Heterogeneous Preferences for Public Goods Provided by Agriculture in a Region of Intensive Agricultural Production: The Case of the Marchfeld
Abstract
:1. Introduction
2. Material and Methods
2.1. Description of the Case Study Region
2.2. Identification and Validation of Demand for Public Goods in the Marchfeld Region
2.3. Survey, Choice Sets and Experimental Design
2.4. Econometric Models and Willingness to Pay Estimation
3. Results
3.1. Descriptive Statistics
3.2. Econometric Models
3.3. Willingness to Pay
4. Discussion
4.1. Results
4.2. Methodological Considerations
5. Conclusions and Policy Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. World Agriculture: Towards 2030/2050—The 2012 Revision; FAO: Rome, Italy, 2012. [Google Scholar]
- Brussaard, L.; Caron, P.; Campbell, B.; Lipper, L.; Mainka, S.; Rabbinge, R.; Babin, D.; Pulleman, M. Reconciling biodiversity conservation and food security: Scientific challenges for a new agriculture. Curr. Opin. Environ. Sustain. 2010, 2, 34–42. [Google Scholar] [CrossRef]
- FAO. Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks; FAO: Rome, Italy, 2014. [Google Scholar]
- FAO. World Agriculture: Towards 2015/2030: An FAO Perspective; FAO: London, UK, 2003. [Google Scholar]
- Pelletier, N.; Pirog, R.; Rasmussen, R. Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States. Agric. Syst. 2010, 103, 380–389. [Google Scholar] [CrossRef]
- OECD. Green Growth Indicators 2017; OECD Publishing: Paris, France, 2017. [Google Scholar]
- European Commission. Share of Direct Payments and Total Subsidies in Agricultural Factor Income (2011–15 Average). 2017. Available online: https://ec.europa.eu/agriculture/sites/agriculture/files/cap-post-2013/graphs/graph5_en.pdf (accessed on 12 January 2018).
- Lowe, P.; Buller, H.; Ward, N. Setting the next agenda?: British and French approaches to the second pillar of the Common Agricultural Policy. J. Rural Stud. 2002, 18, 1–17. [Google Scholar] [CrossRef]
- Randall, A. Valuing the outputs of multifunctional agriculture. Eur. Rev. Agric. Econ. 2002, 29, 289–307. [Google Scholar] [CrossRef]
- Samuelson, P.A. The Pure Theory of Public Expenditure. Rev. Econ. Stat. 1954, 36, 387. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Millenium Ecosystem Assessment Board. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Viaggi, D.; Signorotti, C.; Marconi, V.; Raggi, M. Do agri-environmental schemes contribute to high nature value farmland?: A case study in Emilia-Romagna (Italy). Ecol. Indic. 2015, 59, 62–69. [Google Scholar] [CrossRef]
- European Comission. The Future of Food and Farming; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Birol, E.; Karousakis, K.; Koundouri, P. Using a choice experiment to account for preference heterogeneity in wetland attributes: The case of Cheimaditida wetland in Greece. Ecol. Econ. 2006, 60, 145–156. [Google Scholar] [CrossRef]
- Adamowicz, W.; Louviere, J.; Williams, M. Combining Revealed and Stated Preference Methods for Valuing Environmental Amenities. J. Environ. Econ. Manag. 1994, 26, 271–292. [Google Scholar] [CrossRef]
- Ragkos, A.; Theodoridis, A. Valuation of environmental and social functions of the multifunctional Cypriot agriculture. Land Use Policy 2016, 54, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Van Zanten, B.T.; Zasada, I.; Koetse, M.J.; Ungaro, F.; Häfner, K.; Verburg, P.H. A comparative approach to assess the contribution of landscape features to aesthetic and recreational values in agricultural landscapes. Ecosyst. Serv. 2016, 17, 87–98. [Google Scholar] [CrossRef]
- Blow, L.; Blundell, R. A Nonparametric Revealed Preference Approach to Measuring the Value of Environmental Quality. Environ. Resour. Econ. 2018, 69, 503–527. [Google Scholar] [CrossRef] [Green Version]
- Shoyama, K.; Managi, S.; Yamagata, Y. Public preferences for biodiversity conservation and climate-change mitigation: A choice experiment using ecosystem services indicators. Land Use Policy 2013, 34, 282–293. [Google Scholar] [CrossRef]
- Rodríguez-Entrena, M.; Barreiro-Hurlé, J.; Gómez-Limón, J.A.; Espinosa-Goded, M.; Castro-Rodríguez, J. Evaluating the demand for carbon sequestration in olive grove soils as a strategy toward mitigating climate change. J. Environ. Manag. 2012, 112, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Sayadi, S.; González-Roa, M.C.; Calatrava-Requena, J. Public preferences for landscape features: The case of agricultural landscape in mountainous Mediterranean areas. Land Use Policy 2009, 26, 334–344. [Google Scholar] [CrossRef]
- Rodríguez-Entrena, M.; Colombo, S.; Arriaza, M. The landscape of olive groves as a driver of the rural economy. Land Use Policy 2017, 65, 164–175. [Google Scholar] [CrossRef]
- Häfner, K.; Zasada, I.; van Zanten, B.T.; Ungaro, F.; Koetse, M.; Piorr, A. Assessing landscape preferences: A visual choice experiment in the agricultural region of Märkische Schweiz, Germany. Landsc. Res. 2017, 62, 1–16. [Google Scholar] [CrossRef]
- Colombo, S.; Calatrava-Requena, J.; Hanley, N. Analysing the social benefits of soil conservation measures using stated preference methods. Ecol. Econ. 2006, 58, 850–861. [Google Scholar] [CrossRef]
- Hansen, L.; Hellerstein, D. The Value of the Reservoir Services Gained with Soil Conservation. Land Econ. 2007, 83, 285–301. [Google Scholar] [CrossRef]
- Meyerhoff, J.; Boeri, M.; Hartje, V. The value of water quality improvements in the region Berlin–Brandenburg as a function of distance and state residency. Water Resour. Econ. 2014, 5, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Aizaki, H.; Sato, K.; Osari, H. Contingent valuation approach in measuring the multifunctionality of agriculture and rural areas in Japan. Paddy Water Environ. 2006, 4, 217–222. [Google Scholar] [CrossRef]
- Martin-Ortega, J.; Berbel, J. Using multi-criteria analysis to explore non-market monetary values of water quality changes in the context of the Water Framework Directive. Sci. Total Environ. 2010, 408, 3990–3997. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, A.J.; Rodríguez-Entrena, M.; Arriaza, M.; Gómez-Limón, J.A. Heterogeneity of farmers’ preferences towards agri-environmental schemes across different agricultural subsystems. J. Environ. Plan. Manag. 2016, 60, 684–707. [Google Scholar] [CrossRef]
- Aregay, F.; Yao, L.; Zhao, M. Spatial Preference Heterogeneity for Integrated River Basin Management: The Case of the Shiyang River Basin, China. Sustainability 2016, 8, 970. [Google Scholar] [CrossRef]
- Colombo, S.; Hanley, N.; Louviere, J. Modeling preference heterogeneity in stated choice data: An analysis for public goods generated by agriculture. Agric. Econ. 2009, 40, 307–322. [Google Scholar] [CrossRef]
- Yang, X.; Burton, M.; Cai, Y.; Zhang, A. Exploring Heterogeneous Preference for Farmland Non-market Values in Wuhan, Central China. Sustainability 2016, 8, 12. [Google Scholar] [CrossRef]
- Hess, S.; Train, K. Correlation and scale in mixed logit models. J. Choice Model. 2017, 23, 1–8. [Google Scholar] [CrossRef]
- Van Zanten, B.T.; Verburg, P.H.; Koetse, M.J.; van Beukering, P.J.H. Preferences for European agrarian landscapes: A meta-analysis of case studies. Landsc. Urban Plan. 2014, 132, 89–101. [Google Scholar] [CrossRef]
- Powlson, D.S.; Gregory, P.J.; Whalley, W.R.; Quinton, J.N.; Hopkins, D.W.; Whitmore, A.P.; Hirsch, P.R.; Goulding, K.W.T. Soil management in relation to sustainable agriculture and ecosystem services. Food Policy 2011, 36, S72–S87. [Google Scholar] [CrossRef]
- BMLFUW. Average Annual Precipitation in the Marchfeld. 2015. Available online: http://ehyd.gv.at/# (accessed on 12 January 2018).
- Statistik Austria. Ein Blick auf Die Gemeinde; 2016. Available online: http://www.statistik.at/blickgem/index.jsp (accessed on 12 January 2018).
- BMLFUW. Municipality Database: Version 5.0; BMLFUW: Vienna, Austria, 2016. [Google Scholar]
- BFW. Digital Soil Map of Austria. 2018. Available online: http://gis.bmlfuw.gv.at/eBOD/frames/index.php?&gui_id=eBOD (accessed on 12 January 2018).
- Betriebsgesellschaft Marchfeldkanal. Daten, Fakten, Zahlen; 2016. Available online: http://www.marchfeldkanal.at/09main13h.htm (accessed on 12 January 2018).
- Schaller, L.; Gerner, L.; Kapfer, M.; Kantelhardt, J. PROVIDE D3.2—Report Synthesizing the Findings of the CSR Level Mapping of Public Good Demand and Supply, Its Underlying Determinants, Producers and Beneficiaries: Annex 2: CSR Reports Austria, 2016. Available online: http://www.provide-project.eu/documents/2016/11/d3-2_annex-2_csr-report-it_de_at.pdf (accessed on 30 April 2018).
- BMLFUW. Wasserinformationssystem Austria, Risiko mögliche Zielverfehlung 2021: Nitrat (2010-2012); 2013. Available online: http://maps.wisa.bmlfuw.gv.at/ist-bestandsanalyse-2013# (accessed on 12 January 2018).
- Meyerhoff, J.; Liebe, U. Do protest responses to a contingent valuation question and a choice experiment differ? Environ. Resour. Econ. 2008, 39, 433–446. [Google Scholar] [CrossRef]
- Hoyos, D. The state of the art of environmental valuation with discrete choice experiments. Ecol. Econ. 2010, 69, 1595–1603. [Google Scholar] [CrossRef]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Schneider, U.A.; McCarl, B.A.; Schmid, E. Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry. Agric. Syst. 2007, 94, 128–140. [Google Scholar] [CrossRef]
- Triebe, S. Möglichkeiten zur Verminderung von Treibhausgasemissionen aus der Landwirtschaft in den Bundesländern Brandenburg und Niedersachsen. Doctoral Thesis, Hohenheim, Germany, 2007. [Google Scholar]
- Austrian Energy Agency. CO2-emissions of Private Homes; 2017. Available online: https://www.energyagency.at/fakten-service/heizkosten/co2-emissionen.html (accessed on 18 April 2018).
- Street, D.J.; Burgess, L.; Louviere, J.J. Quick and easy choice sets: Constructing optimal and nearly optimal stated choice experiments. Int. J. Res. Mark. 2005, 22, 459–470. [Google Scholar] [CrossRef]
- Lancaster, K.J. A New Approach to Consumer Theory. J. Polit. Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Applied Choice Analysis; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Bliemer, M.C.J.; Rose, J.M. Confidence intervals of willingness-to-pay for random coefficient logit models. Transp. Res. Part B Methodol. 2013, 58, 199–214. [Google Scholar] [CrossRef]
- Kallas, Z.; Gómez-Limón, J.A.; Arriaza, M. Are citizens willing to pay for agricultural multifunctionality? Agric. Econ. 2007, 36, 405–419. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Sarrias, M.; Daziano, R. Multinomial Logit Models with Continuous and Discrete Individual Heterogeneity in R: The gmnl Package. J. Stat. Softw. 2017, 79. [Google Scholar] [CrossRef]
- Adamowicz, W.; Boxall, P.; Williams, M.; Louviere, J. Stated Preference Approaches for Measuring Passive Use Values: Choice Experiments and Contingent Valuation. Am. J. Agric. Econ. 1998, 80, 64–75. [Google Scholar] [CrossRef]
- Johnston, R.J.; Boyle, K.J.; Adamowicz, W.; Bennett, J.; Brouwer, R.; Cameron, T.A.; Hanemann, W.M.; Hanley, N.; Ryan, M.; Scarpa, R.; et al. Contemporary Guidance for Stated Preference Studies. J. Assoc. Environ. Resour. Econ. 2017, 4, 319–405. [Google Scholar] [CrossRef] [Green Version]
- Latinopoulos, D. Using a choice experiment to estimate the social benefits from improved water supply services. J. Integr. Environ. Sci. 2014, 11, 187–204. [Google Scholar] [CrossRef] [Green Version]
- Borresch, R.; Maas, S.; Schmitz, K.; Schmitz, P.M. Modeling the Value of a Multifunctional Landscape: A Discrete Choice Experiment. Paper presented at the International Association of Agricultural Economists Conference, Beijing, China, 16–22 August 2009. [Google Scholar]
- Van Zanten, B.T.; Verburg, P.H.; Espinosa, M.; Gomez-y-Paloma, S.; Galimberti, G.; Kantelhardt, J.; Kapfer, M.; Lefebvre, M.; Manrique, R.; Piorr, A.; et al. European agricultural landscapes, common agricultural policy and ecosystem services: A review. Agron. Sustain. Dev. 2014, 34, 309–325. [Google Scholar] [CrossRef]
- Lindhjem, H. Using Internet in Stated Preference Surveys: A Review and Comparison of Survey Modes. IRERE 2011, 5, 309–351. [Google Scholar] [CrossRef] [Green Version]
- Loomis, J.; Bell, P.; Cooney, H.; Asmus, C. A Comparison of Actual and Hypothetical Willingness to Pay of Parents and Non-Parents for Protecting Infant Health: The Case of Nitrates in Drinking Water. J. Agric. Appl. Econ. 2009, 41, 697–712. [Google Scholar] [CrossRef]
- Tonsor, G.T.; Shupp, R.S. Cheap Talk Scripts and Online Choice Experiments: “Looking Beyond the Mean”. Am. J. Agric. Econ. 2011, 93, 1015–1031. [Google Scholar] [CrossRef]
- Fosgaard, T.R.; Hansen, L.G.; Wengström, E. Framing and Misperception in Public Good Experiments. Scand. J. Econ. 2017, 119, 435–456. [Google Scholar] [CrossRef]
- Brekke, K.A.; Konow, J.; Nyborg, K. Framing in a threshold public goods experiment with heterogeneous endowments. J. Econ. Behav. Organ. 2017, 138, 99–110. [Google Scholar] [CrossRef]
- Targetti, S.; Schaller, L.; Kantelhardt, J. A fuzzy cognitive mapping approach for the assessment of public goods governance in agricultural landscapes. forthcoming.
- Beckmann, V.; Eggers, J.; Mettepenningen, E. Deciding how to decide on agri-environmental schemes: The political economy of subsidiarity, decentralisation and participation in the European Union. J. Environ. Plan. Manag. 2009, 52, 689–716. [Google Scholar] [CrossRef]
- Cumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; von Cramon-Taubadel, S.; Tscharntke, T. Implications of agricultural transitions and urbanization for ecosystem services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Beharry-Borg, N.; Smart, J.C.R.; Termansen, M.; Hubacek, K. Evaluating farmers’ likely participation in a payment programme for water quality protection in the UK uplands. Reg. Environ. Chang. 2013, 13, 633–647. [Google Scholar] [CrossRef]
- De Oliveira, A.C.M.; Croson, R.T.A.; Eckel, C. One bad apple? Heterogeneity and information in public good provision. Exp. Econ. 2015, 18, 116–135. [Google Scholar] [CrossRef]
- Wichman, C.J. Incentives, green preferences, and private provision of impure public goods. J. Environ. Econ. Manag. 2016, 79, 208–220. [Google Scholar] [CrossRef]
Attribute | Level | Description |
---|---|---|
Groundwater quality (water) | Groundwater potable only after treatment (status quo), Groundwater potable without treatment | Indicates, whether groundwater needs to be treated before it is potable |
Landscape quality (landscape) | 2.5 (status quo), 5, 7.5, 10 | Percentage of hedges and flower strips on agricultural land |
Soil functionality in connection with climate stability (climate) | 0 (status quo); 10,000; 20,000; 30,000 | Number of households for which the annual greenhouse gas emissions (oil heating) are saved |
Additional tax payment (cost) | 0 (status quo), 40, 80, 120, 160 | Additional tax payment in €/household and year |
Alternative A | Alternative B | Status Quo | |
---|---|---|---|
Percentage of flower strips and hedges on agricultural area | 10% | 2.5% | 2.5% |
Groundwater potable | only after trearment | without treatment | only after trearment |
Saved annual GHG emissions | 20,000 households | 30,000 Households | No GHG-emissions saved |
Additiaonl costs | 80 € | 120 € | 0 € |
I would choose | Alternative A | Alternative B | Status Quo |
Variable | Description | Mean | Standard deviation | Minimum | Maximum |
---|---|---|---|---|---|
WATER | Groundwater quality attribute | 0.33 | 0.47 | 0 | 1 |
LANDSCAPE | Rural landscape attribute | 5 | 2.89 | 2.5 | 10 |
CLIMATE | Climate attribute | 1 | 1.16 | 0 | 3 |
COST | Cost attribute | 66.71 | 59.70 | 0 | 160 |
MALE | Respondent is male (1) | 0.41 | 0.49 | 0 | 1 |
AGE | Age | 40.53 | 14.28 | 16 | 76 |
EDUCATION | Education level | 2.91 | 1.01 | 1 | 5 |
CHILDREN | Respondent has children (1) | 0.45 | 0.50 | 0 | 1 |
FARMER | Farmer | 0.09 | 0.28 | 0 | 1 |
LOCAL | Respondent is a local (1) | 0.74 | 0.44 | 0 | 1 |
Independent Variable | Conditional logit (CL) | Random Parameters Logit (RPL) | Random Parameters Logit with interaction terms (RPL-INT) | |||
---|---|---|---|---|---|---|
ASCSQ | −1.660 | *** | −3.211 | *** | −3.201 | *** |
ASC2 | −0.102 | −0.294 | *** | −0.285 | ** | |
WATER | 0.900 | *** | 1.416 | *** | 3.151 | *** |
LANDSCAPE | 0.095 | *** | 0.150 | *** | 0.057 | |
CLIMATE | 0.276 | *** | 0.539 | *** | 0.639 | |
COST | −0.013 | *** | −4.018 | *** | −4.037 | *** |
Mean shifters of random parameters | ||||||
WATER × MALE | 0.136 | |||||
WATER × AGE | −0.031 | *** | ||||
WATER × EDUCATION | −0.035 | |||||
WATER × CHILDREN | 0.311 | |||||
WATER × FARMER | −0.589 | |||||
WATER × LOCAL | −0.681 | * | ||||
LANDSCAPE × MALE | −0.025 | |||||
LANDSCAPE x AGE | 0.004 | ** | ||||
LANDSCAPE × EDUCATION | 0.023 | |||||
LANDSCAPE × CHILDREN | −0.002 | |||||
LANDSCAPE × FARMER | −0.171 | * | ||||
LANDSCAPE × LOCAL | −0.160 | ** | ||||
CLIMATE × MALE | 0.163 | |||||
CLIMATE × AGE | −0.010 | * | ||||
CLIMATE × EDUCATION | 0.020 | |||||
CLIMATE × CHILDREN | 0.135 | |||||
CLIMATE × FARMER | −0.079 | |||||
CLIMATE × LOCAL | 0.175 | |||||
COST × MALE | 0.144 | |||||
COST × AGE | −0.003 | |||||
COST × EDUCATION | 0.019 | |||||
COST × CHILDREN | 0.343 | * | ||||
COST × FARMER | 0.183 | |||||
COST × LOCAL | −0.173 | |||||
Standard deviations | ||||||
WATER | 1.431 | *** | 1.336 | *** | ||
LANDSCAPE | 0.220 | *** | 0.188 | *** | ||
CLIMATE | 0.826 | *** | 0.562 | *** | ||
Additional model information | ||||||
Number of observations | 1164 | 1164 | 1164 | |||
Number of individuals | 194 | 194 | 194 | |||
Number of Halton draws | 5000 | 5000 | ||||
AIC | 1843 | 1623 | 1755 | |||
Pseudo R² | 0.29 | 0.38 | 0.38 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niedermayr, A.; Schaller, L.; Mariel, P.; Kieninger, P.; Kantelhardt, J. Heterogeneous Preferences for Public Goods Provided by Agriculture in a Region of Intensive Agricultural Production: The Case of the Marchfeld. Sustainability 2018, 10, 2061. https://doi.org/10.3390/su10062061
Niedermayr A, Schaller L, Mariel P, Kieninger P, Kantelhardt J. Heterogeneous Preferences for Public Goods Provided by Agriculture in a Region of Intensive Agricultural Production: The Case of the Marchfeld. Sustainability. 2018; 10(6):2061. https://doi.org/10.3390/su10062061
Chicago/Turabian StyleNiedermayr, Andreas, Lena Schaller, Petr Mariel, Pia Kieninger, and Jochen Kantelhardt. 2018. "Heterogeneous Preferences for Public Goods Provided by Agriculture in a Region of Intensive Agricultural Production: The Case of the Marchfeld" Sustainability 10, no. 6: 2061. https://doi.org/10.3390/su10062061
APA StyleNiedermayr, A., Schaller, L., Mariel, P., Kieninger, P., & Kantelhardt, J. (2018). Heterogeneous Preferences for Public Goods Provided by Agriculture in a Region of Intensive Agricultural Production: The Case of the Marchfeld. Sustainability, 10(6), 2061. https://doi.org/10.3390/su10062061