Pet Food as the Most Concrete Strategy for Using Food Waste as Feedstuff within the European Context: A Feasibility Study
Abstract
:1. Introduction
2. Methodology
2.1. Definition of the Flow Process
2.2. Characterization of Secondary Food Product
2.3. Applicability in EU
3. Results and Discussion
3.1. Definition of the Flow Process
3.1.1. Collection, Transport and Delivery—Primary Food Product Waste
3.1.2. Production Pre-Processing
3.1.3. Processed Product Drying—Secondary Food Product
3.1.4. Pelletization
3.2. Characterization of Secondary Food Product
3.3. New Perspectives: Applicability in the EU
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gustafsson, J.; Cederberg, C.; Sonesson, U.; Emanuelsson, A. The Methodology of the FAO Study: Global Food Losses and Food Waste-Extent, Causes and Prevention-FAO, 2011; SIK Institutet för Livsmedel och Bioteknik: Göteborg, Sweden, 2013. [Google Scholar]
- Östergren, K.; Gustavsson, J.; Bos-Brouwers, H.; Timmermans, T.; Hansen, O.J.; Møller, H.; Easteal, S. FUSIONS Definitional Framework for Food Waste; EU FUSIONS: Brussels, Belgium, 2014. [Google Scholar]
- A Roadmap to Reduce US Food Waste by 20 Percent 10; ReFED: New York, NY, USA, 2016.
- Bellemare, M.F.; Çakir, M.; Peterson, H.H.; Novak, L.; Rudi, J. On the Measurement of Food Waste. Am. J. Agric. Econ. 2017, 99, 1148–1158. [Google Scholar] [CrossRef]
- Elimelech, E.; Ayalon, O.; Ert, E. What gets measured gets managed: A new method of measuring household food waste. Waste Manag. 2018, 76, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed]
- Arancon, R.A.D.; Lin, C.S.K.; Chan, K.M.; Kwan, T.H.; Luque, R. Advances on waste valorization: New horizons for a more sustainable society. Energy Sci. Eng. 2013, 1, 53–71. [Google Scholar] [CrossRef]
- Thyberg, K.L.; Tonjes, D.J. Drivers of food waste and their implications for sustainable policy development. Resour. Conserv. Recycl. 2016, 106, 110–112. [Google Scholar] [CrossRef]
- Takata, M.; Fukushima, K.; Kino-Kimata, N.; Nagao, N.; Niwa, C.; Toda, T. The effects of recycling loops in food waste management in Japan: Based on the environmental and economic evaluation of food recycling. Sci. Total Environ. 2012, 432, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Venkat, K. The climate change and economic impacts of food waste in the United States. Int. J. Food Syst. Dyn. 2011, 2, 431–446. [Google Scholar]
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef]
- Vandermeersch, T.; Alvarenga, R.F.; Ragaert, P.; Dewulf, J. Environmental sustainability assessment of food waste valorization options. Resour. Conserv. Recycl. 2014, 87, 57–64. [Google Scholar] [CrossRef]
- Vlaholias, E.; Thompson, K.; Every, D.; Dawson, D. Charity starts… at work? Conceptual foundations for research with businesses that donate to food redistribution organisations. Sustainability 2015, 7, 7997–8021. [Google Scholar] [CrossRef]
- Vittuari, M.; De Menna, F.; Gaiani, S.; Falasconi, L.; Politano, A.; Dietershagen, J.; Segrè, A. The Second Life of Food: An Assessment of the Social Impact of Food Redistribution Activities in Emilia Romagna, Italy. Sustainability 2017, 9, 1817. [Google Scholar] [CrossRef]
- Warshawsky, D.N. The devolution of urban food waste governance: Case study of food rescue in Los Angeles. Cities 2015, 49, 26–34. [Google Scholar] [CrossRef]
- Chen, T.; Jin, Y.; Shen, D. A safety analysis of food waste-derived animal feeds from three typical conversion techniques in China. Waste Manag. 2015, 45, 42–50. [Google Scholar] [CrossRef] [PubMed]
- San Martin, D.; Ramos, S.; Zufía, J. Valorisation of food waste to produce new raw materials for animal feed. Food Chem. 2016, 198, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Zu Ermgassen, E.K.; Phalan, B.; Green, R.E.; Balmford, A. Reducing the land use of EU pork production: Where there’s will, there’s a way. Food Policy 2016, 58, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Salemdeeb, R.; zu Ermgassen, E.K.; Kim, M.H.; Balmford, A.; Al-Tabbaa, A. Environmental and health impacts of using food waste as animal feed: A comparative analysis of food waste management options. J. Clean. Prod. 2017, 140, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Zu Ermgassen, E.K.; Balmford, A.; Salemdeeb, R. Reduce, relegalize, and recycle food waste. Science 2016, 352, 1526–1526. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.Y.; Man, Y.B.; Wong, M.H. Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge. Sci. Total Environ. 2018, 613, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Dou, Z.; Toth, J.D.; Westendorf, M.L. Food waste for livestock feeding: Feasibility, safety, and sustainability implications. Glob. Food Secur. 2017. [Google Scholar] [CrossRef]
- Sancho, P.; Pinacho, A.; Ramos, P.; Tejedor, C. Microbiological characterization of food residues for animal feeding. Waste Manag. 2004, 24, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Westendorf, M.L.; Dong, Z.C.; Schoknecht, P.A. Recycled cafeteria food waste as a feed for swine: Nutrient content digestibility, growth, and meat quality. J. Anim. Sci. 1998, 76, 2976–2983. [Google Scholar] [CrossRef] [PubMed]
- Myer, R.O.; Brendemuhl, J.H.; Johnson, D.D. Evaluation of dehydrated restaurant food waste products as feedstuffs for finishing pigs. J. Anim. Sci. 1999, 77, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Garcìa, A.J.; Esteban, M.B.; Màrquez, M.C.; Ramos, P. Biodegradable municipal solid waste: Characterization and potential use as animal feedstuffs. Waste Manag. 2005, 25, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Kwak, W.S.; Kang, J.S. Effect of feeding food waste-broiler litter and bakery by-product mixture to pigs. Bioresour. Technol. 2006, 97, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Chae, B.J.; Choi, S.C.; Kim, Y.G.; Kim, C.H.; Sohn, K.S. Effects of feeding dried food waste on growth and nutrient digestibility in growing-finishing pigs. Asian Australas. J. Anim. Sci. 2000, 13, 1304–1308. [Google Scholar] [CrossRef]
- Walker, P. Food Residuals: Waste Product, by Product, or Coproduct. In Food Waste to Animal Feed; Iowa State University Press: Iowa City, IA, USA, 2007; pp. 17–30. [Google Scholar]
- Hasha, G. Livestock Feeding and Feed Imports in the European Union: A Decade of Change; US Department of Agriculture, Economic Research Service: Washington, DC, USA, 2002.
- Pond, W.G.; Maner, J.H. Swine Production and Nutrition; AVI Publishing Co.: Westport, CT, USA, 1984. [Google Scholar]
- Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs; European Pet Food Industry Federation (FEDIAF): Brussels, Belgium, 2014.
- McCusker, S.; Buff, P.R.; Yu, Z.; Fascetti, A.J. Amino acid content of selected plant, algae and insect species: A search for alternative protein sources for use in pet foods. J. Nutr. Sci. 2014, 3, e39. [Google Scholar] [PubMed]
- Carter, R.A.; Bauer, J.E.; Kersey, J.H.; Buff, P.R. Awareness and evaluation of natural pet food products in the United States. J. Am. Vet. Med. Assoc. 2014, 245, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.S.; Carter, R.A.; Yount, T.P.; Aretz, J.; Buff, P.R. Nutritional sustainability of pet foods. Adv. Nutr. 2013, 4, 141–150. [Google Scholar] [CrossRef] [PubMed]
Nitrites | Sodium Nitrite |
---|---|
Mycotoxins | Deoxynivalenol, fumonisin B1 and B2, aflatoxin B1 ochratoxin A and zearalenone. |
Pesticides | Acephate, Azinphos ethyl, Azinphos methyl, bromophos methyl, Carbophenthio, Chlorfenvinphos, Chlorpyrifos ethyl, Chlorpyrifos methyl, Chlorthiophos, Coumaphos, Diazinon, Dichlorvos, Dimefox, Dimethoate, Ethion, Fenchlorphos, Fenitrothion, Fonofos, Phorate, Phosalone, Phosphamidon, Isofenphos, Malathion, Methamidophos, Methidathion, Mevinphos, Omethoate, Parathion ethyl, Parathion methyl, Pirimiphos Methyl, Profenofos, Quinalphos, Terbufos, Tetrachlorvinphos, Thionazin, Vamidothion. |
Heavy metals | Pb, Cd, As and Hg. |
Microbiological analyses | Mesophilic aerobic bacteria, enumeration of Enterobacteriaceae, enumeration of E. coli, enumeration of coagulase-positive staphylococci, Bacillus cereus, total coliform bacteria, sulphite-reducing Clostridia, Clostridium perfringens, detection of Salmonella spp., Listeria monocytogenes, staphylococcal enterotoxins, E. coli STEC, Yersinia enterocolitica and Clostridium botulinum. |
Physical contaminants | Lithoid material (>5 mm), other inert materials such as glass and metal (<3.3 mm and 3.3 mm–10 mm), plastic material (<3.3 mm and 3.3–10 mm), plastic material and other inert materials (>10 mm), and glass metal and plastic (>2 mm). |
Secondary Food Product | Maximum Level in EU a | EU Regulation | Specification | |
---|---|---|---|---|
Nitrites | <4 | 15 | 2002/32/EC | Limits for complete feedstuff for pets |
Deoxynivalenol, | below detection limit | Not available | 2006/576/EC | |
Fumonisin B1 + B2 | below detection limit | 5 | 2006/576/EC | |
Aflatoxin B1 | below detection limit | 0.02 | 2002/32/EC | |
Ochratoxin A | below detection limit | Not available | 2006/576/EC | |
Zearalenone | below detection limit | Not available | 2006/576/EC | |
Pb | 3.44 | 5 | 2002/32/EC | Limits for complete feedstuff |
Cd | 0.22 | 2 | 2002/32/EC | Limits for complete feedstuff for pets |
Total arsenic | 0.68 | 6 | 2002/32/EC | Limits for complete feedstuff for fish and fur animals |
Hg | below detection limit | 0.4 | 2002/32/EC | Limits for complete feedstuff for pets |
Parameters a | ||
---|---|---|
Dry matter | Mean Min Max | 87.07 ± 0.02 84.40 88.96 |
Crude protein | Mean Min Max | 24.00 ± 0.02 19.61 27.10 |
Ether extract | Mean Min Max | 7.94 ± 0.05 3.89 15.00 |
Crude fiber | Mean Min Max | 16.62 ± 0.03 11.00 21.00 |
Ash | Mean Min Max | 12.68 ± 0.02 9.95 12.00 |
Fatty Acid Content a | (% of Total Fatty Acids) |
---|---|
Saturated fatty acids (SFA) | 37.42 ± 0.30 |
Monounsaturated fatty acids (MUFA) | 33.28 ± 0.16 |
Polyunsaturated fatty acids (PUFA) | 29.31 ± 0.13 |
Omega-3 fatty acids | 3.28 ± 0.05 |
Omega-6 fatty acids | 26.03 ± 0.08 |
C12:0 Lauric acid | 0.94 ± 0.08 |
C14:0 Myristic acid | 2.02 ± 0.04 |
C16:0 Palmitic acid | 23.56 ± 0.11 |
C16:1 Palmitoleic acid | 1.95 ± 0.47 |
C17:0 Margaric acid | 0.31± 0.01 |
C17:1 Magroleic acid | 0.12 ± 0.00 |
C18:0 Stearic acid | 7.82 ± 0.08 |
C18:1 Oleic acid | 30.63 ± 0.27 |
C18:2 Linoleic acid | 25.5 ± 0.06 |
C18:3 Linolenic acid | 3.03 ± 0.03 |
C20:0 Arachidic acid | 0.41 ± 0.04 |
C 20:1 Gadoleic acid | 0.38 ± 0.02 |
Element | |
---|---|
Ca a | 1.17 ± 0.08 |
P a | 0.23 ± 0.07 |
K a | 0.66 ± 0.10 |
Na a | 0.61 ± 0.05 |
Mg a | 0.15 ± 0.05 |
Fe b | 2.21 ± 0.02 |
Zn b | 155 ± 47.3 |
Mn b | 47.2 ±2.33 |
Cu b | 22.4 ± 2.55 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castrica, M.; Tedesco, D.E.A.; Panseri, S.; Ferrazzi, G.; Ventura, V.; Frisio, D.G.; Balzaretti, C.M. Pet Food as the Most Concrete Strategy for Using Food Waste as Feedstuff within the European Context: A Feasibility Study. Sustainability 2018, 10, 2035. https://doi.org/10.3390/su10062035
Castrica M, Tedesco DEA, Panseri S, Ferrazzi G, Ventura V, Frisio DG, Balzaretti CM. Pet Food as the Most Concrete Strategy for Using Food Waste as Feedstuff within the European Context: A Feasibility Study. Sustainability. 2018; 10(6):2035. https://doi.org/10.3390/su10062035
Chicago/Turabian StyleCastrica, Marta, Doriana E. A. Tedesco, Sara Panseri, Giovanni Ferrazzi, Vera Ventura, Dario G. Frisio, and Claudia M. Balzaretti. 2018. "Pet Food as the Most Concrete Strategy for Using Food Waste as Feedstuff within the European Context: A Feasibility Study" Sustainability 10, no. 6: 2035. https://doi.org/10.3390/su10062035
APA StyleCastrica, M., Tedesco, D. E. A., Panseri, S., Ferrazzi, G., Ventura, V., Frisio, D. G., & Balzaretti, C. M. (2018). Pet Food as the Most Concrete Strategy for Using Food Waste as Feedstuff within the European Context: A Feasibility Study. Sustainability, 10(6), 2035. https://doi.org/10.3390/su10062035