Integrated Harvest and Distribution Scheduling with Time Windows of Perishable Agri-Products in One-Belt and One-Road Context
Abstract
:1. Introduction
2. Literature Review
3. Model Formulation
3.1. Problem Statement
3.2. Objective Function
3.2.1. Average Quality Decay Cost in the Harvest Phase
3.2.2. Average Quality Decay Cost in the Distribution Phase
3.2.3. Distribution Cost
3.3. Constraints
3.4. Programming Model
4. Numerical Simulation
4.1. Example Setting
4.2. Numerical Results
4.3. Sensitivity Analysis
4.3.1. Sensitivity Analysis on Quality Decay Rate
4.3.2. Sensitivity Analysis on Time Windows
4.3.3. Sensitivity Analysis on Vehicles
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. Explanations of Parameters and Decision Variables for the Proposed Model
References
- Fresh E-Commerce Trade Size in 2016 and Development Trend Prediction Analysis in 2017. Available online: http://www.askci.com/news/hlw/20161205/17582081104.shtml (accessed on 28 February 2018).
- Is the Loss Rate of Fresh Agri-Products in China is 5 Times as High as Developed Countries? Available online: http://www.chyxx.com/research/201801/601051.html (accessed on 28 February 2018).
- Jigang Wei: Why Logistics Costs are High in China? Available online: http://www.sz.gov.cn/szsfzyjzx/jczx/zjgd_1/201707/t20170714_7876798.htm (accessed on 28 February 2018).
- Giri, B.C.; Chakraborty, A.; Maiti, T. Quality and pricing decisions in a two-echelon supply chain under multi-manufacturer competition. Int. J. Adv. Manuf. Technol. 2015, 78, 1927–1941. [Google Scholar] [CrossRef]
- Ghare, P.M. A model for an exponentially decaying inventory. J. Ind. Eng. 1963, 14, 238–243. [Google Scholar]
- Rong, A.; Akkerman, R.; Grunow, M. An optimization approach for managing fresh food quality throughout the supply chain. Int. J. Prod. Econ. 2011, 131, 421–429. [Google Scholar] [CrossRef]
- Wang, X.J.; Li, D. A dynamic product quality evaluation based pricing model for perishable food supply chains. Omega 2012, 40, 906–917. [Google Scholar] [CrossRef]
- Mohapatra, P.; Roy, S. Mathematical model for optimization of perishable resources with uniform decay. Comput. Intell. Data Min. 2015, 23, 447–454. [Google Scholar]
- De Keizer, M.; Akkerman, R.; Grunow, M.; Bloemhof, J.M.; Haijema, R.; van der Vorst, J.G.A.J. Logistics network design for perishable products with heterogeneous quality decay. Eur. J. Oper. Res. 2017, 262, 535–549. [Google Scholar] [CrossRef]
- Nekvapil, F.; Brezestean, I.; Barchewitz, D.; Glamuzina, B.; Chis, V.; Pinzaru, S.C. Citrus fruits freshness assessment using Raman spectroscopy. Food Chem. 2018, 242, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.J.; Wu, L.H.; Shan, L.J.; Zang, Q.X. Main factors affecting post-harvest grain loss during the sales process: A survey in nine provinces of china. Sustainability 2018, 10, 661. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Wang, J.J.; Wei, C.M. Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously. Int. J. Prod. Econ. 2014, 152, 42–48. [Google Scholar] [CrossRef]
- Kasso, M.; Bekele, A. Post-harvest loss and quality deterioration of horticultural crops in Dire Dawa Region, Ethiopia. J. Saudi Soc. Agric. Sci. 2018, 17, 88–96. [Google Scholar] [CrossRef]
- Bruckner, S.; Albrecht, A.; Petersen, B.; Kreyenschmidt, J. A predictive shelf life model as a tool for the improvement of quality management in pork and poultry chains. Food Control 2013, 29, 451–460. [Google Scholar] [CrossRef]
- Thuankaewsing, S.; Khamjan, S.; Piewthongngam, K.; Pathumnakul, S. Harvest scheduling algorithm to equalize supplier benefits: A case study from the Thai sugar cane industry. Comput. Electron. Agric. 2015, 110, 42–55. [Google Scholar] [CrossRef]
- Higgins, A.J.; Muchow, R.C.; Rudd, A.V.; Fordb, A.W. Optimising harvest date in sugar production: A case study for the Mossman mill region in Australia: I. Development of operations research model and solution. Field Crop. Res. 1998, 57, 153–162. [Google Scholar] [CrossRef]
- Lamsal, K.; Jones, P.C.; Thomas, B.W. Continuous time scheduling for sugarcane harvest logistics in Louisiana. Int. J. Prod. Res. 2016, 54, 616–627. [Google Scholar] [CrossRef]
- Caixeta-Filho, J.V. Orange harvesting scheduling management: A case study. J. Oper. Res. Soc. 2006, 57, 637–642. [Google Scholar] [CrossRef]
- Supsomboon, S.; Niemsakul, J. A linear programming for sugarcane cultivation and harvest planning with cane survival rate. Agric. Eng. Int. CIGR e-J. 2014, 16, 207–216. [Google Scholar]
- Ferrer, J.C.; Cawley, A.M.; Maturana, S.; Toloza, S.; Vera, J. An optimization approach for scheduling wine grape harvest operations. Int. J. Prod. Econ. 2008, 112, 985–999. [Google Scholar] [CrossRef]
- Arnaout, J.P.M.; Maatouk, M. Optimization of quality and operational costs through improved scheduling of harvest operations. Int. Trans. Oper. Res. 2010, 17, 595–605. [Google Scholar] [CrossRef]
- Jena, S.D.; Poggi, M. Harvest planning in the Brazilian sugar cane industry via mixed integer programming. Eur. J. Oper. Res. 2013, 230, 374–384. [Google Scholar] [CrossRef]
- Accorsi, R.; Gallo, A.; Manzini, R. A climate driven decision-support model for the distribution of perishable products. J. Clean. Prod. 2017, 165, 917–929. [Google Scholar] [CrossRef]
- Kusumastuti, R.D.; van Donk, D.P.; Teunter, R. Crop-related harvesting and processing planning: A review. Int. J. Prod. Econ. 2016, 174, 76–92. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Ghani, M.K.A.; Hamed, R.I.; Mostafa, S.A.; Ahmade, M.S.; Ibrahimb, D.A. Solving vehicle routing problem by using improved genetic algorithm for optimal solution. J. Comput. Sci. 2017, 21, 255–262. [Google Scholar] [CrossRef]
- Wang, X.P.; Wang, M.; Ruan, J.H.; Zhan, H.X. The multi-objective optimization for perishable food distribution route considering temporal-spatial distance. Proced. Comput. Sci. 2016, 96, 1211–1220. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.D. An optimization model for the vehicle routing problem in multi-product frozen food delivery. J. Appl. Res. Technol. 2014, 12, 239–250. [Google Scholar] [CrossRef]
- Hsu, C.I.; Chen, W.T. Optimizing fleet size and delivery scheduling for multi-temperature food distribution. Appl. Math. Model. 2014, 38, 1077–1091. [Google Scholar] [CrossRef]
- Song, B.D.; Ko, Y.D. A vehicle routing problem of both refrigerated-and general-type vehicles for perishable food products delivery. J. Food Eng. 2016, 169, 61–71. [Google Scholar] [CrossRef]
- Rocco, C.D.; Morabito, R. Production and logistics planning in the tomato processing industry: A conceptual scheme and mathematical model. Comput. Electron. Agric. 2016, 127, 763–774. [Google Scholar] [CrossRef]
- Ahumada, O.; Villalobos, J.R.; Mason, A.N. Tactical planning of the production and distribution of fresh agricultural products under uncertainty. Agric. Syst. 2012, 112, 17–26. [Google Scholar] [CrossRef]
- Amorim, P.; Almada-Lobo, B. The impact of food perishability issues in the vehicle routing problem. Comput. Ind. Eng. 2014, 67, 223–233. [Google Scholar] [CrossRef]
- Lamsal, K.; Jones, P.C.; Thomas, B.W. Harvest logistics in agricultural systems with multiple, independent producers and no on-farm storage. Comput. Ind. Eng. 2016, 91, 129–138. [Google Scholar] [CrossRef]
- Ahumada, O.; Villalobos, J.R. Operational model for planning the harvest and distribution of perishable agricultural products. Int. J. Prod. Econ. 2011, 133, 677–687. [Google Scholar] [CrossRef]
- Soto-Silva, W.E.; González-Araya, M.C.; Oliva-Fernández, M.A.; Plà-Aragonés, L.M. Optimizing fresh food logistics for processing: Application for a large Chilean apple supply chain. Comput. Electron. Agric. 2017, 136, 42–57. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, Z.J. Time-dependent production-delivery problem with time windows for perishable foods. Syst. Eng. Theory Pract. 2017, 37, 172–181. (In Chinese) [Google Scholar]
- Chen, H.-K.; Hsueh, C.-F.; Chang, M.-S. Production scheduling and vehicle routing with time windows for perishable food products. Comput. Oper. Res. 2009, 36, 2311–2319. [Google Scholar] [CrossRef]
- Schrijver, A. Theory of Linear and Integer Programming; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Savelsbergh, M.W.P. Local search for routing problem with time windows. Ann. Oper. Res. 1985, 35, 254–265. [Google Scholar] [CrossRef]
- Solomon, M.M. Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 1987, 35, 254–265. [Google Scholar] [CrossRef]
No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1.3 | 1.5 | 1.8 | 2.1 | 1.7 | 0.8 | 1.8 | 1.2 | 0.9 | 1.3 | 1.5 | 0.9 | 0.4 | 0.5 | 1.5 |
1 | 1.3 | 0 | M | 1.2 | M | 2.7 | 2.1 | 1.8 | 1.3 | M | 1.9 | M | 1.6 | 1 | 1 | 0.9 |
2 | 1.5 | M | 0 | M | 1.7 | 3 | 1.3 | M | 1.9 | 0.7 | 2.3 | 0.9 | 1.4 | 1.9 | 1.7 | M |
3 | 1.8 | 1.2 | M | 0 | 2 | M | M | 2.9 | 0.9 | M | 2.9 | 2.2 | 1.5 | 1.9 | 1.4 | 2.1 |
4 | 2.1 | M | 1.7 | 2 | 0 | M | 2.6 | M | 1.3 | 2.1 | M | 0.8 | 1.2 | 2.4 | 1.9 | M |
5 | 1.7 | 2.7 | 3 | M | M | 0 | 0.9 | 1.7 | M | 1.4 | 1 | M | 2.5 | 1.8 | 2.2 | M |
6 | 0.8 | 2.1 | 1.3 | M | 2.6 | 0.9 | 0 | 1.7 | 2.1 | 0.6 | 0.9 | 1.8 | 1.8 | 1.1 | 1.4 | 1.9 |
7 | 1.8 | 1.8 | M | 2.9 | M | 1.7 | 1.7 | 0 | M | 2.3 | 0.8 | M | M | 1.4 | 2 | 0.9 |
8 | 1.2 | 1.3 | 1.9 | 0.9 | 1.3 | M | 2.1 | M | 0 | 1.8 | 2.5 | 1.3 | 0.5 | 1.3 | 0.8 | 2.1 |
9 | 0.9 | M | 0.7 | M | 2.1 | 1.4 | 0.6 | 2.3 | 1.8 | 0 | 1.5 | 1.3 | 1.3 | 1.3 | 1.3 | M |
10 | 1.3 | 1.9 | 2.3 | 2.9 | M | 1 | 0.9 | 0.8 | 2.5 | 1.5 | 0 | M | 2.2 | 1.2 | 1.7 | 1.4 |
11 | 1.5 | M | 0.9 | 2.2 | 0.8 | 0.8 | M | 1.8 | M | 1.3 | M | 0 | 0.8 | 1.9 | 1.5 | M |
12 | 0.9 | 1.6 | 1.4 | 1.5 | 1.2 | 1.2 | 2.5 | 1.8 | M | 0.5 | 1.3 | 2.2 | 0 | 1.2 | 0.6 | 2.2 |
13 | 0.4 | 1 | 1.9 | 1.9 | 2.4 | 1.8 | 1.1 | 1.4 | 1.3 | 1.3 | 1.2 | 1.9 | 1.2 | 0 | 0.6 | 1 |
14 | 0.5 | 1 | 1.7 | 1.4 | 1.9 | 2.2 | 1.4 | 2 | 0.8 | 1.3 | 1.7 | 1.5 | 0.6 | 0.6 | 0 | 1.4 |
15 | 1.5 | 0.9 | M | 2.1 | M | M | 1.9 | 0.9 | 2.1 | M | 1.4 | M | 2.2 | 1 | 1.4 | 0 |
Con. No. | Coordinate | Demand | Time Window | Con. No. | Coordinate | Demand | Time Window |
---|---|---|---|---|---|---|---|
1 | (20.5, 24.5) | 15 | [5.5, 8] | 9 | (15, 12.5) | 11 | [5.5, 7.8] |
2 | (17.5, 8.5) | 18 | [5.8, 7.9] | 10 | (10, 20) | 13 | [3.7, 7] |
3 | (27.5, 22.5) | 30 | [6.2, 9] | 11 | (22.5, 10) | 7 | [4.6, 6.8] |
4 | (27.5, 10) | 19 | [2.7, 6] | 12 | (22.5, 15) | 12 | [5.7, 7.2] |
5 | (7.5, 15) | 15 | [4.2, 7] | 13 | (17.5, 20) | 19 | [6.2, 8.6] |
6 | (12.5, 15) | 20 | [3.2, 8.3] | 14 | (20.5, 18.5) | 10 | [4.7, 6.7] |
7 | (10, 25) | 10 | [4.5, 7.1] | 15 | (15.5, 26) | 14 | [3.8, 5] |
8 | (25, 17.5) | 25 | [4, 9] |
Vehicle | Distribution Routing | The Starting Harvest Moment |
---|---|---|
Vehicle 1 | 01059260 | 8:50 a.m. |
Vehicle 2 | 0814121140 | 9:44 a.m. |
Vehicle 3 | 071513130 | 8:14 a.m. |
Quality Decay Rate | 0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.12 | 0.14 | 0.16 | 0.18 |
---|---|---|---|---|---|---|---|---|---|
Objective Value | 0.382 | 0.403 | 0.415 | 0.44 | 0.452 | 0.469 | 0.488 | 0.501 | 0.519 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Chen, L.; Fang, Y. Integrated Harvest and Distribution Scheduling with Time Windows of Perishable Agri-Products in One-Belt and One-Road Context. Sustainability 2018, 10, 1570. https://doi.org/10.3390/su10051570
Jiang Y, Chen L, Fang Y. Integrated Harvest and Distribution Scheduling with Time Windows of Perishable Agri-Products in One-Belt and One-Road Context. Sustainability. 2018; 10(5):1570. https://doi.org/10.3390/su10051570
Chicago/Turabian StyleJiang, Yiping, Liangqi Chen, and Yan Fang. 2018. "Integrated Harvest and Distribution Scheduling with Time Windows of Perishable Agri-Products in One-Belt and One-Road Context" Sustainability 10, no. 5: 1570. https://doi.org/10.3390/su10051570
APA StyleJiang, Y., Chen, L., & Fang, Y. (2018). Integrated Harvest and Distribution Scheduling with Time Windows of Perishable Agri-Products in One-Belt and One-Road Context. Sustainability, 10(5), 1570. https://doi.org/10.3390/su10051570