between energy conservation, emissions reductions, and economic growth
has long been a research focus in environmental economics and growth economics. An extensive
body of literature focuses on the relationship among economic growth, energy conservation, and
emissions reductions. Most of these studies have reached a consensus that economic growth improves
both energy consumption and carbon emissions [1–3]. Nevertheless, when studies focus on how carbon
emissions exert influence on economic growth, the empirical results remain mixed and debatable.
In addition, very few analyses have been devoted to the case of China within China’s regional
panel framework. China has become the second largest economy in the world and its total carbon
emission ranks first in the world. Thus, it is very meaningful to figure out the impact of China’s
carbon emissions on economic growth. The Porter hypothesis argues that environmental protection
can improve the quality and technological capabilities of the environment [4,5]. The strong form of the
double dividend hypothesis also asserts that a green tax (such as carbon tax) does not only reduce
pollution emissions and improve the environmental quality, but also increases non-environmental
welfare and economic performance (economic efficiency or economic growth) [6,7].

The results from several studies support the argument that reducing carbon emissions and
conserving energy will inevitably lead to a loss of economic growth [8]. The economic estimates of
Stern [9] indicate that global GDP will shrink between 5% and 20% because of the impacts of climate
change unless emissions are reduced. These estimates have inspired a call for immediate action to
reduce greenhouse emissions by 30–70% in the next 20 years. A study by Chen [10] reaches a similar
conclusion: if carbon emissions remain unchanged compared with those levels in 1990, Taiwan’s GDP
will be reduced by 34%. Studies by Heil and Selden [11] and Jaffe et al. [12] have found a monotonically
increasing relationship between CO2 and GDP. Other studies have shown that energy conservation
and emissions reduction will not necessarily result in a decrease in the level of economic growth and
may potentially result in a win-win mode [13]. Ang [13] employs a co-integration test and determined
pollution and energy use are positively related to output in the long-run. Lise and Van Montfort [14]
reject the Environmental Kuznets Curve (EKC) hypothesis for the period from 1970 to 2002 using
the Engle-Granger co-integration approach. Auffhammer and Carson [15] also reject the static EKC
specification and indicate that a downturn is highly unlikely unless there are substantial changes
in China’s energy policies. Wei et al. [16] also find that the inverted U-shaped relationship between
per capita CO2 emissions and economic development level is not strongly supported. Based on the
methodology, most of the studies use three methods to test the relationship between energy use, carbon
emissions and economic growth. The first method is Granger causality testing and co-integration
analysis [17,18], used to test for unit roots, co-integration, and Granger causality. Al-Iriani [19] uses
panel co-integration and causality techniques to determine a unidirectional causality running from
GDP to energy consumption and no support for the hypothesis that energy consumption is the source
of GDP growth in the GCC countries. Lee and Chang [20] use panel unit root, heterogeneous panel
co-integration, and panel-based error correction models to determine that although economic growth
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and energy consumption lack short-run causality, there is long-run unidirectional causality running
from energy consumption to economic growth. Furthermore, there are a substantial number of
studies using Granger causality testing and co-integration analysis for different regions and countries,
such as [21], a study for Malaysia [22]; the ASEAN countries [23]; and Italy and the Middle East
countries [24]. The literature on the economic growth-energy consumption has been summarized
in [22,24].

The second method includes economy-oriented top-down models, such as computable general
equilibrium (CGE) models in order to measure the marginal abatement cost, which is typically
measured by the economic growth loss rate caused by emissions reductions. Böhringer et al. [25]
construct a marginal abatement cost model using policy analysis based on computable equilibrium.
Chen [26] derives China’s marginal abatement cost for carbon emissions for 2010, 2020, and 2030, and
the results of the scenario simulation show that compared with the baseline year, China’s marginal
abatement cost is expected to be a reduction rate ranging from 5 to 45%. Wang et al. [27] employ a
CGE model and reach the conclusion that China’s implementation of a carbon emissions reduction
policy will have negative impacts on GDP and employment, but will be conducive to energy efficiency
improvements. Zhang et al. [28] use a CGE model with global coverage that disaggregates China’s
30 provinces and includes energy system details, and they apply it to assess the impact of the current
binding provincial CO2 emissions intensity targets nationwide.

The third method uses shadow price approaches based on the Directional Distance Function
(DDF) to measure the marginal abatement cost. Färe et al. [29] employ DDF in quadratic form
and measured the shadow price of SO2 for coal-fired power plants in the U.S. in 1993 and 1997.
Xie et al. [30] employ a parametric quadratic DDF to investigate the inefficiency level, shadow price,
and substitution elasticity of Chinese industrial SO2 emissions from 1998 to 2011, and the results show
that the shadow price continuously and substantially increases throughout the period, which implies
that controlling additional SO2 emissions becomes costlier. Related studies include Coggins and
Swinton [31], Marklund and Samakovlis [32], Matsushita and Yamane [33], Rezek and Campbell [34],
Swinton [35]. For a comprehensive review on the use of efficiency models to estimate the shadow
prices of undesirable outputs, see [36]. In this paper, we use the time substitution DEA model instead
of the shadow price method to analyze economic growth in China. Our aim was to discover the costs
associated with achieving energy conservation and emissions reduction targets and reveal the potential
impacts of China’s energy conservation and emissions reduction policy on economic growth over the
course of the economic transition. Very few studies focus on this topic in China. Additionally, there
are many studies using empirical models, the shadow price model, or the CGE model to study the
Chinese emission-economic growth nexus (see Table 1) but, to our knowledge, this is the first paper
using the time substitution DEA method to analyze China’s regional problem.

Table 1. Summary of existing literature on emissions-economic growth nexus in China.

Author(s) Country Study Period Empirical Strategy

Wang et al. [27] China aggregated level 2010 CGE model
Chen [26] China aggregated level 2010, 2020, 2030 CGE model
Wang [37] 28 provinces 1995–2007 Empirical models
Meng [38] 30 provinces 1997–2009 Empirical models

Lee and Zhang [39] Chinese manufacturing industries 2009 Shadow price model
Du et al. [40] 29 province 1995–2009 Empirical models
Wei et al. [16] 29 provinces 1995–2007 DEA model
Bian et al. [41] 29 provinces 2010 Shadow price model
Zhou et al. [42] 29 provinces 1996–2005 Empirical model
Zhang et al. [28] 30 provinces, 2011–2015 CGE model

Du et al. [43] 30 provinces 2001–2010 Shadow price model
Jie et al. [44] 30 provinces 2006–2010 A two-stage network DEA model

Zhang et al. [45] Chinese manufacturing industries 1990-2012 Shadow price model
Du et al. [46] coal-fuelled power plants 2008 Shadow price model

Tang et al. [47] 30 provincial regions 2003–2012. Shadow price model
Zhang and Zhang [48] Shanghai Emission Trading Scheme 2013-2015 Empirical models
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The DEA method has been used by numerous researchers, including Chung et al. [49].
Lee et al. [50], and Boyd et al. [51], to estimate the directional output distance function and efficiency
and productivity changes associated with energy and environmental issues. The major advantage
of the DEA approach is that it does not need to impose a specific functional form on the underlying
technology [52]. However, because the DDF estimated via DEA is not differentiable, it is not well
suited for estimations via the shadow price method. Therefore, to use the DEA to analyze marginal
abatement costs and carbon reduction effects, we must develop a new method, which is named the time
substitution DEA. The time substitution DEA model was originally proposed by Färe et al. [53] and
Färe et al. [54], and it is an extension of the DEA model in terms of inter-temporal dynamics. Although
this model is rarely applied to economics research, it has great practical value in decision-making for
the optimal allocation of government resources. The time substitution DEA model assumes that if
resources are limited and can be inter-temporally allocated, then problems such as when to begin the
application of resources or inputs and the number of periods over which these resources should be
allocated can be resolved by the time substitution DEA model.

Compared with previous shadow price models, the time substitution DEA model has
two advantages. First, shadow price models can only be used to measure current temporal marginal
abatement costs, and they neglect the inter-temporal dynamic connection between carbon emissions
and economic growth. Therefore, measurements of potential losses of economic growth may be biased
because the reduction of carbon emissions generally corresponds to a period and not a time point.
Second, targets for the reduction of carbon emissions are often top-down compulsory constrained
targets. Although studies have investigated the impacts of carbon emissions on economic growth,
the shadow price method and co-integration method have not gone far enough, and a comparison of
the loss rates of economic growth under different constraints of carbon emissions reduction targets
have not been performed. This gap is not conducive for determining reasonable reduction targets for
carbon emissions.

Compared with available studies, this paper makes three contributions. First, this paper fully
considers the dynamic features of a carbon emissions reduction policy and employs additional
constraints in the time substitution DEA model to obtain a unique linear programming solution of the
optimal carbon emissions during each period in each province. Second, this paper incorporates carbon
emissions reduction targets into the analytical framework, fully considers the variability of carbon
emissions reduction targets, and analyzes the impacts of carbon emissions reduction on economic
growth and optimal carbon emissions under various constraints of carbon emissions reduction targets;
thus, it presents the process of obtaining an optimal carbon emissions reduction target based on the
realities of each province. Third, under the framework of the time substitution DEA model, this
paper measures not only the potential optimal GDP under the various constraints of carbon emissions
reduction targets, but also the optimal carbon emissions reduction to realize the potential optimal GDP
in each year for each province.

3. Method

The time substitution DEA model can be used in place of a DEA model regardless of whether
undesirable outputs are incorporated. However, when undesirable outputs are included, the DDF
method to solve the time substitution DEA model is preferable.

3.1. Undesirable Output DEA Model

Carbon dioxide is a type of greenhouse gas and can be considered an undesirable (bad) output.
Färe and Pasurka [55] called the technological structure between the “bad” product and the “good”
product the input “environmental technology.” Compared with traditional technologies, environmental
technology should be given a corresponding technological structure; that is, reducing pollutant
emissions may also result in a decrease in the “good” product output. This characteristic between
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pollutants and good products is referred to as jointly weak disposability, in other words, “good” and
“bad” products have the characteristic of a sliding scale, and “bad” products are inevitable byproducts.

P(x) = {(y, b) : x can prodcue (y, b)} (1)

All productive combinations of good outputs y and bad outputs b invested by x inputs can be measured
by the set P(x). Assuming that there are M desirable outputs represented by y ∈ RM

+ , J undesirable
outputs represented by b ∈ RJ

+, and N inputs represented by x ∈ RN
+ , then k = 1, . . . , K represents the

decision-making units, and t = 1, . . . , T represents the periods.
For the decision-making unit in period t, the production possibility can be expressed as follows:

Pt(xt
o) =

{
(y, b) : yt

m ≤
K
∑

k = 1
zt

kyt
km , m = 1, . . . , M

xt
on ≥

K
∑

k = 1
zt

kxt
kn, n = 1, . . . , N

bt
j =

K
∑

k = 1
zt

kbt
kj, j = 1, . . . , J

zt
k ≥ 0, k = 1, . . . , K, t = 1, . . . T

}
(2)

3.2. Directional Distance Function

To measure the efficiency of environmental technology, a DDF must be introduced. The
DDF reflects public attitudes toward environmental pollution, i.e., requiring both rapid economic
development and reduced environmental pollution. Based on the production possibility set, we create
the following DDF:

Do(x, y, b, g) = sup{β : (y, b) + βg ∈ P(x)} (3)

where g = (gy, gb) represents a direction vector. The undesirable output must possess jointly weak
disposability. Based on different forms of direction vectors, the intensity of environmental regulation
can be further divided as described below:

(1) Neutral environmental regulation, i.e., the direction vector is g = (gy, 0), which means that
the desirable outputs should be improved as much as possible in the event that undesirable outputs
remain unchanged.

(2) Strong environmental regulation, i.e., the direction vector is g = (gy,−gb), which represents
the conventional radial DDF and indicates that undesirable outputs (inputs) should be reduced, and
desirable outputs (inputs) should be increased at the same rate.

Many studies, such as Chung et al. [49], and Färe et al. [56], use this conventional DDF in
economics and environmental studies. Chen [57] and Chen and Delmas [58] indicate that the DDF
model environmental efficiency may improve by increasing its undesirable output, which is not a real
case, and the radial DDF tends to overestimate the efficiency score in the presence of a slack variable.
However, Zhang and Choi [52] indicate that the conventional radial DDF has been widely used to
measure environmental technical efficiency because it is closely related to the shepherd distance
function; therefore, it can easily provide a Farrell-type efficiency measure.

(3) No environmental regulation, which indicates that the undesirable outputs are not considered
and can be simplified as the general DEA-CCR model.
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Under the condition of strong environmental regulation, a DDF can employ the DEA method to
solve the following linear programming problem:

Do(xo, yo, bo) = maxβ
β,z

s.t. (1 + β)yt
om ≤

K
∑

k = 1
zt

kyt
km, m = 1, . . . , M; xt

on ≥
K
∑

k = 1
zt

kxt
kn, n = 1, . . . , N,

(1− β)bt
oj ≤

K
∑

k = 1
zt

kbt
kj, j = 1, . . . , J; zt

k ≥ 0; k = 1, . . . , K; t = 1, . . . , T

(4)

We can solve the linear programming problem on the condition of neutral environmental
regulation or no environmental regulation in a similar manner.

According to Färe et al. [56], Shephard’s output distance function is a special case of the DDF;
therefore, environmental efficiency can be written as follows:

ETEo = 1/[1 + Do(xo, yo, bo)] (5)

3.3. Time Substitution DEA Model

Based on the DEA model, we assume that the government expects to control the undesirable
outputs for the decision-making units o. In other words, the amount of undesirable outputs for the
decision-making units o is allowed to produce in t periods is less than bj, which can be expressed
as follows:

T

∑
t = 1

bt
oj ≤bj, j = 1, . . . , J (6)

where bj represents the allowed maximal emissions for j undesirable outputs under the constraint of
environmental regulations. In accordance with the foregoing general concepts of the time substitution
DEA model, decision-makers should determine when to start (τ0) and stop (τ0 + T0) producing the
undesirable outputs, thereby maximizing the desirable outputs (economic growth).

The time substitution DEA model can determine the optimal efficiency value in accordance with
the optimal input and output. Next, a method of allocating the limited inputs based on the optimal
efficiency value is determined. If there is only one desirable output and one undesirable output,
according to the undesirable output DEA model, the time substitution DEA model can be expressed
as follows:

max
zτ ,τ0,T0,bτ ,yτ

τ0+T0

∑
τ = τ0

yτ

s.t. yτ ≤
K
∑

k = 1
zτ

k yτ
k , xτ

n ≥
K
∑

k = 1
zτ

k xτ
kn, n = 1, . . . , N

bτ
j =

K
∑

k = 1
zτ

k bτ
kj, j = 1, . . . , J,

τ+T0

∑
τ

bτ
j ≤ bj

zt
k ≥ 0, k = 1, . . . , K, (τ, τ + T0) ⊆ (t = 1, . . . T)

(7)

As shown in Figure 1, we begin to input the resources from period τ0, and the entire process
of allocation lasts T0 periods. Accordingly, such resources will be allocated in the time interval
[τ0, τ0 + T0]. Figure 1 clearly shows two methods of moving the input to support [τ0, τ0 + T0]. First,
we can slide it horizontally, and if τ1 6= τ0 is selected, then the number of periods of production T0

is unchanged τ1 6= τ0; if τ1 < τ0 is selected, then production begins earlier; and if τ1 > τ0 is selected,
then production is delayed. Thus, the optimization problem in equation (7) can be solved in two steps.
The first step is to fix the initial time τ0 and determine the optimal number of periods T0 to maximize
the desirable output. The second step is to change the initial time τ0 and determine the optimal
desirable outputs one-to-one, which each correspond to τ0. By comparing these pairs of τ0 and T0 with
the information drawn from the first step, we can obtain the optimal τ∗, T*, b*, and y* disposability
and solve the optimal problem.
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We can solve the time substitution problem for each province for all possible starting periods τ0

and intervals T0. Because τ0 can take 17 values coinciding with 1995-2014, and T0 can take values
from 1 to 17 coinciding with production ending in 1996-2015.

4. Data

To estimate the time substitution DEA model, we need the input and output panel data for
29 provinces between 1995 and 2015. The panel database for the time substitution DEA model
includes the variables of one desirable output (regional gross output value), one undesirable output
(CO2 emissions), and three inputs (capital stock, labor force, and energy consumption).

Chongqing was promoted as China’s fourth municipality in China; this caused us to combine
Chongqing’s data from Sichuan Province. Energy input data for Tibet was not available for this research.
This paper selects GDP data from 29 provinces, municipalities directly under the central authority and
autonomous regions in China from 1995–2015, to represent the desirable outputs of these districts.
The associated carbon dioxide emissions are used to represent the undesirable outputs.

In recent years, many studies have concluded that incorporating energy as a part of an
intermediate input in the production process is appropriate. For instance, we have the well-known
KLEM model, in which the decomposition of inputs into capital, labor, energy, and intermediate
materials for the analysis of productivity growth was first proposed and applied to the post-war U.S.
economy by Jorgenson et al. [59], and subsequently used by many other researchers. Following that
study, energy consumption was introduced as an intermediate input and plays a role together with
labor and capital in the production function.

(1) Desirable output (GDP). The output data employed in this paper are obtained from the GDP
data of every province in China, and all GDP data are processed into more comparable data calculated
based on the fixed price in 1995 with the price adjustment index. (2) Physical capital investment.
In general, the perpetual inventory method is adopted to transfer the physical capital into material
capital stock. In China, there are two frequently used physical capital stock data: one is the data used
by Zhang et al. [60], and the other is the data used by Shan [61]. The data used by Shan Haojie was
adopted here, and this paper expands the data to the year 2015 according to the calculation method in
Shan’s article. (3) Labor input. Labor is measured by the effective labor time of nationwide employees.
However, because of the lack of statistical data for China’s average working time, this paper uses the
total number of employees in each of China’s provinces. The data from 1995 to 2008 are obtained
from the China Compendium of Statistics 1949–2008, whereas data after 2008 are obtained from the
China Statistical Yearbook. (4) Energy input. The energy consumption data are obtained from the
China Energy Statistical Yearbook. To compensate for the lack of Ningxia energy consumption data in
2001, the linear interpolation method is used. (5) Undesirable output (carbon emissions). Currently,
the frequently adopted method for the measurement of carbon emissions is the inventory-based
method presented in the Intergovernmental Panel on Climate Change (IPCC) Guideline for National
Greenhouse Gas Inventories. Following the IPCC [62], we estimated the CO2 emissions from the
burning of fossil fuels with the following formula:

CO2 =
17

∑
i = 1

Ei × CFi × CCi × COFi × (44/12) (8)

where i represents an index of different types of fossil fuels; the term 44/12 represents the ratio of the
mass of one carbon atom when combined with two oxygen atoms to the mass of an oxygen atom; and
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the variables Ei, CFi, CCi, and COFi represent the total energy consumption, the low calorific value of
fossil fuels, the unit fuel carbon content and the carbon oxidation factor of fuel i, respectively. The data
for provincial fuel consumption are obtained from the regional energy balance tables in the China
Energy Statistical Yearbooks. We define CFi × CCi × COFi × (44/12) as the carbon emissions factors.

Many studies have used carbon emissions factors from the IPCC [62], although the unit fuel
carbon content and low calorific value of different types of fossil fuels and the carbon oxidation factor
from IPCC [62], which is assumed to be 1, does not meet the reality of China. For greater accuracy in
the measurement outcomes, we choose to follow the Guidance for Compiling Provincial Greenhouse
Gas Emissions Lists published by the China National Development and Reform Commission (NDRC)
in May 2011 and relevant data from the Energy Balance Table by Region. In the guidebook, the NRDC
provides the actual value of fossil energy varieties in China. In this paper, the unit fuel carbon content
and carbon oxidation factor of different fossil energy are collected from the guidebook and low calorific
value of different fossil energy are collected from the China Energy Statistical Yearbook.

Most studies focus only on the three main types of fossil fuel (coal, crude oil, and natural gas)
when measuring carbon emissions via the inventory-based method; thus, emissions are estimated
by the sum of the product of those three primary energies and the corresponding carbon emissions
factors in a region. Although these primary energies are the main sources of carbon emissions, this
practice neglects the carbon emissions of other energy materials. To measure carbon emissions, we
incorporate the consumption of 17 energies: raw coal, cleaned coal, other washed coals, briquette coal,
coke, coke oven gas, other gases, crude oil, gasoline, kerosene, diesel, fuel oil, liquefied petroleum
gas, refinery dry gas, natural gas, other petroleum product, and other coke chemicals. In addition,
the consumption of heat supply, thermal power generation, and other secondary energies may also
generate carbon emissions; thus, we add the consumption of end-use energies, heat supply, and
thermal power generation, and the sum is used to represent the total energy of the 17 main types of
fossil fuel consumption Ei. The fossil energy carbon emissions factors are shown in Table 2 below.

Table 2. Carbon emissions factors of various energy sources.

Energy Carbon Emissions Factors Energy Carbon Emissions Factors

Raw Coal 1.90 Petroleum 2.98
Cleaned Coal 2.29 Kerosene 3.04

Other Washed Coal 0.91 Diesel 3.10
Briquette Coal 1.95 Fuel Oil 3.17

Coke 2.86 Liquefied Petroleum Gas 3.11
Coke Oven Gas 0.76 Refinery Dry Gas 3.01

Other Gas 0.89 Natural Gas 2.16
Crude Oil 3.02 Other Petroleum Products 2.53

Other Coking Products 3.83

5. Empirical Results and Analysis

5.1. Designs for Carbon Emission Reduction Targets

China’s government has established different carbon emissions targets for energy conservation
and emissions reduction in different periods, and several targets for energy conservation and emissions
reduction are presented below. First, the development planning of the “National 11th Five-Year Plan”
noted that the energy consumption of per unit GDP would be reduced by 20% and the discharge of
major pollutants would be reduced by 10% compared with 2005 levels by 2010. Second, the “Outlines
of the National 12th Five-Year Plan for Energy Conservation and Emissions Reduction”published by
the State Council mentioned that by 2015, the national chemical oxygen demands and sulfur dioxide
emissions would be controlled to 23.476 million tons and 20.864 million tons, which represent decreases
of 8% from the 25.517 million tons and 22.678 million tons observed in 2010, respectively. By 2015,
the national ammonia nitrogen and nitrogen oxide emissions would be controlled within 2.38 million
tons and 20.462 million tons, respectively, which represent decreases of 10% from the 2.644 million
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tons and 22.736 million tons observed in 2010. Third, the “Work Plan for Greenhouse Gas Emissions
Control during the National 12th Five-Year Period” published by the State Council determined the
target reduction of national carbon dioxide emissions per unit of GDP by 17% by 2015 from 2010 levels.
Fourth, pursuant to the commitment made by China at the Copenhagen Climate Summit, China will
reduce the intensity of carbon dioxide emissions per unit of GDP in 2020 by 40–45% compared with
that of 2005.

Taking these targets for energy conservation, emissions reductions and demands into account, we
set the following constraint reduction targets for carbon emissions.

For the first target for carbon emissions reduction, the total carbon emissions remain unchanged,
and only the inter-temporal allocation of carbon emissions is altered. For the second target for carbon
emissions reduction, to easily test the conclusion drawn by Stern [9] and conform to the targets in the
“Work Plan for Greenhouse Gas Emissions Control during the National 12th Five-Year Period”, we set
a reduction of 5% in carbon emissions. The third target for carbon emissions reduction: According
to the commitment made by China at the Copenhagen Climate Summit and the goal of a GDP
growth rate of up to 7.5% during the national 12th Five-Year Plan Period, we set a reduction of 15%
for carbon emissions. For the fourth target for the reduction of carbon emissions, to ascertain the
losses in economic growth from the reduction of carbon emissions, we set a reduction of 40% in
carbon emissions.

5.2. Measurement of Environmental Efficiency

Environmental efficiency is a key factor in determining the technological production frontier
and potential GDP of each province. According to the analysis set forth above, each province’s
environmental efficiency under different environmental regulations is measured by Equation (5).
Table 3 presents the results of the average annual environmental efficiency measurement of each
province over 21 years.

Table 3. Annual environmental efficiency in provinces (1995–2015).

Province ETE1 ETE2 ETE3 Province ETE1 ETE2 ETE3

Beijing 0.92 0.95 0.84 Henan 0.67 0.73 0.56
Tianjin 1.00 1.00 1.00 Hubei 0.67 0.75 0.61
Hebei 0.66 0.67 0.58 Hunan 0.73 0.81 0.69
Shanxi 0.82 0.59 0.49 Guangdong 1.00 1.00 0.99

Inner Mongolia 0.95 0.61 0.54 Guangxi 0.79 0.85 0.77
Liaoning 1.00 1.00 1.00 Hainan 0.97 0.98 0.93

Jilin 0.88 0.70 0.66 Sichuan 0.80 0.87 0.73
Heilongjiang 0.86 0.85 0.82 Guizhou 0.52 0.60 0.37

Shanghai 1.00 1.00 1.00 Yunnan 1.00 1.00 1.00
Jiangsu 0.98 0.96 0.93 Shaanxi 0.58 0.70 0.51

Zhejiang 0.95 0.94 0.93 Gansu 0.32 0.61 0.31
Anhui 1.00 0.98 0.92 Qinghai 0.44 0.67 0.40
Fujian 1.00 1.00 1.00 Ningxia 0.86 0.57 0.43
Jiangxi 0.77 0.77 0.70 Xinjiang 0.60 0.66 0.54

Shandong 0.78 0.78 0.70 Nation 0.81 0.81 0.72

Notes: ETE1 is the measurement result under a neutral environmental regulation, ETE2 is the measurement result
under a strong environmental regulation, and ETE3 is the measurement result under no environmental regulation.

Table 3 shows that the measurement results of these three technical efficiencies under different
environmental regulations exhibit few differences. The provinces consistently located at the production
frontier of environmental efficiency are Tianjin, Liaoning, Shanghai, Fujian, Guangdong, and Yunnan.
The provinces with relatively low environmental efficiency are Shanxi, Inner Mongolia, Guizhou,
Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang. The environmental efficiency of the remaining
provinces fall between these two groups. The provinces with relatively low environmental efficiency
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are mainly the central and western provinces, whose low technical environmental efficiency are
caused by their smooth economic growth and low rate of energy utilization efficiency. This opinion is
also supported by Hu and Wang [63]. Apart from Yunnan, the provinces situated at the production
frontier of environment efficiency are generally economically prosperous provinces located in Eastern
China whose high-technical environmental efficiency could be caused by their rapid economic growth,
relatively reasonable industrial structure, and high rate of energy utilization efficiency.

5.3. Measurement of Optimal GDP

According to Equation (7), we can obtain the optimal y* for each year. Thus, we can calculate the
optimal GDP that each province can reach under different reduction targets for carbon emissions by

employing the equation OptimalGDP =
21
∑

t = 1
y∗. The measurement results are presented in Table 4.

By comparing the levels of optimal economic growth under various constraints of carbon
emissions in Table 4, the following conclusions can be reached:

First, if carbon emissions reductions do not occur, and only the resource allocation over the past
21 years is changed, then the following is observed: output0 ≥ sum GDP. In other words, for every
province, the optimal GDP would be larger than the actual GDP. The optimal GDP in Guizhou and
Shanxi would be twice the actual GDP, which indicates that, in many provinces, considerable room is
available for reducing carbon emissions. If carbon emissions are reasonably allocated, then economic
growth can be promoted through the effective allocation of resources.

Second, the data in Table 4 show that output40≤ output15≤ ouput5≤ output0. Carbon emissions
act as an output of economic activities; therefore, the reduction targets of carbon emissions inevitably
constrain the level of economic activities, thereby resulting in a decrease in total economic output.
As a result, a larger reduction of carbon emissions will cause a larger loss of economic growth. If the
reduction of carbon emissions were increased from 5% to 15%, then the average loss rate of GDP would
be 2.83%. If the reduction of carbon emissions were increased from 15% to 40%, then the average loss
rate of GDP would be 18.66%. When only the optimal GDP under various constraints of reduction
targets for carbon emissions is considered, and the actual GDP is neglected, if the resources can obtain
an effective allocation and the time is substitutable, then a win-win effect between the reduction of
carbon emissions and economic growth might not occur, and the Porter hypothesis or the double
dividend hypothesis may not be applicable. However, if an efficiency loss occurs because the resources
is not effectively allocated, a win-win effect between the reduction of carbon emissions and economic
growth should still occur, and the two hypotheses would be suitable in China.

Third, by comparing the optimal and actual GDP, we find that, in most provinces, a dilemma
does not occur between the reduction of carbon emissions and economic growth, and the results of
these provinces support the Porter hypothesis or the double dividend hypothesis. In other words,
a win-win effect occurs between the reduction of carbon emissions and economic growth; thus,
a reduction of carbon emissions will contribute to an increase in the GDP. The provinces supporting
the two hypotheses are Hebei, Shanxi, Inner Mongolia, Jilin, Heilongjiang, Jiangxi, Shandong, Henan,
Hubei, Hunan, Guizhou, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang. The provinces that do
not support the two hypotheses are Tianjin, Liaoning, Shanghai, Fujian, Guangdong, and Yunnan.
These provinces have obtained an average decrease of 1.45% in potential GDP compared with the actual
GDP under a reduction target for carbon emissions of only 5%. The validity of the two hypotheses
in certain provinces is related to the target size of the carbon emissions reductions, which applies to
the following provinces: Beijing, Jiangsu, Anhui, Guangxi, Hainan, and Sichuan. Except for Hainan,
the two hypotheses in all of these provinces is valid under reduction targets for carbon emissions of
5% and 15%. However, when the reduction target for carbon emissions is increased to 40%, the two
hypotheses are invalid.
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Table 4. Total amount of optimal GDP measurement under different carbon emissions reduction targets (1995~2015) (Unit: billion yuan).

Province SumGDP Output0 Output5 Output15 Output40 Province Sum GDP Output0 Output5 Output15 Output40

Beijing 104,995.3 113,082.9 110,771.5 105,787.2 88,971.25 Henan 220,019.4 376,806 376,806 376,675.2 314,877.6
Tianjin 91,608.26 91,608.26 91,358.6 896,93.48 78,870.88 Hubei 160,318.2 251,826.8 251,683 244,115.3 197,206.8
Hebei 207,374.1 360,833.8 360,833.8 360,413.4 333,373.7 Hunan 156,393.3 215,877.6 212,250.4 202,167.3 161,350.3
Shanxi 74,741.92 159,620.8 159,620.8 159,620.8 158,137.6 Guangdong 457,341.7 458,476.8 455,707.1 433,267.2 338,740.9

Inner Mongolia 89,309.64 161,985.5 161,985.5 161,985.5 161,985.5 Guangxi 104,002.6 137,351.1 135,854.4 128,051.8 100,827.5
Liaoning 194,466.5 194,466.6 193,618.2 189,055.2 164,489.4 Hainan 22,786.49 24,878.32 24,103.68 22,309.05 16,976.21

Jilin 85,807.44 126,961.7 126,961.7 126,961.7 121,869.2 Sichuan 264,682.3 305,169.1 299,483.5 285,827.5 230,632.3
Heilongjiang 130,995.4 160,290.9 160,252.3 159,608.2 144,099.2 Guizhou 43,793.07 114,666.1 114,666.1 114,138.8 101,422.8

Shanghai 183,349.5 183,349.5 180,762.1 172,897.8 142,625.7 Yunnan 75,435.63 75,435.63 73,356.44 69,084.55 56,522.93
Jiangsu 428,517.8 442,910 442,910 441,046.2 374,349.7 Shaanxi 80,401.38 146,654 146,654 146,429.9 125,683.7

Zhejiang 275,062.6 293,854 293,435 283,407 227,765 Gansu 37,204.18 116,171.3 116,171.3 115,092.7 92,793.77
Anhui 133,859.5 139,420.5 139,420.5 137,752.3 121,971.1 Qinghai 12,278.5 29,651.72 29,207.03 27,861.59 22,372.68
Fujian 171,992.2 171,992.2 167,216.9 156,363.9 121,649.7 Ningxia 12,928.73 32,641.42 32,641.42 32,641.42 32,641.42
Jiangxi 87,117.18 119,674 119,674 119,610.5 106,829 Xinjiang 49,248.28 98,128.82 98,125.62 97,057.69 87,987.06

Shandong 403,930.9 560,955.5 560,955.5 554,048.1 472,746.4 National Sum 4,359,962 5,664,741 5,636,487 5,512,971 4,699,769

Notes: sumGDP is the actual sum GDP of each province from 1995 to 2015. Outuput0 represents the optimal GDP in that only the resource allocation is changed under no constraint of
reduction targets for carbon emissions. Output5 refers to the optimal GDP under the constraint of a reduction target for carbon emissions of 5%. Output15 refers to the optimal GDP under
the constraint of a reduction target for carbon emissions of 15%. Output40 refers to the optimal GDP under the constraint of a reduction target for carbon emissions of 40%.



Sustainability 2018, 10, 1543 12 of 23

Certain provinces support two hypotheses, while others do not because certain provinces have
low environmental efficiency and their energy consumption cannot be effectively utilized, and
under the framework of the time substitution DEA model, the GDP’s increasing amplitude caused
by the promotion of environmental efficiency exceeds the GDP’s decreasing amplitude caused by
resource constraints. Therefore, a win-win effect might occur between the reduction of carbon emissions
and economic growth in the Porter hypothesis or the double dividend hypothesis. However, once the
resources are effectively utilized, neither an increase in GDP caused by the promotion of environmental
efficiency nor a win-win effect between the reduction of carbon emissions and economic growth in the
Porter hypothesis or the double dividend hypothesis will occur.

5.4. Measurement of Optimal Carbon Emissions

The optimal carbon emissions b* of each province can be measured according to Equation (7).
The results are shown in Figure 2.

By comparing the optimal carbon emissions under various limits of carbon emissions reductions
and actual carbon emissions for each province, we can draw the following conclusions:

First, to achieve the optimal output, each province must have implemented the carbon emissions
reduction policy from 1995 to 2015. This criterion indicates that the implementation of energy
conservation and emissions reduction cannot be delayed, and greater economic growth can be
completed only by implementing the constraints of carbon emissions reduction over a relatively
long period. If the period is too short, then fewer paths will be available to reduce carbon emissions,
and the potential optimal output will not be reached.

Second, a comparison of the optimal carbon emissions and actual carbon emissions shows that
the actual carbon emissions of several provinces, such as Beijing, are larger than the optimal carbon
emissions under a carbon emissions reduction limit of 5% before 2000, however, the findings for
the two emissions are reversed after 2000. This finding indicates that optimal carbon emissions are
not always uniformly reduced. In addition, based on the time substitution and principle for the
inter-temporal allocation of resources, we must fully consider the realities of each province in each
year and, thus, guarantee the minimum loss of economic growth.

Third, based on the summarized results for the optimal carbon emissions under different carbon
emissions reduction limits, the entirety of each province’s optimal carbon emissions are not equal
to the constrained carbon emissions bj, and certain provinces’ optimal carbon emissions are even
smaller than the targets set for carbon emissions. Based on this conclusion, we assume that the optimal
carbon emissions in each situation are all smaller than the constrained carbon emissions bj, and we
define the potential carbon emissions reductions of this province will be the largest. If the optimal
carbon emissions are in the range of 5% to 15% of the constrained carbon emissions bj, we then define
the potential of this province’s carbon emissions reduction as relatively large. If the optimal carbon
emissions are all less than 5% of the constrained carbon emissions, we define the potential carbon
emissions reduction of this province as average potential. Finally, if the optimal carbon emissions
in each situation are all equal to the constrained carbon emissions bj, we define the potential carbon
emissions reduction of this province as a relatively low potential. Therefore, the following conclusions
are drawn:

The province with the largest potential for carbon emissions reduction is Inner Mongolia.
The provinces with a relatively large potential for carbon emissions reduction are Shanxi, Jilin,

and Ningxia.
The provinces with an average potential for carbon emissions reduction are Hebei, Jiangsu, Anhui,

Jiangxi, Shandong, Henan, Guizhou, and Shaanxi.
The provinces with a relatively low potential for carbon emissions reduction are Beijing, Tianjin,

Liaoning, Heilongjiang, Shanghai, Zhejiang, Fujian, Hubei, Hunan, Guangdong, Guangxi, Hainan,
Sichuan, Yunnan, Gansu, Qinghai, and Xinjiang.
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The provinces with a larger potential for carbon emissions reduction are almost all western
provinces, and the provinces with a relatively low potential for carbon emissions reduction are
mostly eastern provinces. Wei, Ni, and Du [16] also find that the eastern region has the least
inefficient emissions and the highest marginal abatement costs, and the western region has the largest
potential reduction capability and the lowest marginal costs associated with reducing CO2 emissions.
Wang et al. [64] use the ZSG-DEA model and find that achieving both the emissions intensity reduction
and the energy intensity reduction targets will require the provinces of Ningxia, Inner Mongolia,
Shanxi, and Qinghai to shoulder heavier burdens of more than 60%; the provinces of Anhui, Jiangxi,
Jiangsu, Sichuan, Shaanxi, and Hainan to shoulder comparatively light burdens below 30%; and the
remaining Chinese regions to shoulder medium reduction burdens between 30% and 60%.

5.5. Analysis of Influencing Factors for the Potential GDP Loss Rate and Optimal Rate of Carbon Emissions

After obtaining the optimal GDP and optimal carbon emissions via measurements, identifying
the influencing factors will provide definite objects for the establishment of carbon emissions
reduction targets. For this purpose, we employed a regression analysis to identify the influencing
factors of the potential GDP loss rate and optimal rate of carbon emissions.

A number of studies have analyzed the influencing factors of carbon emissions. For example, Wei,
Ni, and Du [16] use the initial income levels, the share of the heavy industry sector in the economy, the
share of the tertiary industry in GDP, the share of coal in the total energy, and the share of international
trade in GDP to analyze the CO2 abatement potential. Additionally, Wei, Ni, and Du [16] use the per
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capita GDP, energy consumption structure, industry structure, urbanization level, technology progress,
and trade openness to analyze the forecasting CO2 emissions. Many studies focused on the influencing
factors of carbon emissions and optimal GDP have drawn on the STIRPAT equation proposed by
York et al. [65]. The equation indicates that carbon emissions are primarily influenced by environmental
pressure, population size, the degree of affluence, and the technology level. Depending on the equation,
this paper replaces the technology level with environmental efficiency, the degree of affluence with per
capita GDP, population size with the population in each province, and environmental pressure with
energy intensity. Thus, the following regression model is proposed:

LGDPit = β0 + β1 ln ETEit + β2 ln PGDPit + β3 ln Pit + β4 ln EGit + µit
GInputit = β0 + β1 ln ETEit + β2 ln PGDPit + β3 ln Pit + β4 ln EGit + µit

(9)

where LGDP represents the potential economic growth rate of loss, wherein
LGDPit = SumGDPit/Outputit; SumGDP represents the sum of the actual GDP; Output
represents the optimal output, and the ratio between them represents the potential GDP loss rate,
wherein a larger ratio may represent a larger relative optimal output of the actual GDP and larger
actual GDP loss rate; GInputit represents the growth rate of optimal carbon emissions, wherein
GInputit = Inputit/CO2it and Input represent the optimal carbon emissions under the condition of
optimal output. CO2 represents the actual carbon emissions, and larger values of GInput indicate that
more CO2 should be exhausted based on the original actual carbon emissions if the optimal output
is reached; PGDP represents per capita GDP; P represents the total population scale; EG represents
energy intensity, which is found by dividing the total amount of energy consumption by the total
GDP; ETE represents the technology efficiency value; i represents the province; t represents the year;
we also control time effects; β represents the coefficient term; and µ represents the residual term.
This paper employs the fixed effect model of panel data to test the influences of the above factors on
the optimal output and optimal carbon emissions. Firstly, we use variance inflation factors (VIFs) to
test for multicollinearity and find that the VIF value between all independent variables is less than 2;
therefore, multicollinearity is not observed. We then use the Hausman test to determine whether to
use a fixed effects model or random effects model. Based on the Hausman test result, we select the
fixed effects model to conduct the analysis. To rule out the heteroscedasticity, we also use White-Huber
robust standard errors fixed-effects estimator. The regression results are shown in Table 5:

Table 5 shows the influences of different factors on the optimal GDP loss and the optimal rate of
carbon emissions.

(1) Environmental efficiency. Most previous studies have neglected the influence of environmental
efficiency on carbon emissions; however, this type of variable has been added into the analysis in
this paper. As shown in Table 5, environmental efficiency has a significantly positive influence on the
potential optimal GDP, the potential loss rate and the optimal rate of carbon emissions. This conclusion
explains why the win-win effect of the Porter hypothesis or the double dividend hypothesis could
occur in certain provinces but not in others. Higher environmental efficiency can contribute to higher
resource utilization efficiency. In this case, if certain constraints of carbon emissions reductions are
provided, then additional GDP losses will not occur. In addition, higher environmental efficiency
associated with reaching the optimal output under the foregoing condition corresponds to a greater
amount of carbon emissions because of the higher energy resource utilization and higher the optimal
carbon emissions. If more energy resources are input during the years with lower environmental
efficiency, then the carbon emissions will not be fully utilized, and low utilization efficiency will
inevitably result in a failure to reach the optimal GDP output.

(2) Per capita GDP. Although per capita GDP significantly increases the potential optimal GDP loss
rate, it significantly decreases the optimal carbon emissions. This conclusion indicates that provinces
with a higher per capita GDP will incur greater GDP losses once the constraints of carbon emissions
reductions are implemented. Therefore, to achieve the potential optimal GDP, provinces with a higher
per capita GDP should reduce carbon emissions smaller than those provinces that have higher living
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standards and demands for energy; therefore, the constraints for carbon emissions reductions will
cause a larger output decrease compared with provinces with a lower per capita GDP (to some extent).
Similarly, provinces with a higher per capita GDP will generally have larger energy demands; therefore,
the amount of the carbon emissions that can be reduced will not be large.

(3) Population. The population scale significantly reduces the potential optimal GDP loss rate and
significantly enlarges the optimal carbon emissions. This conclusion indicates that provinces with
larger population scales will obtain smaller GDP losses when certain constraints of carbon emissions
reductions are provided and, accordingly, more carbon emissions on an original basis are required.
Moreover, in a given region, a greater population may correspond to the increased production of
carbon emissions to meet the demand of economic activities. In general, provinces with a larger
population are also large energy consumers. Furthermore, provinces with a low level of economic
development often have relatively low resource utility efficiency. In this case, greater carbon emissions
reductions can be achieved, and a lower GDP loss rate may occur under the constraints of carbon
emissions reductions. In addition, because provinces with larger population scales and higher energy
consumption have relatively large carbon emissions, their ability to reduce carbon emissions and
achieve optimal carbon emissions will be considerable.

(4) Energy intensity. Energy intensity significantly reduces the potential optimal GDP loss rate
but has a non-significant influence on optimal carbon emissions, which is likely because the provinces
with higher energy intensity have relatively high energy consumption per unit GDP, thereby resulting
in relatively low energy utilization efficiency. In addition, the provinces in China with higher energy
intensity generally have relatively high energy consumption, which results in large carbon emissions,
low technical environmental efficiency, and a considerable ability to reduce carbon emissions.

These findings summarizing the foregoing analysis provide decision-makers with suggestions for
setting reduction targets for carbon emissions. Decision-makers should set higher reduction targets
for carbon emissions in provinces with lower environmental efficiency, smaller per capita GDP, larger
population scales, and higher energy intensity. These findings indicate that the realities of each
province should be considered when setting reduction targets for carbon emissions. Considering that
provinces have different environmental efficiency levels, per capita GDPs, and population scales, a
uniform reduction target for carbon emissions would require certain provinces to incur relatively large
losses in economic growth when implementing carbon emissions reduction policies.

Finally, to ensure that our results are robust to model selection, we conduct several robustness
checks. We find that the model showed heteroscedasticity, serial correlation, and cross-sectional
dependence. In the case of heteroscedasticity, serial correlation, and cross-sectional dependence,
the fixed-effects model estimator is biased. In order to obtain unbiased estimators, we use
panel-corrected standard error (PCSE) estimators (a panel-corrected when the errors are assumed to be
contemporaneously correlated and panel heteroscedastic) as suggested by Beck and Katz [66]. For a
better comparison, Driscoll and Kraay [67] standard errors for coefficients estimated by fixed-effects
(within) regression is utilized. The Driscoll and Kraay [67] standard errors are robust to disturbances
being heteroscedastic, autocorrelated, and cross-sectionally dependent. The results are shown in
Tables 6 and 7.

As we can see in Tables 6 and 7, comparing to Table 5, although the significance level of some
coefficients, such as PGDP in Table 6 with the Driscoll-Kraay estimator is decreasing, but the main
results still remain consistent, so we could say with strong evidence the results show that the choice
of the estimation methods does not affect the robustness of our results. Our results can rule out the
heteroscedasticity, serial correlation, and cross-sectional independence.
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Table 5. Regression results for factors influencing the potential GDP loss rate and optimal rate of carbon emissions.

Explaining Variable

Explained Variable
LGDP0 LGDP5 LGDP15 LGDP40 GIput0 GIput5 GIput15 GIput40

ETE
0.295 *** 0.303 *** 0.326 *** 0.469 *** 2.817 ** 2.556 ** 2.046 * 1.131 **

(3.96) (3.88) (3.64) (3.16) (2.66) (2.31) (1.83) (2.75)

PGDP
0.0669 * 0.0641 ** 0.0523 * −0.0229 −0.357 ** −0.295 * −0.237 −0.459 *
(1.72) (2.18) (1.87) (−0.24) (−2.40) (−1.70) (−0.75) (−1.76)

P
−0.0409 −0.0365 −0.0200 0.0828 0.208 0.510 * 0.923 ** 0.567 *
(−0.53) (−0.46) (−0.24) (0.68) (0.70) (1.73) (2.37) (1.95)

EG
−0.0626 ** −0.0624 ** −0.0602 * −0.0419 0.175 0.0786 −0.184 * −0.357 **

(2.11) (−2.06) (−1.85) (−0.77) (1.02) (0.37) (−1.78) (−2.59)

Constant
1.203 * 1.168 * 1.029 0.163 −0.447 −2.936 −6.246 ** −4.112 *
(2.00) (1.90) (1.56) (0.17) (−0.20) (−1.16) (−2.13) (−1.85)

Time dummies Control Control Control Control Control Control Control Control

R2 0.477 0.478 0.492 0.646 0.331 0.269 0.289 0.480

Hausman Value 165.23 425.43 225.56 53.28 130.76 107.54 112.63 109.35

F value 21.15 21.26 22.45 42.32 11.46 8.511 9.398 21.40

No. obs. 609 609 609 609 609 609 609 609

Notes: *** denotes significance at the 1% level. ** denotes significance at the 5% level. * denotes significance at the 10% level.
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Table 6. Robustness checks result for Factors influencing the potential GDP loss rate.

Explaining Variable

Explained Variable
LGDP0 LGDP5 LGDP15 LGDP40 LGDP0 LGDP5 LGDP15 LGDP40

Method Panel-corrected standard error(PCSE) Driscoll−Kraay estimator

ETE
0.0678 *** 0.0686 *** 0.0603 *** 0.0655 *** 0.288 *** 0.290 *** 0.290 *** 0.242 ***

(4.93) (4.98) (4.55) (3.77) (4.34) (4.35) (4.29) (2.86)

PGDP
0.102 *** 0.0986 *** 0.0850 *** 0.0924 *** 0.00673 0.00656 0.00661 0.0234 *

(7.24) (7.49) (5.82) (2.65) (1.64) (1.56) (1.46) (1.94)

P
−0.000875 −0.00144 0.0200 0.132 *** −0.113 *** −0.108 *** −0.0826 *** 0.0840 *

(−0.04) (−0.07) (0.84) (3.00) (−7.63) (−6.73) (−3.81) (1.86)

EG
−0.0458 *** −0.0503 *** −0.0419 *** −0.0284 *** −0.0542 *** −0.0568 *** −0.0665 *** −0.134 ***

(−6.83) (−7.66) (−5.61) (−2.94) (−9.40) (−8.67) (−6.61) (−3.34)

Constant
1.017 *** 0.897 *** 0.889 *** −0.0831 1.725 *** 1.679 *** 1.483 *** 0.171
(51.33) (5.18) (4.43) (−0.24) (15.21) (13.81) (8.91) (0.48)

Time dummies Control Control Control Control Control Control Control Control

R2 0.996 0.997 0.996 0.982 0.453 0.453 0.450 0.466

F/Wald value 5132307.6 1876486.0 565231.3 71603.3 403.7 360.6 374.3 52.30

No. obs. 609 609 609 609 609 609 609 609

Notes: *** denotes significance at the 1% level. * denotes significance at the 10% level.
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Table 7. Robustness checks result for factors influencing the optimal rate of carbon emissions.

Explaining Variable

Explained Variable
GIput0 GIput5 GIput15 GIput40 GIput0 GIput5 GIput15 GIput40

Method Panel-corrected standard error(PCSE) Driscoll-Kraay estimator

ETE
3.617*** 3.465*** 3.132*** 1.097*** 2.631*** 2.443*** 2.197** 0.925***
(11.15) (10.18) (9.51) (4.89) (3.27) (2.90) (2.65) (3.42)

PGDP
−0.544*** −0.384** −0.703*** −0.279 −0.0834*** −0.0952*** −0.104** −0.0731
(−3.83) (−2.28) (−3.09) (−1.57) (−3.01) (−3.19) (−2.62) (−1.37)

P
−0.0291 0.488* 0.605* 0.717*** 0.479** 0.729*** 1.121*** 0.973***
(−0.11) (1.89) (1.90) (3.76) (2.59) (2.98) (3.87) (9.51)

EG
0.414*** 0.283*** 0.163 −0.230** 0.0926 −0.00552 −0.163* −0.547***

(4.85) (2.86) (1.42) (−2.01) (1.22) (−0.07) (−1.75) (−7.62)

Constant
1.179 −2.681 −3.645 −4.790*** −2.406* −4.462** −7.706*** −6.851***
(0.63) (−1.43) (−1.58) (−3.47) (−1.73) (−2.33) (−3.40) (−8.96)

Time dummies Control Control Control Control Control Control Control Control

R2 0.783 0.758 0.651 0.511 0.310 0.251 0.274 0.370

F value 12984.6 22194.3 2851.2 6266.8 13.20 17.14 45.12 70.59

No. obs. 609 609 609 609 609 609 609 609

Notes: *** denotes significance at the 1% level. ** denotes significance at the 5% level. * denotes significance at the 10% level.
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6. Conclusions and Policy Implications

This paper employed the newly-developed time substitution DEA model to measure the economic
growth effect and optimal carbon emissions under the constraints of reduction targets for carbon
emissions in China in recent decades and used the model to analyze the factors that influence optimal
carbon emissions. According to the empirical results, the following conclusions can be drawn: First,
a relationship is observed between carbon emissions and economic growth; thus, larger constraints on
reduction targets for carbon emissions may result in a lower level of potential optimal economic growth.
Second, China currently has a considerable potential for carbon emissions reduction and can experience
a win-win situation between the reduction of carbon emissions and economic growth by changing
its inter-temporal resource allocation. However, if China’s technical environmental efficiency reaches
the optimum, a dilemma between the reduction of carbon emissions and economic growth will occur.
Third, a dilemma might occur between the reduction of carbon emissions and economic growth in
provinces that have a relatively high technology efficiency. Fourth, to achieve the potential optimal
GDP under any constraint for carbon emissions, carbon emissions reduction policies should be
implemented immediately.

Our results have important implications for policymakers:
First, improving environmental efficiency is a key factor for achieving the potential optimal output,

which indicates that high environmental efficiency and no waste of energy and resources in certain
provinces would lead to a high level of economic growth losses. As a result, provinces with higher
environmental efficiency should be given smaller reduction targets for carbon emissions, and provinces
with lower environmental efficiency should be given larger reduction targets for carbon emissions. The
realities of each province should be fully considered when formulating policies for carbon emissions
reductions, and a uniform policy for carbon emissions reductions is inappropriate because such a policy
could cause larger economic growth losses in provinces with lower technical environmental efficiency.

Second, because of the relatively low opportunity costs for the reduction of carbon emissions,
governments can reasonably allocate energy resources and make reasonable plans for carbon emissions
reductions, especially by setting reasonable reduction targets for carbon emissions at different
time nodes. In this way, the win-win situation of reducing the pollutant emissions without slowing
down economic growth can be achieved.

Third, this paper demonstrated the strong likelihood of realizing a win-win situation between a
reduction in carbon emissions and economic growth. Therefore, government decision-makers should
fully predict future carbon emissions and the level of economic growth, reasonably evaluate the
costs of implementing a carbon emissions reduction policy, and set appropriate reduction targets for
carbon emissions.

Fourth, carbon reduction is tightly related to the sustainable development of the economy
and society. Moreover, the overwhelming pressure on the natural environment indicates the urgency
to limit carbon emission. China’s carbon policy is undoubtedly an important factor of its economic
development, even that of the whole world. Our research found that it takes time to relieve the
negative influence of carbon limitation on economic growth so that the earlier carbon reduction is put
into effect, the more chances we get to find the optimal carbon reduction paths and further accomplish
the smallest GDP loss.
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