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Abstract: This study investigates one of the reverse logistics issues, after-sale repair service for
in-warranty products. After-sale repair service is critical to customer service and customer satisfaction.
Nonetheless, the uncertainty in the number of defective products returned makes forecasting
and inventory planning of service parts difficult, which leads to a backlog of returned defectives
or an increase in inventory costs. Based on Bathtub Curve (BTC) theory and Markov Decision
Process (MDP), this study develops a dynamic product failure rate forecasting (PFRF) model to
enable third-party repair service providers to effectively predict the demand for service parts and,
thus, mitigate risk impacts of over- or under-stocking of service parts. A simulation experiment,
based on the data collected from a 3C (computer, communication, and consumer electronics) firm,
and a sensitivity analysis are conducted to validate the proposed model. The proposed model
outperforms other approaches from previous studies. Considering the number of new products
launched every year, the model could yield significant inventory cost savings. Managerial and
research implications of our findings are presented, with suggestions for future research.

Keywords: green supply chains; reverse logistics; third-party repair service providers; failure rate
forecast; service parts; bathtub curve theory; Markov Decision Process

1. Introduction

Growing concern about environmental protection makes reverse logistics more important than
ever. This study investigates one of the reverse logistics issues, after-sale repair service, especially
for in-warranty products. After-sale service is critical to customer service, since it could turn
customer complaints into customer satisfaction, or even prevent customer complaints. Nonetheless,
the uncertainty in the number of defective products returned makes forecasting and inventory planning
of service parts difficult, causing a backlog of returned defectives (shortage of service parts) or an
increase in inventory costs (over stock of service parts) [1]. This problem leads to poor after-sale repair
service and customer dissatisfaction. In practice, the forecast and inventory planning of service parts
depend on accurate predictions of product failure rates. However, the literature and current business
practices erroneously assume that product failure rates are constant [2] or follow a particular statistical
distribution [3,4]. This unrealistic assumption could be very costly, causing poor after-sale service and
inventory cost increase [2]. Based on Bathtub Curve (BTC) theory and Markov Decision Process (MDP),
this study develops a dynamic product failure rate forecasting (PFRF) model to enable third-party
repair service providers (3PSPs) to predict demand quantities of service parts and, thus, mitigate risks
of over- or under-stocking of service parts.

BTC theory and MDP are adopted to develop the proposed model, since they can be used to
describe and predict the pattern of product failures. In particular, BTC describes how product failure
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in one period may be affected by product failure in the previous period. On the other hand, MDP can
revise product failure rates obtained from BTC in each warranty period. The proposed PFRF model is
a two-phase approach for managing the service parts inventory of in-warranty products. In practice,
there are three patterns of the product failure rate in warranty periods: the early/infant failure rate (the
rate is high), normal failure rate (the rate is low), and wear-out/end of life failure rate (the rate is high).
In the first period, we apply BTC theory as a foundation to estimate the early failure rate, normal failure
rate, and wear-out failure rate of a product, and determine a set of initial product failure rates in each
warranty period. In the second period, based on the actual product failure rate (the actual returned
defectives rate) of the previous period, we apply MDP to revise/update the product failure rate for
the next period. Additional updated supply chain information, including a rolling production plan
(sometimes called rolling plan) for the next period, and actual shipments of previous periods from the
original equipment manufacturers (OEMs) and original design manufacturers (ODMs), is incorporated
to predict the demand for service parts in the next period. Considering the number of new products
launched onto the market in some of the high-tech industries (e.g., mobile phone, laptops), this model
could improve current service parts inventory management practices with potentially tremendous
cost savings.

The remainder of this article is organized as follows. The next section reviews the literature
related to product failure, service parts, BTC, and MDP applications, followed by the development of
a product failure rate forecasting (PFRF) model. A simulation, based on the data collected from a 3C
(computer, communication, and consumer electronics) firm in China, is then conducted to validate the
proposed model. We conclude with a discussion of the managerial and research implications of our
findings, as well as research limitations.

2. Literature Review

Closed-loop supply chains integrate forward and reverse logistics. The concept emphasizes
product returns after sales and the activities of capturing return value through reuse, remanufacturing,
and recycling [1]. Over the last decade, many studies have verified the benefits related to reverse
logistics and developed numerous approaches to manage various after-sales activities [2–10].
This study examines a specific reverse logistics program, after-sales product returns, and services.
This section reviews the nature of the problem and relevant literature.

2.1. Current Business Practices and Issues

After-sale activities can generate significant revenues for industrial suppliers [11]. However,
most brands have more than one manufacturer and supplier, making it challenging to manage after-sale
activities. SONY, for example, sources from Compel, Quanta, and Inventec, among others. Since
individual manufacturers have their own product designs involving confidentiality, manufacturers
have to build their own repair lines or find local partners to handle return products, which increases
their overhead costs. Specifically, in a repair line, defectives are received, diagnosed, disassembled,
repaired, re-assembled, and tested. Operations required in repair lines can be very different from those
in regular assembly lines. Manufacturers usually cannot leverage their existing facilities to perform
the repair operation. Figure 1 displays a closed-loop supply chain with product returns. Returned
products from customers are consolidated in the warehouse before they are sent to the repair center for
inspection and disassembly. Dismantled parts are then sent for remanufacturing or to the secondary
market as spare parts [12].
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In the current practice, OEMs send the rolling plan to ODMs for product assembly without
product failure information. ODMs develop the product (parts) failure rate for production planning,
to be utilized for after-sale services. The product failure rate, however, is not transparent to OEMs and it
could distort OEMs’ service part orders since the return rate is not constant and the number of returned
defectives for each month is unknown. Most of the time, this product return and repair process is
not considered a core competence of manufacturers. Therefore, manufacturers frequently outsource
product repair to local third-party service providers (3PSPs). Unfortunately, third-party service partners
have their own reporting systems, and to consolidate reports from different manufacturers becomes
extremely challenging. From the 3PSPs’ perspective, forecasting product returns is extremely difficult,
if not impossible, due to the uncertainty related to the timing and quantity of returned products [13].
As third-party service partners fail to plan their stock and order service parts properly and in a timely
manner, after-sale service deteriorates. There are very few studies examining the issue of forecasting
product returns [14,15]. Hsueh [3] suggests fixed/constant demand rates and fixed return rates, both
with a normal distribution, during different product lifecycle stages. The proposed PFRF model focuses
on the forecasting and planning problems that 3PSPs currently face, and a decision model is developed
to improve their repair operations.

In addition to forecasting product failures and returns, information sharing among various supply
chain parties is also critical to after-sale service. Supply chain information sharing can shorten the lead
time and reduce inventory [16,17]. In the case of a product return process, the common industry practice
is to use a fixed failure rate for service parts for returned products [18]. Lin and Chen [2] propose
a “3PSP” solution, where a 3PSP, as an authorized service provider (ASP), not only processes the
returned defectives, but also orders new service parts to fulfill the turnaround time [19]. Ma et al. [20]
find that it is beneficial for an OEM to license ASPs to remanufacture, while Yan et al. [21] suggest that
OEMs conducting take-back operations can improve the overall remanufacture operations. Usually,
a 3PSP would order new service parts from ODMs according to the rolling plan from OEMs. However,
the revised return rates are used without any adjustment for return rate fluctuations. The return
rate is called epidemic if it goes higher than expected. A low return rate could indicate that few
products were sold in the market and the products might be terminated soon [18]. The proposed
model includes necessary adjustments to revise failure rates, for more accurate and effective service
parts inventory management.

2.2. BTC

A BTC depicts the pattern of failures during a product’s life time. There are three stages of product
failures: early failure, normal failure, and wear-out failure (Figure 2). Normal failure falls between
early and wear-out failure, and the failure rate during this time is usually constant, with a lower
rate [22]. The product warranty period falls within the ‘normal life’ stage of the BTC [23].
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The term “regression” was originally introduced by Francis Galton in the nineteenth century to
describe the biological phenomenon of the heights of descendants of tall ancestors tending to regress
toward a more normal average (a phenomenon now known as regression toward the mean) [24,25].
In this research, a historical product annual failure rate (AFR) is used as the basis of the failure/return
rate. Since AFR is a static concept, we thus combine the concepts of regression and MDP with the
‘constant failure rate’ of the BTC, in order to generate a dynamic failure rate for the product warranty
period to reflect the real situation. The initial failure rate (IFR) is derived from AFR, and is then used
for service parts preparation when a product is launched. After that, failure rates will be revised
through the application of MDP. IFR is likely to be higher than revised failure rates because it falls at
the end of the early failure rate.

2.3. MDP

The adjustment of the failure rate can be guided by a discrete-time Markov Decision Process
(MDP). Introduced in the 1950s [17], MDP is the model for sequential decision-making when outcomes
are uncertain. The key components in the sequential decision model include a set of states of the
systems, a set of decisions and their corresponding actions, rewards/costs, and transition probabilities,
which are dependent on the state and the action.

The product warranty period falls within the normal life of the product BTC. During the product
warranty period, product rolling plans and actual shipment become the bases of service parts planning,
and the returned defectives are another factor added to predict the failure rate for the next service
planning stage. The components required in MDP applications are presented in the following.

(a) Decision epochs and periods

Decisions are made at points of time referred to as decision epochs. Let T denote the set of decision
epochs. In discrete time problems, time is divided into periods or stages.

(b) State and action sets

At each decision epoch, the system occupies a state S. If, at some decision epoch,
the decision-maker observes the system in state s ∈ S, they may choose action a from the set of
allowable actions in state s, As. Let A = ∪s∈S As.

(c) Reward and transition Probabilities

As a result of choosing action a ∈ As, in state s at epoch t,

(1) The decision-maker receives a reward, rt(s, a) and
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(2) The system state at the next decision epoch is determined by the probability distribution pt(·|s, a).

When the reward depends on the state of the system at the next decision epoch, we let rt(s, a, j)
denote the value at time t of the reward received when the state of the system at decision epoch t is s,
action a ∈ A, is selected, and the system occupies state j at decision epoch t + 1. Its expected value at
decision epoch t may be evaluated by computing:

rt(s, a) = ∑j∈S rt(s, a, j)pt(j|s, a) (1)

The function pt(j|s, a), denotes the probability that the system is in state j ∈ S at time t + 1. When
the decision-maker chooses action a ∈ A, in state s at time t, it is called a transition probability function.

We usually assume that:

∑
j∈S

pt(j|s, a) = 1 (2)

We refer to the collection of objects as a Markov decision process.

{T, S, As pt(·|s, a), rt(s, a)} (3)

(d) Decision rules

A decision rule prescribes a procedure for action selection in each state at a specified decision epoch.
Decision rules are functions dt: S→ As, which specify the action choice when the system occupies state
s at decision epoch t. For each s ∈ S, dt(s) ∈ As. This decision rule is said to be Markovian (memoryless)
because it depends on previous system states and actions, only through the current state of the system,
and deterministic because it chooses an action with certainty.

We classify decision rules as history-dependent and randomized (HR), history-dependent
and deterministic (HD), Markovian and randomized (MR), or Markovian and deterministic (MD),
depending on their degree of dependence on past information and on their method of action selection.
We denote the set of decision rules at time t by Dt

K, where K designates a class of decision rules
K = (HR, HD, MR, MD); Dt

K is called a decision rule set.

(e) Policies/Plan

A policy, contingency plan, or strategy specifies the decision rule to be used in all decision epochs.
A policy π is a sequence of decision rules, i.e., π = (d1, d2, . . . dN−1) when dt ∈ Dt

K for t = 1, 2, . . . ,
N − 1 for N 5 ∞, in which K represents any of the above classes.

In summary, this research constructs a service part inventory control model with information-sharing
in warranty services. Information includes a rolling plan, shipping quantities, and historical product
or parts failure rates. Specifically, we utilize both MDP and BTC to estimate the failure rates and to
plan the service parts supply during the product warranty period with information sharing among
OEMs, ODMs, and third party service providers.

3. Research Framework

This section develops the dynamic product failure rate forecasting (PFRF) model, taking advantage
of information sharing among OEMs, ODMs, and 3PSPs. Based on the shared information, the model
is able to employ BTC and MDP to update and improve the forecasting of the failure rate.

3.1. Closed-Loop Supply Chain with Information-Shared Service Parts Planning

Information shared among ODMs, OEMs, and 3PSPs can reduce the inventory cost [2,16]. Shared
information includes rolling plans (or new product introduction (NPI) plan), product (parts) failure
rates, product warranty periods, and shipment. Most of the time, the actual production that ODMs
make would be different from the NPI plan. Information on actual shipment deliveries from ODMs to
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3PSPs would enable 3PSPs to plan for service parts production. Since 3PSPs will also have the latest
product (parts) failure rates, they can prepare service part orders more accurately. Figure 3 shows
the flows of the relevant information, with this research focusing on service part supply during the
warranty period.
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Figure 3. Proposed Information Sharing.

First, OEMs develop the product rolling/NPI plan, passing it on to ODMs for manufacturing.
OEMs then share the NPI and annual failure rate (AFR) information with 3PSPs for service parts
preparation. After products are delivered to retailers, ODM reveals shipment information to 3PSPs for
revising service parts preparation. Retailers sell products to customers, and customers return to 3PSPs
when defectives are found during the warranty period.

Our proposed model suggests that 3PSPs prepare initial service parts production at the same time
that the product is launched onto the market. Meanwhile, 3PSPs collect product return and shipment
information to revise failure rates; moreover, they will use an NPI plan to forecast the service parts
demand. This process will continue until the end of the product warranty period. After that, 3PSPs
send product failure information to OEMs and ODMs to improve new product planning for the next
period. Furthermore, AFR is divided into monthly-based IFR and the failure rate base line (or normal
failure rate). IFR is used for the first three-month service parts planning, together with the rolling
plan. The initial service parts are thus sent to the service inventory of repair service centers. After that,
the real shipment and returned quantities are collected, enabling calculation of the temporary failure
rate for the next period of inventory planning. Some of the defectives can be repaired and become
serviceable parts later.

Overall, we believe that an accurate product failure rate during the warranty period is key
to the success of service parts inventory planning. Most studies are based on static failure/return
rates. Irrespective of the methodologies used, the assumption of a constant rate may result in large
demand distortion after several planning periods. The proposed PRFR model develops a more accurate
failure/return rate to improve the service parts inventory replenishment decision.

3.2. Model Development

Based on the information sharing among ODMs, OEMs, and 3PSPs, the proposed PFRF model
derives a dynamic failure rate by the MDP and an initial failure rate by the BTC. Table 1 lists the
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notations used in the mathematical model, and Figure 4 displays the research framework and algorithm
of the proposed model (for detail explanation of the algorithm, refer to Appendixs A and B).

Table 1. Mathematical Notation.

Parameters

Notation Descriptions

AFR Annual failure rate
NPIi NPI quantities in planning period i

rp NPI period

IFRi
Initial failure rate for every month i, derived from initial annual failure rate by Bathtub
Curve Theory of previous NPI

IRP Quantities of initial repair service parts
FRi Actual failure rate of Bathtub Curve in month i

MDPfri Revised failure rate of Bathtub Curve in month i
qsi Shipping quantities in period i
qrj,i Returned defective quantities of NPI jth period in the end of planning period i
Qi Purchased quantities service parts in planning period i
ILi Inventory level in the beginning of planning period i

Input Variables
qrij Returned defective quantities of NPI jth period in the end of planning period i

Function
Convert_AFR_to_IFR_by_BathtubCurve: A function that converts annual failure rate into product life time
failure rate first, then distributes failure rates to every month by its MTC
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A rolling plan is an array of planned shipments to ODMs from OEMs. This plan is given to
ODM and 3PSP for manufacturing and service parts preparation, respectively. AFR from OEM can be
divided into monthly-based IFR. IFR is used together with NPI, which means the service parts must
be ready when new products are launched in the market.

Phase 1: Develop Initial Failure Rate Using BTC

(1) Retrieve rolling plan and AFR from OEM

The original BTC is selected by any artificial intelligence system or expert system with a case-based
reasoning mechanism [18]. The selected BTC with historical failure information has the attributes most
similar to the NPI product.

(2) Retrieve IFR from AFR

IFRi = Convert_AFR_to_IFR_by_BathtubCurve(AFR) (4)

Convert_AFR_to_IFR_by_BathtubCurve is a function that converts the AFR into IFR. IFR is not a
constant since it contains the early failure rates and normal failure rates. It may not be equal every
month. The beginning of IFR will be higher because of product immaturity.

(3) Prepare Initial Service Parts & build BTC

Each NPI iteration forms its own BTC. Therefore, the failure rate of the ith month can be
re-calculated after the NPI is launched.

Consistent with the industry practice, the first batch of three-month service parts is pushed
to 3PSP.

IRP = IL1 =
3

∑
i=1

IFRi ∗ NPIi (5)

IRP is used when a new product is launched in the market, which means that service parts should
and must be ready when a new product is launched.

At the beginning of the NPI, the inventory level of service parts equals IRP. The inventory level at
the beginning of planning period 2 is the inventory level of planning period 1 minus the total returned
defectives in this period.

IL2 = IL1 − q11 (6)

The inventory level at the beginning of period 3 equals:

IL3 = IL2 − qr12 − qr21 (7)

qr12 denotes the returned defectives, which was the second return of the first batch delivered
to the market, while qr21 denotes the first return of the second NPI launch. Two situations must be
considered at this moment:

1. Since the actual shipped quantity is not always equal to the planned quantity, inaccuracy occurs
in service parts planning.

2. The new purchase quantity should arrive at service providers at the beginning of each planning
period after period 4. The delivery lead time, for simple modeling, is set to be equal to one
planning period. Therefore, the purchasing activity will begin at the end of each planning period
after Phase two.

Phase 2: Revise failure rate using the MDP

At this point, two-months of data are available for revising the failure rate for every BTC period.
A failure rate is provided by the transition probability matrix, and the decision relating to the order of
new service parts is subsequently made.
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(1) Define Transition Matrix

The actual failure rate in each planning period i is calculated as the sum of every ith returned
defective divided by all of its shipped quantities.

FRj =
∑i

b=1 qrb, j

∑
j
a=1 qsa

(8)

However, the actual failure rate from this period may not be not used for the next planning period.
Instead, the proposed model adopts the concept of “regression” for adjustment: if ft is greater than or
equal to the upper bound of the initial failure rate fUP, the failure rate for the next planning period is
set as the upper bound. Conversely, if ft is less than or equal to the lower bound of the initial failure
rate fLB, then ft+1 equals the lower bound. Otherwise, ft is planned for the next period.

ft+1 =


fLB, i f ft ≤ fLB
fUB, i f ft ≥ fUB

ft; otherwise
(9)

(2) Revise Failure Rate

The failure rate for the next planning period will be adjusted by the transition matrix
(Equation (10)). The base of market demand is the shipment plus the NPI planned quantities for
the next period, which is considered in the MDP probability transition matrix.

MDP f rtmp_j = TP(FRtmp_j) (10)

(3) Project Quantity of Service Parts

The total service-parts demand estimated for the next planning period will be the total quantities
in each BTC period multiplied by the revised MDP failure rate.

pQtyk+1 = pQtyk+1 + ∑rp
x=tmpj+1

qsx ∗MFP f rtmp_j (11)

The decision variable, Qi, will be the number described above minus all previously shipped
service-parts.

QJ+1 = pQtyj+1 −QJ (12)

The MDP decision space relates to the decision of how many service parts should be purchased at
the end of each planning period, which is the MDP state. The MDP reward function is defined as the
expected purchasing cost per period.

The process will be iterated to the end of the last warranty period. The complete algorithms are
shown in Appendixs A and B.

4. Simulation Experiment

In this section, an experiment is conducted with real data from a 3PSP. Three models are tested
and compared. Model 1 represents the current industry practice [3], using fixed return rates and
fixed demand rates for service parts preparation. It calculates the differences of the two rates to
determine the inventory level. Model 2 is a more advanced approach offered by the extant literature
(Lin and Chen, 2014, [2], where the demand and rates are updated every period for future planning.
The proposed PFRF model, Model 3, extends Model 2, with the establishment and implementation of
upper bound and lower bound return rates. We expect the proposed model to outperform the other
two models regarding the total inventory cost, including holding, purchasing, and stock-out.
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4.1. Initial Conditions

The NPI plan used in the simulation (Table 2) is from a 3PSP, a 3C (computer, communication,
and consumer electronics) company in China. Table 2 presents an eight-month NPI plan with a
nine-month warranty, which means there are 17 planning periods for service parts. The NPI plan
is generated by the computer brand OEM, and the actual shipment is provided by a manufacturer
ODM. Those two numbers are different, suggesting that the actual shipment is different from the plan.
Products are sold in China, and in-warranty defectives are collected and shipped to a 3PSP in Shanghai.
Figure 5 displays the NPI plan, together with the numbers during in-warranty period.

Table 2. Example of an NPI Plan.

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8

NPI
(Rolling plan) 22,985 45,743 47,987 25,976 73,860 39,753 38,294 6005

Shipment 22,838 45,200 46,907 27,600 74,000 41,000 37,025 5000
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Table 3 presents the returned defectives during the warranty period. The data are used to evaluate
the cost performance of three models in the simulation: (1) Model 1, a baseline model with constant
failure rates; (2) Model 2, failure rates are updated every period; (3) Model 3, the proposed approach
with the regression of failure rate.

For the sake of fair comparison, safety stock policy is not realized and minimum order quantity
(MOQ) is eliminated in the simulation. Model 1 represents the current industry practice, assuming
a fixed failure rate for service parts replenishment policy, as presented by Hsueh [3,18]. Model 2
implements Lin and Chen’s approach [2], and the failure rates are re-calculated at every period and
used for the next planning period. Model 3 is proposed by this research, and failure rates are adjusted
and calculated by MDP. In other words, Model 1 implements the fixed rates of demand and return.
hBoth Model 2 and Model 3 implement the dynamic failure rate; however, Model 3 applies the
regression of failure rate. The inventory will be replenished at the beginning of each stage, for example,
1/S, and be deducted at the end of each stage, as in 1/E.
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Table 3. Returned Quantities.

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 Period 9 Period 10 Period 11 Period 12 Period 13 Period 14 Period 15 Period 16 Period 17

Actual
Returned

Qty
1195 4018 2309 3141 5550 5552 6407 5992 6227 7025 6419 5038 4348 3569 1922 701 73
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The initial stocks for the three models are the same. Following industry practice, all models
use failure rates of 0.06 and 0.05 for the first two planning periods. Model 1 assumes a constant rate
of 0.02 for the remaining planning periods, which is used as the base line in our analysis. Model 2
and Model 3 use failure rates of 0.06 and 0.05 for the initial two-period service parts planning, and
re-calculate the failure rate at the end of every planning period. Model 3 uses 0.02 for the base failure
rate, with plus/minus 25% of base failure rate as its upper bound and lower bound, respectively.
Purchasing occurs at the end of the planning period, and the inventory will be fulfilled at the beginning
of the next planning period. The first re-calculation of the failure rate is made at the end of the second
planning period, using two-months of collected data. Model 2 revises the failure rate at the end of every
period, and Model 3 (the proposed PFRF model) adjusts the revised failure rate by means of MDP.

4.2. Results

The inventory level and purchasing quantities of the three models are shown in Table 4 and
Figure 6. Both Table 4 and Figure 6 display the inventory level at every planning period. Every period
is divided into two separate segments: start of the period (for example, 1/S) and end of the period (for
example, 2/E). As shown, stock-out happens in all three models.Sustainability 2018, 10, x FOR PEER REVIEW  13 of 21 
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Table 4. Inventory Level and Purchase Quantities of Three Models.

(a)

Situation 1/S 1/E 2/S 2/E 3/S 3/E 4/S 4/E 5/S 5/E 6/S 6/E 7/S 7/E 8/S 8/E 9/S 9/E

Model 1 Hsueh (2011)
Inventory Level 1379 65 3436 −983 2334 −205 2853 −602 4331 −1774 5126 −982 5891 −1157 6012 −579 6012 −837
Purchasing Quantities 1379 3371 3317 3058 4933 6900 6873 7169 6591 6849

Model 2
Lin & Chen
(2014)

Inventory Level 7128 5814 5814 1395 1395 −1144 3112 −343 5245 −860 7225 1117 7016 −32 7191 600 6591 −258
Purchasing Quantities 7128 4256 5588 8085 5899 7223 5991 7107

Model 3 PFRF Model
Inventory Level 7128 5814 5814 1395 1395 −1144 3112 −343 5245 −860 6407 299 7016 −32 7191 600 6591 −258
Purchasing Quantities 7128 4256 5588 7267 6717 7223 5991 7107

(b)

Situation 9/S 9/E 10/S 10/E 11/S 11/E 12/S 12/E 13/S 13/E 14/S 14/E 15/S 15/E 16/S 16/E 17/S 17/E

Model 1 Hsueh (2011)
Inventory Level 6012 −837 6012 −1715 5552 −1508 4637 −904 3677 −1105 3158 −767 −1681 −433 885 114 184 104
Purchasing Quantities 6849 7267 6145 4581 4263 2448 1318

Model 2
Lin & Chen
(2014)

Inventory Level 6591 −258 6849 −878 7727 667 6521 980 4635 −147 3813 −112 3338 1224 1224 453 453 373
Purchasing Quantities 7107 8605 5854 3655 3960 3450

Model 3 PFRF Model
Inventory Level 6591 −258 6849 −878 7489 429 6521 980 4635 −147 3813 −112 3338 1224 1224 453 453 373
Purchasing Quantities 7107 8367 6092 3655 3960 3450
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4.3. Comparison of the Three Models

The ratio of holding cost, purchasing cost, and stock-out cost is defined as 1:2:3 for a unit. The ratio
could vary due to different costs of service parts. Table 5 shows the holding cost, purchasing cost,
stock-out cost, and total cost from one service part of a particular product, in one batch of production.
Depending on the type of product, there could be as many as thousands of batches over the entire
warranty period. Therefore, in practice, the actual cost differences among the three models could be
much more significant than those displayed in Table 5.

Table 5. Cost Comparison.

Holding Cost Purchasing Cost Stock-Out Cost Total Cost

Model 1
Hsueh (2011) 238 152,924 40,653 193,815

Model 2
Lin & Chen (2014) 12,623 153,602 11,322 177,547

Model 3
PFRF Model 11,567 153,602 11,322 176,491

Model 1 has the lowest holding cost and purchasing cost and the highest stock-out and total cost,
suggesting under-predication/purchase of the service parts. Models 2 and 3 have the same purchasing
and stock-out costs, while Model 3 provides a lower holding cost.

Table 6 displays the failure rates. In Model 2 and Model 3, the inventory level changes dramatically
when the failure rates go up and down from period 2 to period 4. The failure rates in model 2 are
updated in every period, based on the actual rate in the most recent period. The “normal failure” rate
used in the simulation is 0.02, with plus 25% of the upper bound and minus 25% of the lower bound.
The revised failure rates in Model 3 appear in period 4, period 5, period 10, period 15, and period 17.
The former three are revised downward because they exceed the upper bound, which leads to lower
inventory levels in period 5, period 6, and period 11 in Model 3.

Table 6. Failure Rates Comparison.

(a)

Failure Rates Used in Calculation

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 Period 9

Model 1 Hsueh (2011) 0.06 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Model 2 Lin & Chen
(2014) 0.06 0.05 0.022089 0.024238 0.028193 0.023716 0.023926 0.022002 0.022863

Model 3 PFRF Model 0.06 0.05 0.022089 0.024238 0.025 0.023716 0.023926 0.022002 0.022863

(b)

Failure Rates Used in Calculation

Period 9 Period 10 Period 11 Period 12 Period 13 Period 14 Period 15 Period 16 Period 17

Model 1 Hsueh (2011) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Model 2 Lin & Chen
(2014) 0.022863 0.025794 0.023567 0.020023 0.020654 0.021259 0.013463 0.018346 0.016

Model 3 PFRF Model 0.022863 0.025 0.023567 0.020023 0.020654 0.021259 0.015 0.018346 0.015

At the end of period 5, the calculated failure rate is 0.028211, exceeding the upper bound of Model 3.
Model 2 uses this rate in period 7, while Model 3 would ‘regress’ the rate into its upper bound, causing
a lower purchasing cost than Model 2, with a lower inventory level in early period 7. The beginning
inventory level is equal to the failure rate multiplied by the shipping quantities, and the purchasing
quantities are the difference between the expected inventory and the current inventory. If the current
inventory in the early period is positive, it means the purchasing will be less than the expected inventory
level. In contrast, a negative inventory means lost sales and the demand should be fulfilled in the next
period, when the purchasing will be higher than the expected inventory level. In Table 4(a), Model 2
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and Model 3 have the same inventory levels and purchasing before 5/S. However, the calculated failure
rate 5/E is higher than the upper bound of the failure rate, which means lost sales in 5/E. Therefore,
Model 3 will have less purchasing at 5/E and a lower inventory level at 7/S than Model 2, because the
calculated failure rates are between the failure rate upper bound and lower bound. A high failure rate
occurs in period 5 (0.028193 = 6015/(22,838 + 45,200 + 46,907 + 27,600 + 74,000)), which leads to a higher
inventory level of Model 2 (7225 = (22,838 + 45,200 + 46,907 + 27,600 + 74,000 + 39,753) × 0.028193) than
that of Model 3 (6407 = (22,838 + 45,200 + 46,907 + 27,600 + 74,000 + 39,753) × 0.025) at 6/S, and more
purchasing for Model 2 (8085 = 7225 − (−860)) than for Model 3 (7267 = 6407 − (−860)). At the end
of period 6 (6/E), after deducting the quantities of return defectives, the inventory level at Model 2
becomes (1117 = 7225 − 6108) and Model 3 comes to (299 = 6407 − 6108). The accumulated failure rate
in period 6 comes to (0.023716 = 6108/(22,838 + 45,200 + 46,907 + 27,600 + 74,000 + 37,025)). Inventory
levels for both Models 2 and 3 at 7/S are 7016 = (22,838 + 45,200 + 46,907 + 27,600 + 74,000 + 41,000 +
38,294) × 0.023716). Purchasing for both Models 2 and 3 at 7/E is 7223 = (22,838 + 45,200 + 46,907 +
27600 + 74,000 + 41,000 + 37,025 + 6005)× 0.023926− (−32)). After deducting the returns, the inventory
levels for both Model 2 and Model 3 are the same again at 8/E.

Accordingly, in period 5 and period 6, Models 2 and 3 have the same purchasing cost and stock-out
cost. Model 3 has a lower holding cost than Model 2.

Figure 7 displays the failure rates of the three models. For a fair comparison, Model 1 also uses
the same values of 0.06 and 0.05 as Model 2 and Model 3. If not, the simulation performance for Model
1 would be worse because it underestimates the failure rates in the warranty period. Model 2 uses
the updated failure rates, and the failure rates of Model 3 are regressed between the upper bound
and lower bound. Therefore, both the highest failure rate and lowest failure rate occur in Model 2.
Failure rates below the upper bound are found in period 15. The existing inventory level exceeds
the projected inventory level; therefore, the inventory level does not change in period 16. There is no
action in period 17, since it is the last period in the warranty period.Sustainability 2018, 10, x FOR PEER REVIEW  15 of 21 

 

Figure 7. Failure Rates Chart of the Three Models. 

Additionally, this case reveals that most of the failure rates are higher than the rate during the 
stage of normal failure. If the range between the upper bound failure rate and lower bound rate is 
large enough, for example, plus and minus 30%, respectively, Model 3 will perform the same as 
Model 2 does. This particular issue is reviewed in the next section. 

5. Sensitivity Analysis 

To validate the proposed model, we examine the impact of changes in return defectives, failure 
rate base line, and the upper/lower bounds of failure rates. 

5.1. Increase Return Defectives 

Figure 8 shows the increase in inventory levels with an increase of 3% of return defectives 

 
Figure 8. Sensitivity Analysis on Inventory Levels (+3% of Return Defectives). 

Figure 7. Failure Rates Chart of the Three Models.

Additionally, this case reveals that most of the failure rates are higher than the rate during the
stage of normal failure. If the range between the upper bound failure rate and lower bound rate is
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large enough, for example, plus and minus 30%, respectively, Model 3 will perform the same as Model
2 does. This particular issue is reviewed in the next section.

5. Sensitivity Analysis

To validate the proposed model, we examine the impact of changes in return defectives, failure
rate base line, and the upper/lower bounds of failure rates.

5.1. Increase Return Defectives

Figure 8 shows the increase in inventory levels with an increase of 3% of return defectives

Sustainability 2018, 10, x FOR PEER REVIEW  15 of 21 

 

Figure 7. Failure Rates Chart of the Three Models. 

Additionally, this case reveals that most of the failure rates are higher than the rate during the 
stage of normal failure. If the range between the upper bound failure rate and lower bound rate is 
large enough, for example, plus and minus 30%, respectively, Model 3 will perform the same as 
Model 2 does. This particular issue is reviewed in the next section. 

5. Sensitivity Analysis 

To validate the proposed model, we examine the impact of changes in return defectives, failure 
rate base line, and the upper/lower bounds of failure rates. 

5.1. Increase Return Defectives 

Figure 8 shows the increase in inventory levels with an increase of 3% of return defectives 

 
Figure 8. Sensitivity Analysis on Inventory Levels (+3% of Return Defectives). Figure 8. Sensitivity Analysis on Inventory Levels (+3% of Return Defectives).

In this case, the increase of return defectives increases the stock-out in Model 3, since the regression
reduces the inventory level when return defectives exceed the upper bound (Table 7). However,
Model 3 still has the lowest total cost among all models (Table 8).

In this case, Model 1 has the best holding cost with the worst stock-out performance, leading to
the highest total cost. Model 3 has the best holding cost and stock-out cost and produces the lowest
total cost. Specifically, when return defectives increase by 3%, the total cost increases by 5.77% in
Model 1, 3.11% in Model 2, and 0.47% in Model 3.

Table 9 shows the results of failure rates used in the three models. Apparently, the regression of
return rates creates the best performance with the lowest cost.
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Table 7. Sensitivity Analysis: Return Defectives (+3%)—Inventory and Purchasing.

(a)

Situation 1/S 1/E 2/S 2/E 3/S 3/E 4/S 4/E 5/S 5/E 6/S 6/E 7/S 7/E 8/S 8/E 9/S 9/E

Model 1 Hsueh (2011)
Inventory Level 1379 26 3436 −1115 2334 −281 2853 −705 4331 −1957 5126 −1165 5891 −1368 6012 −776 6012 −1042

Purchasing
Quantities 1379 3410 3449 3134 5036 7083 7056 7380 6788 7054

Model 2
Lin & Chen

(2014)
Inventory Level 7128 5775 5775 1224 1224 −1391 3205 −353 5401 −887 7442 1151 7226 −33 7406 618 6788 −266

Purchasing
Quantities 7128 4596 5754 8329 6075 7439 6170 7320

Model 3 PFRF Model
Inventory Level 7128 5775 5775 1224 1224 −1391 3205 −353 5410 −878 6407 116 7226 −33 7406 618 6788 −266

Purchasing
Quantities 7128 4596 5763 7285 7110 7439 6170 7320

(b)

Situation 9/S 9/E 10/S 10/E 11/S 11/E 12/S 12/E 13/S 13/E 14/S 14/E 15/S 15/E 16/S 16/E 17/S 17/E

Model 1 Hsueh (2011)
Inventory Level 6012 −1042 6012 −1946 5552 −1719 4637 −1070 3677 −1248 3158 −884 1681 −496 885 91 184 102

Purchasing
Quantities 7054 7498 6356 4747 4406 2565 1381 0 0

Model 2
Lin & Chen

(2014)
Inventory Level 6788 −266 7054 −904 7958 687 6716 1009 4774 −151 3927 −115 3437 1260 1260 466 466 384

Purchasing
Quantities 7320 8862 6029 3765 4078 3552 0 0 0

Model 3 PFRF Model
Inventory Level 6788 −266 7054 −904 7489 218 6716 1009 4774 −151 3927 −115 3437 1260 1260 466 466 384

Purchasing
Quantities 7320 8393 6498 3765 4078 3552 0 0 0
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Table 8. Sensitivity Analysis: Return Defectives (+3%)—Cost.

Return Defectives +3%

Holding Cost Purchasing Cost Lost Sales Cost Total Cost

Model 1 Hsueh (2011) 219 157,444 47,316 204,979
Model 2 Lin & Chen (2014) 12,574 158,194 12,300 183,068
Model 3 PFRF Model 11,070 158,194 8,061 177,325

Table 9. Return Rates used in Calculation (+3%).

(a)

Failure Rates Used in Calculation

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 Period 9

Model 1 Hsueh (2011) 0.06 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Model 2 Lin & Chen
(2014) 0.06 0.05 0.02275 0.024961 0.029038 0.024427 0.024643 0.022659 0.023547

Model 3 PFRF Model 0.06 0.05 0.02275 0.025 0.025 0.024427 0.024643 0.022659 0.023547

(b)

Failure Rates Used in Calculation

Period 9 Period 10 Period 11 Period 12 Period 13 Period 14 Period 15 Period 16 Period 17

Model 1 Hsueh (2011) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Model 2 Lin & Chen
(2014) 0.023547 0.026565 0.024271 0.020623 0.021271 0.021893 0.013864 0.018894 0.0164

Model 3 PFRF Model 0.023547 0.025 0.024271 0.020623 0.021271 0.021893 0.015 0.018894 0.0164

5.2. Decrease Return Defectives

We also review the scenarios when return defectives are decreased by 3%, 5%, 10%, and 15%.
Tables 10–12 present the results of reducing 3% of return defectives.

As expected, the decrease of return defectives improves the performance for all three Models.
Total cost is decreased by 6.25% in Model 1, 3.33% in Model 2, and 3.03% in Model 3, respectively.
Model 3 remains the best performer.

The reduction of 3% yields similar results, as Model 3 continues to dominate both Models 1 and 2.
In the case of the 10% and 15% decrease, Models 2 and 3 actually yield the same cost performance.
Note that an MDP transition for the new failure rate is determined by the upper bound and lower
bound of failure rates. If the range of the upper bound and lower bound failure rates is high (e.g., 10%),
the results of the proposed model (Model 3) will be the same as those of Model 2 (Lin & Chen, 2014)
because the MDP transition would simply revise the failure rate, as it never reaches the upper bound
or lower bound. Overall, the sensitivity analysis validates the effectiveness of the proposed model.
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Table 10. Sensitivity Analysis: Return Defectives (−3%)—Inventory and Purchasing.

(a)

Situation 1/S 1/E 2/S 2/E 3/S 3/E 4/S 4/E 5/S 5/E 6/S 6/E 7/S 7/E 8/S 8/E 9/S 9/E

Model 1 Hsueh (2011)
Inventory Level 1379 105 3436 −850 2334 −128 2853 −498 4331 −1493 5126 −701 5891 −945 6012 −381 6012 −631
Purchasing
Quantities 1379 3331 3184 2981 4829 6619 6592 6957 6393 6643

Model 2
Lin & Chen

(2014)
Inventory Level 7128 5854 5854 1568 1568 −894 3018 −333 5087 −737 6893 1066 6693 −143 6975 582 6393 −250
Purchasing
Quantities 7128 3912 5420 7630 5627 7118 5811 6893

Model 3 PFRF Model
Inventory Level 7128 5854 5854 1568 1568 −894 3018 −333 5087 −737 6407 580 6693 −143 6975 582 6393 −250
Purchasing
Quantities 7128 3912 5420 7144 6113 7118 5811 6893

(b)

Situation 9/S 9/E 10/S 10/E 11/S 11/E 12/S 12/E 13/S 13/E 14/S 14/E 15/S 15/E 16/S 16/E 17/S 17/E

Model 1 Hsueh (2011)
Inventory Level 6012 −631 6012 −1483 5552 −1296 4637 −737 3677 −961 3158 −649 1681 −369 885 138 184 107
Purchasing
Quantities 6643 7035 5933 4414 4119 2330 1254

Model 2
Lin & Chen

(2014)
Inventory Level 6393 −250 6643 -852 7495 647 6325 951 4496 −142 3698 −109 3237 1187 1187 440 440 363
Purchasing
Quantities 6893 8347 5678 3545 3840 3346

Model 3 PFRF Model
Inventory Level 6393 −250 6643 −852 7489 641 6325 951 4496 −142 3698 −109 3237 1187 1187 440 440 363
Purchasing
Quantities 6893 8341 5684 3545 3840 3346
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Table 11. Sensitivity Analysis: Return Defectives (−3%)—Cost.

Return Defectives −3%

Holding Cost Purchasing Cost Lost Sales Cost Total Cost

Model 1 Hsueh (2011) 350 147,986 33,366 181,702
Model 2 Lin & Chen (2014) 12,658 148,590 10,380 171,628
Model 3 PFRF Model 12,166 148,590 10,380 171,136

Table 12. Failure Rates used in Calculation (−3%).

(a)

Failure Rates Used in Calculation (−3% of Return Defectives)

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 Period 9

Model 1 Hsueh (2011) 0.06 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Model 2 Lin & Chen
(2014) 0.06 0.05 0.021419 0.023508 0.026895 0.022625 0.023207 0.021341 0.022175

Model 3 PFRF Model 0.06 0.05 0.021419 0.023508 0.025 0.022625 0.023207 0.021341 0.022175

(b)

Failure Rates Used in Calculation (−3% of Return Defectives)

Period 9 Period 10 Period 11 Period 12 Period 13 Period 14 Period 15 Period 16 Period 17

Model 1 Hsueh (2011) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Model 2 Lin & Chen
(2014) 0.022175 0.025019 0.022859 0.019420 0.020032 0.020620 0.013055 0.017775 0.0154

Model 3 PFRF Model 0.022175 0.025 0.022859 0.019420 0.020032 0.020620 0.015 0.017775 0.0154

6. Conclusions and Further Research

This study investigates an important reverse logistics issue, the after-sale service for in-warranty
products. A PFRF model is developed, utilizing supply chain information, to more accurately predict
the failure rates and, thereby, improve service parts inventory decisions and reduce the total cost.
Specifically, the model applies BTC theory and MDP to effectively manage the demand for service
parts, and mitigates risk impacts of over stock or shortage of service parts. We assume that the failure
rates of in-warranty products fluctuate within a reasonable range, and such a range can be estimated
based on historical data. The results of the numerical examples and sensitivity analysis suggest that
the proposed PFRF model outperforms the baseline model (Model 1, [3]) and Lin and Chen’s approach
(Model 2) [2]. Evidently, taking into consideration possible fluctuations of failure rates and adjusting
the demand forecasting from period to period significantly improves the total inventory cost and
after-sales service.

Note that the total cost presented in the simulation and the sensitivity analysis are based on
the service parts involved in a single delivery batch. In practice, the cost saving from the proposed
model would be more significant than what is demonstrated in Table 5, considering the amount of new
desktop PCs, laptops, tablets, and cell phones launched every year [26]. HP can be used as an example
as they shipped 58.8 million PCs in 2017 [27]. Assuming a 2% return rate, five service parts required
for every defective product, and each part valued at $50, the potential inventory cost saving of service
parts from the application of the PRFR model could be more than US$3 million. The proposed model is
particularly valuable to electronic industries with short product life cycles and an unpredictable market
demand, especially when product shipment is very different from the production plan. Statista [26]
suggests there will be 561 million desktop PCs, laptops, and tablets launched in 2019. Accordingly,
the potential saving for the entire electronic industry could be significant. We would not claim that
the proposed model would revolutionize the forecasting and inventory management of service parts,
but that the model should offer practitioners an opportunity to improve their service parts planning.

Overall, the PFRF model is particularly valuable to those industries (e.g., mobile phone) with
short product life cycles and an unpredictable market demand, especially when shipment is very
different from production plan. This research contributes to the issue of in-warranty product return
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management by proposing a model that can reduce the total cost of managing service parts and
improve after-sale service.

It is important to point out that the PFRF model is not without limitation. The first limitation
concerns the service parts supply in the end-of-life service period. Due to changes in technology,
companies may terminate service parts supply at some point of time. The so-called last time buy
(LTB) [28] order is not considered in this model. Furthermore, the BTC and AFR may not be accurate
in early usage because they are provided by OEMs, which do not reflect the customer demand.

For future research, the model can be extended to derive optimal or near-optimal normal failure
rates and the upper/lower bound of failure rates to minimize the total inventory cost. Moreover,
the PFRF model considers a single item in one product; however, it can be used for all service items
of the product. There could and will be many BTCs and MDPs in one product, as long as the service
histories of its service conditions are recorded, and can be referred to for the next product launch as
long as the same service parts will be used. Additionally, 3PSP can apply the simulation with the new
failure rate base line and the associated upper/lower bounds of the failure rate to identify a better
inventory plan, and keep the parameters in the system for reference, if the same or a similar product
will be used in the future. Finally, some countries demand products be serviced beyond the warranty
period. In that case, the PFRF model can be extended to cover service for the entire product life cycle.

Author Contributions: T.-Y.C. developed the research questions, design, and the mathematical model, conducted
the numerical analysis and simulation experiment, and drafted the manuscript. W.-T.L. discussed the research
questions & design, reviewed the model. C.S. reviewed the research model/design and revised the manuscript.
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Appendix A. Failure Rate of Coordinate Cell (i, j) of Planning Period k

Coordinate cell (i, j) denotes the defective return quantities
Planning Period
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Coordinate cell (i, j) denotes the ith iteration of this NPI in the jth planning period.
Failure rate at coordinate cell (i, j) in k planning period can be calculated by the following

pseudo code.
i ≤ rp; j ≤ wp; rp ≤ wp; MDP f rx = NPIx f or all x ≤ j

FRj =
∑

j
b=1 qrb, j

∑
j
a=1 qsa

MDP f rj = TP(FRj)
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The (i + 1)th delivery iteration will calculate its expected return defectives by this failure rate.

pQtyj+1 = (
i

∑
a=1

qsa) ∗MDP f rj + NPIi+1 ∗ IFRi+1

Appendix B. Generic Calculation of Failure Rate for any Coordinate Cell (i, j) at kth
Planning Period

The following is a generic algorithm for the calculation of the failure rate for any coordinate cell
(i, j) at the kth planning period.

initial MDP f rx = NPIx

initial pQtyx = 0
j = k− i + 1
i_quotation = k mod wp
i_iteration = i_quotation + 1
if k < wp

for tmp_i = 1 to k
tmp_j = k - tmp_i + 1//tmp_j = j

FRtmp_i =
∑

tmp_j
y=1 qry, tmp_i

∑
tmp_j
x=1 qsx

MDP f rtmp_i = TP(FRtmp_i)

If tmp_i = 1 then
pQtyk+1 = pQtyk+1 + (∑

tmp_j
x=1 qsx + NPItmp_j+1) ∗MDP f rtmp_i

else
pQtyk+1 = pQtyk+1 + ∑

tmp_j+1
x=1 qsx ∗MDP f rtmp_i

End if
next tmp_i

else
for tmp_i = k – wp × i_quotation + 1 to rp

tmp_j=k-tmp_i+1

FRtmp_j =
∑

tmp_i
y=1 qry, tmp_j

∑
tmp_i
x=1 qsx

MDP f rtmp_j = TP(FRtmp_j)

pQtyk+1 = pQtyk+1 + ∑
rp
x=tmpj+1

qsx ∗MFP f rtmp_j
next tmp_i

end if
QJ+1 = pQtyj+1 −QJ
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