Changes in Soil Properties and Productivity under Different Tillage Practices and Wheat Genotypes: A Short-Term Study in Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Procedure
2.3. Soil Sampling
- BD = soil bulk density (g cm−3),
- Wd = sample oven dry weight (g), and
- V = sample total volume (cm3).
2.4. Crop Sampling
- WPi = irrigation water productivity (kg m−3),
- Y = crop yield (kg ha−1), and
- Wi = water applied [irrigation (m3 ha−1)].
- IWP = input water productivity (kg m−3),
- Y = crop yield (kg ha −1), and
- W = water applied [irrigation + rainfall (m3 ha−1)].
2.5. Data Analysis
3. Results and Discussion
3.1. Soil Properties
3.1.1. Bulk Density
3.1.2. Cumulative Water Infiltration
3.1.3. Soil Organic Carbon, Total Nitrogen and C:N Ratio
3.2. Wheat Grain Yield and Yield Components
3.3. Water Used and Water Productivity
3.4. Forage Maize
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dehghanian, S.E.; Afzalinia, S. Effect of conservation tillage and irrigation methods on the crop yield and water use efficiency in wheat-corn rotation. In Proceedings of the International Conference of Agricultural Engineering, Valencia, Spain, 8–12 July 2012; pp. 153–156. [Google Scholar]
- Sayre, K.; Govaerts, B. Use of conservation agriculture to improve farming systems in developing countries. In Rainfed Farming Systems; Tow, P., Cooper, I., Partridge, I., Birch, C., Eds.; Springer Netherlands: New York, NY, USA, 2011; pp. 861–873. ISBN 978-1-4020-9132-2. [Google Scholar]
- Erenstein, O.; Sayre, K.; Wall, P.; Dixon, J.; Hellin, J. Adapting no-tillage agriculture to the conditions of smallholder maize and wheat farmers in the tropics and sub tropics. In No-Till Farming Systems; Goddard, T., Zoebisch, M., Gan, Y., Ellis, W., Watson, A., Sombatpanit, S., Eds.; World Association of Soil and Water Conservation: Bangkok, Thailand, 2008; Volume 3, pp. 253–278. ISBN 978-974-8391-60-1. [Google Scholar]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of Conservation Agriculture. Int. J. Environ. Stud. 2018. [Google Scholar] [CrossRef]
- Asadi, M.E. Conservation agriculture practices in Golestan province, Iran 2017: Turning research into impact. Agric. Mech. 2017, 3, 28–32. [Google Scholar]
- Hatfield, J.L.; Sauer, T.J.; Prueger, J.H. Managing soils to achieve greater water use efficiency. A review. Agron. J. 2001, 93, 271–280. [Google Scholar] [CrossRef]
- D’Haene, K.; Vermang, J.; Cornelis, W.M.; Leroy, B.L.M.; Schiettecatte, W.; De Neve, S.; Gabriels, D.; Hofman, G. Reduced tillage effects on physical properties of silt loam soils growing root crops. Soil Tillage Res. 2008, 99, 279–290. [Google Scholar] [CrossRef]
- Gal, A.; Vyn, T.J.; Micheli, E.; Kladivko, E.J.; McFee, W.W. Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths. Soil Tillage Res. 2007, 96, 42–51. [Google Scholar] [CrossRef]
- Thomas, G.A.; Dalal, R.C.; Standley, J. No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Tillage Res. 2007, 94, 295–304. [Google Scholar] [CrossRef]
- Afzalinia, S.; Zabihi, J. Soil compaction variation during corn growing season under conservation tillage. Soil Tillage Res. 2014, 137, 1–6. [Google Scholar] [CrossRef]
- Fabrizzi, K.P.; Garcia, F.O.; Costa, J.L.; Picone, L.I. Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil Tillage Res. 2005, 81, 57–69. [Google Scholar] [CrossRef]
- Gathala, M.K.; Ladha, J.K.; Saharawat, Y.S.; Kumar, V.; Kumar, V.; Sharma, P.K. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year rice–wheat rotation. Soil Sci. Soc. Am. J. 2011, 75, 1851–1862. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Sharma, P.C.; Kumar, V.; Yadav, A.K.; Choudhary, M.; Choudhary, V.; Gathala, M.K.; Sharma, D.K.; Jat, M.L.; et al. Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Arch. Agron. Soil Sci. 2017, 64, 531–545. [Google Scholar] [CrossRef]
- Salem, H.M.; Valero, C.; Munoz, M.A.; Rodriguez, M.G.; Silva, L.L. Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma 2015, 237–238, 60–70. [Google Scholar] [CrossRef]
- Taser, O.; Metinoglu, F. Physical and mechanical properties of a clay soil as affected by tillage systems for wheat growth. Acta Agric. Scand. Sect. B Soil Plant Sci. 2005, 55, 186–191. [Google Scholar] [CrossRef]
- Li, H.W.; Gao, H.W.; Wu, H.D.; Li, W.Y.; Wang, X.Y.; Jin, H. Effects of 15 years of conservation tillage on soil structure and productivity of wheat cultivation in northern China. Aust. Soil Tillage Res. 2007, 45, 344–350. [Google Scholar] [CrossRef]
- Dolan, M.S.; Clapp, C.E.; Allmaras, R.R.; Baker, J.M.; Molina, J.A.E. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Tillage Res. 2006, 89, 221–231. [Google Scholar] [CrossRef]
- Jantalia, C.P.; Resck, D.V.S.; Alves, B.J.R.; Zotarelli, L.; Urquiaga, S.; Boddey, R.M. Tillage effect on C stocks of a clayey Oxisol under a soybean-based crop rotation in the Brazilian Cerrado region. Soil Tillage Res. 2007, 95, 97–109. [Google Scholar] [CrossRef]
- Alijani, K.; Bahrani, M.J.; Kazemeini, S.A. Short-term responses of soil and wheat yield to tillage, corn residue management, and nitrogen fertilization. Soil Tillage Res. 2012, 124, 78–82. [Google Scholar] [CrossRef]
- Spargo, J.T.; Alley, M.M.; Follett, R.F.; Wallace, J.V. Soil carbon sequestration with continuous no-till management of grain cropping systems in the Virginia coastal plain. Soil Tillage Res. 2008, 100, 133–140. [Google Scholar] [CrossRef]
- Obour, A.K.; Mikha, M.M.; Holman, J.D.; Stahlman, P.W. Changes in soil surface chemistry after fifty years of tillage and nitrogen Fertilization. Geoderma 2017, 308, 46–53. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, C.; Li, H.; He, J.; Sarker, K.K.; Rasaily, R.G.; Liang, Z.; Qiao, X.; Li, H.; Mchugh, A.D. The effects of no-tillage with subsoiling on soil properties and maize yield: 12-Year experiment on alkaline soils of Northeast China. Soil Tillage Res. 2014, 137, 43–49. [Google Scholar] [CrossRef]
- Govaerts, B.; Verhulst, N.; Sayre, K.D.; Dixon, J.; Dendooven, L. Conservation agriculture and soil carbon sequestration; Between myth and farmer reality. Crit. Rev. Plant Sci. 2009, 28, 97–122. [Google Scholar] [CrossRef]
- Sainju, U.M.; Senwo, Z.N.; Nyakatawa, E.Z.; Tazisong, I.A.; Reddy, K.C. Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping systems, and nitrogen fertilizer sources. Agric. Ecosyst. Environ. 2008, 127, 234–240. [Google Scholar] [CrossRef]
- Wang, Q.; Bai, Y.; Gao, H.; He, J.; Chen, H.; Chesney, R.C.; Kuhn, N.J.; Li, H. Soil chemical properties and microbial biomass after 16 years of no-tillage farming on the Loess Plateau, China. Geoderma 2008, 144, 502–508. [Google Scholar] [CrossRef]
- Astier, M.; Maass, J.M.; Etchevers-Barra, J.D.; Pena, J.J.; Gonzalez, F.D. Short term green manure and tillage management effects on maize yield and soil quality in an Andisol. Soil Tillage Res. 2006, 88, 153–159. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Lichter, K.; Dendooven, L.; Deckers, J. Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems. Plant Soil 2007, 291, 39–54. [Google Scholar] [CrossRef]
- Lichter, K.; Govaerts, B.; Six, J.; Sayre, K.D.; Deckers, J.; Dendooven, L. Aggregation and C and N contents of soil organic matter fractions in a permanent raised bed planting system in the Highlands of Central Mexico. Plant Soil 2008, 305, 237–252. [Google Scholar] [CrossRef]
- Gathala, M.K.; Jat, M.L.; Saharawat, Y.S.; Sharma, S.K.; Yadvinder, S.; Ladha, J.K. Physical and Chemical Properties of a Sandy Loam Soil Under Irrigated Rice-Wheat Sequence in the Indo-Gangetic Plains of South Asia. J. Ecosyst. Ecogr. 2017, S7, 1–12. [Google Scholar] [CrossRef]
- Greb, B.W. Effect of surface applied wheat straw on soil water losses by solar distillation. Soil Sci. Soc. Am. J. 1966, 30, 786–788. [Google Scholar] [CrossRef]
- Unger, P. Tillage effects on dryland wheat and sorghum production in the southern Great Plains. Agron. J. 1994, 86, 310–314. [Google Scholar] [CrossRef]
- Alvarez, R.; Steinbach, H.S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- He, J.; Li, H.; Wang, X.; McHugh, A.D.; Li, W.; Gao, H.; Kuhn, N.J. The adoption of annual subsoiling as conservation tillage in dryland maize and wheat cultivation in northern China. Soil Tillage Res. 2007, 94, 493–502. [Google Scholar] [CrossRef]
- Zhang, S.L.; Simelton, E.; Lovdahl, L.; Grip, H.; Chen, D.L. Simulated long-term effects of different soil management regimes on the water balance in the Loess Plateau, China. Field Crop Res. 2007, 100, 311–319. [Google Scholar] [CrossRef]
- Allan, R. Impact of wheat breeding and genetics on the Pacific Northwest STEEP program. In Proceedings of the National Conference on Wheat Utilization Research, Beltsville, MD, USA, 26–28 October 1982. [Google Scholar]
- Hall, E.F.; Cholick, F.A. Cultivar × tillage interaction of hard red spring wheat cultivars. Agron. J. 1989, 81, 789–792. [Google Scholar] [CrossRef]
- Honsdorf, N.; Mulvaney, M.J.; Singh, R.P.; Ammar, K.; Burgueno, J.; Govaerts, B.; Verhulst, N. Genotype by tillage interaction and performance progress for bread and durum wheat genotypes on irrigated raised beds. Field Crops Res. 2018, 216, 42–52. [Google Scholar] [CrossRef]
- Carr, P.M.; Horsley, R.D.; Poland, W.W. Tillage and seeding rate effects on wheat cultivars: I. Grain production. Crop Sci. 2003, 43, 202–209. [Google Scholar] [CrossRef]
- Carr, P.M.; Horsley, R.D.; Poland, W.W. Tillage and seeding rate effects on wheat cultivars: II. Yield components. Crop Sci. 2003, 43, 210–218. [Google Scholar] [CrossRef]
- Herbek, J.; Murdock, L.; Grove, J.; Grabau, L.; Van Sanford, D.; Martin, J.; James, J.; Call, D. Comparing No-Till and Tilled Wheat in Kentucky; ID-177; University of Kentucky Collage of Agriculture: Lexington, KY, USA, 2009; pp. 1–10. [Google Scholar]
- Kumudini, S.; Grabau, S.L.; Van Sanford, D.; Omielan, J. Analysis of yield formation processes under no-till and conventional tillage for soft red winter wheat in the south-central region. Agron. J. 2008, 100, 1026–1032. [Google Scholar] [CrossRef]
- Weisz, R.; Bowman, D.T. Influence of tillage system on soft red winter wheat cultivar selection. J. Prod. Agric. 1999, 12, 415–418. [Google Scholar] [CrossRef]
- Zamir, M.S.I.; Ahmad, A.U.H.; Javeed, H.M.R. Comparative performance of various wheat (Triticum aestivum L.) cultivars to different tillage practices under tropical conditions. Afr. J. Agric. Res. 2010, 5, 1799–1803. [Google Scholar] [CrossRef]
- Shoran, J.; Chatrath, R.; Kharub, A.S. Wheat cultivars in relation to resource conservation technologies. In Conservation Agriculture, Status and Prospects; Abrol, I.P., Gupta, R.K., Malik, R.K., Eds.; Centre for Advancement of Sustainable Agriculture: New Delhi, India, 2005; pp. 125–128. [Google Scholar]
- Chevalier, P.M.; Ciha, A.J. Influence of tillage on phenology and carbohydrate metabolism of spring wheat. Agron. J. 1986, 78, 296–300. [Google Scholar] [CrossRef]
- Cox, D.J. Breeding for hard red winter wheat cultivars adapted to conventional-till and no-till systems in northern latitudes. Euphytica 1991, 58, 57–63. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Leoppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Eds.; SSSA Book Series No. 5; SSSA and ASA: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-total. In Methods of Soil Analysis, Part 2, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy—Soil Science Society of America: Madison, WI, USA, 1982; Volume 9, pp. 539–579. ISBN 0-89118-072-9. [Google Scholar]
- Blanco-Canqui, H.; Lal, R. No-tillage and soil-profile carbon sequestration: An on-farm assessment. Soil Sci. Soc. Am. J. 2008, 72, 693–701. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy—Soil Science Society of America: Madison, WI, USA, 1986; Volume 9, pp. 363–382. [Google Scholar]
- American Society for Testing and Materials (ASTM). D3385–09. Standard Test Method for Infiltration Rate of Soils in Field Using Double Ring Infiltrometer; ASTM: West Conshohocken, PA, USA, 2009. [Google Scholar]
- Pask, A. Determining key developmental stages. In Physiological Breeding II: A Field Guide to Wheat Phenotyping; Pask, A., Petragella, J., Mullan, D., Reynolds, M., Eds.; International Maize and Wheat Improvement Center (CIMMYT): Texcoco, Mexico, 2012; pp. 72–79. ISBN 978-970-648-182-5. [Google Scholar]
- Estakhr, A.; Heidari, B.; Ahmadi, Z. Evaluation of kernel yield and agronomic traits of European maize hybrids in the temperate region of Iran. Arch. Agron. Soil Sci. 2015, 61, 475–490. [Google Scholar] [CrossRef]
- SAS Institute. SAS User’s Guide, Version 9.1; SAS Institute: Cary, NC, USA, 2003.
- Afzalinia, S.; Karami, A.; Alavimanesh, S.M. Comparing conservation and conventional tillage methods in corn–wheat rotation. In Proceedings of the International Conference of Agricultural Engineering, Valencia, Spain, 8–12 July 2012; p. 1257. [Google Scholar]
- Kumar, S.; Kadono, A.; Lal, R.; Dick, W. Long-term no-till impacts on organic carbon and properties of two contrasting soils and corn yields in Ohio. Soil Sci. Soc. Am. J. 2012, 76, 1798–1809. [Google Scholar] [CrossRef]
- Yang, X.M.; Wander, M.M. Tillage effects on soil organic carbon distribution and storage in a silt loam soil in Illinois. Soil Tillage Res. 1999, 52, 1–9. [Google Scholar] [CrossRef]
- Ussiri, D.A.N.; Lal, R. Long term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping systems from an Alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Wienhold, B.J.; Jin, V.L.; Schmer, M.R. Long-term tillage impact on soil hydraulic properties. Soil Tillage Res. 2017, 170, 38–42. [Google Scholar] [CrossRef]
- Lipiec, J.; Kus, J.; Slowinska-Jurkiewicz, A.; Nosalewicz, A. Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res. 2006, 89, 210–220. [Google Scholar] [CrossRef]
- Wienhold, B.J.; Tanaka, D.L. Haying, tillage, and nitrogen fertilization influences on infiltration rate at a conservation reserve program site. Soil Sci. Soc. Am. J. 2000, 64, 379–381. [Google Scholar] [CrossRef]
- Kumar, V.; Jat, H.S.; Sharma, P.C.; Singh, B.; Gathala, M.K.; Malik, R.K.; Kamboj, B.R.; Yadav, A.K.; Ladha, J.K.; Raman, A.; et al. Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India. Agric. Ecosyst. Environ. 2018, 252, 132–147. [Google Scholar] [CrossRef] [PubMed]
- Verhulst, N.; Govaerts, B.; Verachtert, E.; Castellanos-Navarrete, A.; Mezzalama, M.; Wall, P.; Deckers, J.; Sayre, K.D. Conservation agriculture, improving soil quality for sustainable production systems. In Advances in Soil Science: Food Security and Soil Quality; Lal, R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 137–208. ISBN 9781439800577. [Google Scholar]
- Franzluebbers, A.J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Lopez-Fando, C.; Pardo, M.T. Changes in soil chemical characteristics with different tillage practices in a semi-arid environment. Soil Tillage Res. 2009, 104, 278–284. [Google Scholar] [CrossRef]
- Malecka, I.; Blecharczyk, A.; Sawinska, Z.; Dobrzeniecki, T. The effect of various long-term tillage systems on soil properties and spring barley yield. Turk. J. Agric. For. 2012, 36, 217–226. [Google Scholar] [CrossRef]
- Kumari, M.; Chakraborty, D.; Gathala, M.K.; Pathak, H.; Dwivedi, B.S. Soil aggregation and associated organic carbon fractions as affected by tillage in a rice-wheat rotation in North India. Soil Sci. Soc. Am. J. 2011, 75, 562–567. [Google Scholar] [CrossRef]
- Jat, M.L.; Gathala, M.K.; Saharawat, Y.S.; Tetarwale, J.P.; Gupta, R.; Singh, Y. Double no-till and permanent raised beds in maize–wheat rotation ofnorth-western Indo-Gangetic plains of India: Effects on crop yields, water productivity, profitability and soil physical properties. Field Crops Res. 2013, 149, 291–299. [Google Scholar] [CrossRef]
- Du, Z.; Ren, T.; Hu, C. Tillage and residue removal effects on soil carbon and nitrogen storage in the north China plain. Soil Water Manag. Conserv. 2010, 74, 196–202. [Google Scholar] [CrossRef]
- Dikgwatlhe, S.B.; Chen, Z.D.; Lal, R.; Zhang, H.L.; Chen, F. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat maize cropping system in the North China Plain. Soil Tillage Res. 2014, 144, 110–118. [Google Scholar] [CrossRef]
- Zuber, S.M.; Behnke, G.; Nafziger, E.D.; Villamil, M.B. Crop rotation and tillage effects on soil physical and chemical properties in Illinois. Agron. J. 2015, 107, 1–8. [Google Scholar] [CrossRef]
- Van Den Bossche, A.; De Bolle, S.; De Neve, S.; Hofman, G. Effect of tillage intensity on N mineralization of different crop residues in a temperate climate. Soil Tillage Res. 2009, 103, 316–324. [Google Scholar] [CrossRef]
- Balesdent, J.; Chenu, C.; Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000, 53, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Grandy, A.S.; Robertson, G.P. Aggregation and organic matter protection following cultivation of an undisturbed soil profile. Soil Sci. Soc. Am. J. 2006, 70, 1398–1406. [Google Scholar] [CrossRef]
- John, B.; Yamashita, T.; Ludwig, B.; Flessa, H. Storage of organic carbon in aggregate and density fractions of silty soils under diff erent types of land use. Geoderma 2005, 128, 63–79. [Google Scholar] [CrossRef]
- Choudhary, M.; Datta, A.; Jat, H.S.; Yadav, A.K.; Gathala, M.K.; Sapkota, T.B.; Das, A.K.; Sharma, P.C.; Jat, M.L.; Singh, R.; et al. Changes in soil biology under conservation agriculture based sustainable intensification of cereal systems in Indo-Gangetic Plains. Geoderma 2018, 313, 193–204. [Google Scholar] [CrossRef]
- Ghaghazardi, H.R.; Jahansouz, M.R.; Ahmadi, A.; Gorji, M. Effects of tillage management on productivity of wheat and chickpea under cold, rainfed conditions in western Iran. Soil Tillage Res. 2016, 162, 26–33. [Google Scholar] [CrossRef]
- Hemmat, A.; Eskandari, I. Tillage system effects upon productivity of a dryland winter wheat–chickpea rotation in the northwest region of Iran. Soil Tillage Res. 2004, 78, 69–81. [Google Scholar] [CrossRef]
- Saharawat, Y.S.; Singh, B.; Malik, R.K.; Ladha, J.K.; Gathala, M.; Jat, M.L.; Kumar, V. Evaluation of alternative tillage and crop establishment methods in a rice–wheat rotation in North Western IGP. Field Crops Res. 2010, 116, 260–267. [Google Scholar] [CrossRef]
- Hassan, F.U.; Ahmad, M.; Ahmad, N.; Abbasi, K.M. Effects of subsoil compaction on yield and yield attributes of wheat in the sub-humid region of Pakistan. Soil Tillage Res. 2007, 96, 361–366. [Google Scholar] [CrossRef]
- Jat, M.L.; Gathala, M.K.; Ladha, J.K.; Saharawat, Y.S.; Jat, A.S.; Kumar, V.; Sharma, S.K.; Kumar, V.; Gupta, R. Evaluation of precision land leveling and double zero-till systems in the rice–wheat rotation: Water use, productivity, profitability and soil physical properties. Soil Tillage Res. 2009, 105, 112–121. [Google Scholar] [CrossRef]
- Obour, A.K.; Stahlman, P.W.; Thompson, C.A. Wheat and grain sorghum yields as influenced by long-term tillage and nitrogen fertilizer application. Int. J. Soil Plant Sci. 2015, 7, 19–28. [Google Scholar] [CrossRef]
- Bhushan, L.; Ladha, J.K.; Gupta, R.K.; Singh, S.; Tirol-Padre, A.; Saharawat, Y.S.; Gathala, M.; Pathak, H. Saving of water and labor in a rice–wheat system with no-tillage and direct seeding technologies. Agron. J. 2007, 99, 1288–1296. [Google Scholar] [CrossRef]
- Barker, R.; Dawe, D.; Tuong, T.P.; Bhuiyan, S.I.; Guerra, L.C. The outlook for water resources in the year 2020: challenges for research on water management in rice production. Int. Rice Comm. Newsl. 2000, 49, 7–21. [Google Scholar]
- Noellemeyer, E.; Fernandez, R.; Quiroga, A. Crop and tillage effects on water productivity of dryland agriculture in Argentina. Agriculture 2013, 3, 1–11. [Google Scholar] [CrossRef]
- Mu, X.; Zhao, Y.; Liu, K.; Ji, B.; Guo, H.; Xue, Z.; Li, C. Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat–maize cropping system on the North China Plain. Eur. J. Agron. 2016, 78, 32–43. [Google Scholar] [CrossRef]
- Nidal, H.; Abu, H. Compaction and subsoiling effects on corn growth and soil bulk density. Soil Sci. Soc. Am. J. 2003, 4, 1213–1219. [Google Scholar] [CrossRef]
- Carter, M.R.; Sanderson, J.B.; Ivany, J.A.; White, R.P. Influence of rotation and tillage on forage maize productivity, weed species, and soil quality of a fine sandy loam in the cool–humid climate of Atlantic Canada. Soil Tillage Res. 2002, 67, 85–98. [Google Scholar] [CrossRef]
- Gathala, M.K.; Timsina, J.; Islam, M.S.; Rahman, M.M.; Hossain, M.I.; Harun-Ar-Rashid, M.; Ghosh, A.K.; Krupnik, T.J.; Tiwari, T.P.; McDonald, A. Conservation agriculture based tillage and crop establishment optionscan maintain farmers’ yields and increase profits in South Asia’srice–maize systems: Evidence from Bangladesh. Field Crops Res. 2015, 172, 85–98. [Google Scholar] [CrossRef]
- Krupnik, T.J.; Yasmin, S.; Pandit, D.; Asaduzzaman, M.; Khan, S.I.; Majumdar, K.; McDonald, A.; Buresh, R.; Gathala, M.K. Yield performance and agronomic N efficiency of a maize-rice rotation under strip and conventional tillage in contrasting environments in Bangladesh. In Proceedings of the World Congress on Conservation Agriculture, Winnipeg, MB, Canada, 22–25 June 2014; pp. 12–14. [Google Scholar]
Tillage | Description |
---|---|
Conventional practice (CT) | Land cultivation was performed using mouldboard plough at 20–25 cm deep ploughing and simultaneously 5–10-cm maize stocks residues (1.0 ± 0.2 t ha−1) were incorporated followed by two perpendicular harrow disking and land leveller to make seed bed uniform before planting. Wheat was sown by using the seed drill having press wheel attachment (Bazegar Hamedan seed drill). The land was prepared as above for maize in absence of wheat residue followed the forage maize was sown using row crop planter. |
Reduced practice (RT) | Land was cultivated with a composite tiller (a tiller having chiselling furrow opener followed disking and leveller cum compressor), composite tillage which functions for three operations simultaneously. The crop residues were incorporated partially (3.0 ± 0.2 t ha−1) into a soil depth of 10–15 cm during land cultivation. The forage maize and wheat seeds were sown as conventional tillage practice. |
No-tillage practice (NT) | After harvest of maize, wheat was sown in 20-cm standing maize stocks (3.0 ± 0.2 t ha−1) by using no-till crop planter (Sazeh Kesht) without any prior tillage having maize stock retention on the soil surface either anchored or mulch. Similarly, maize was planted under into wheat crop residue approximate 1.5 ± 0.1 t ha−1 using the maize pneumatic double disc-planter (Bertini) under no-till plots after harvest of wheat. |
Treatment | Effective Tillers (number m−2) | Grain Yield (t ha−1) | ||
---|---|---|---|---|
2014–2015 | 2015–2016 | 2014–2015 | 2015–2016 | |
Tillage (T) | ||||
Conventional | 389.17a † | 293.17b | 3.48a | 2.97ab |
Reduced | 375.42ab | 315.58b | 3.60a | 3.26a |
No tillage | 352.83b | 351.17a | 2.40b | 2.64b |
Genotypes (G) | ||||
Chamran | 406.56a | 382.33a | 2.92 | 3.05 |
Sirvan | 369.22a | 295.44b | 3.07 | 2.90 |
M-89-10 | 324.89b | 297.55b | 3.18 | 2.73 |
Picaflor#1 | 389.22a | 304.55b | 3.48 | 3.13 |
ANOVA | ||||
Replication (R) | 0.0298 | NS * | NS | 0.0140 |
T | 0.0416 | <0.0001 | 0.0002 | 0.0061 |
G | 0.0002 | <0.0001 | NS | NS |
T × G | NS | NS | NS | NS |
Treatments | 1000-g Weight (g) | Grains Per Spike | Harvest Index | Irrigation Water (m3 ha−1) | Total Water Used (m3 ha−1) § | Irrigation Water Productivity (kg m−3) | Input Water Productivity (kg m−3) |
---|---|---|---|---|---|---|---|
Year(Y) | |||||||
2014–2015 | 35.77 | 36.55 | 32.22 | 2230.36a | 4013.96 | 1.43b | 0.78a |
2015–2016 | 35.82 | 37.10 | 32.62 | 1916.06b | 4077.60 | 1.58a | 0.73b |
Tillage (T) | |||||||
Conventional | 37.33a † | 37.43 | 33.44 | 2358.05a | 4330.67a | 1.38b | 0.75ab |
Reduced | 35.15b | 36.38 | 32.90 | 2130.32b | 4102.83b | 1.63a | 0.84a |
No tillage | 34.92b | 36.70 | 30.91 | 1731.25c | 3703.83c | 1.50ab | 0.68b |
Genotypes (G) | |||||||
Chamran | 31.58b | 39.11a | 32.25 | 2073.21 | 4045.78 | 1.48 | 0.74 |
Sirvan | 38.1a | 36.52ab | 32.78 | 2073.21 | 4045.78 | 1.47 | 0.74 |
M-89-10 | 36.65a | 34.47b | 32.87 | 2073.21 | 4045.78 | 1.44 | 0.73 |
Picaflor#1 | 36.87a | 37.25a | 31.75 | 2073.21 | 4045.78 | 1.63 | 0.82 |
ANOVA | |||||||
Replication (R) | NS * | NS | 0.0434 | 0.0005 | 0.0005 | 0.0040 | 0.0166 |
Y | NS | NS | NS | <0.0001 | NS | 0.0136 | 0.0498 |
T | 0.0137 | NS | NS | <0.0001 | <0.0001 | 0.0287 | 0.0009 |
G | <0.0001 | 0.0005 | NS | NS | NS | NS | NS |
Y × T | NS | NS | NS | NS | NS | NS | NS |
Y × G | NS | NS | NS | NS | NS | NS | NS |
T × G | NS | NS | NS | NS | NS | NS | NS |
Treatment | Leaf Number Per Plant | Stem Diameter (mm) | Plant Height (cm) | Ear Weight (t ha−1) | Biomass (t ha−1) |
---|---|---|---|---|---|
Tillage (T) | |||||
Conventional | 15.48 | 1.67 | 185.8a † | 13.86 | 42.3ab |
Reduced | 15.77 | 1.73 | 187.2a | 13.49 | 45.67a |
No tillage | 14.53 | 1.77 | 174.5b | 12.14 | 38.0b |
ANOVA | |||||
T | NS * | NS | 0.0041 | NS | 0.0201 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khorami, S.S.; Kazemeini, S.A.; Afzalinia, S.; Gathala, M.K. Changes in Soil Properties and Productivity under Different Tillage Practices and Wheat Genotypes: A Short-Term Study in Iran. Sustainability 2018, 10, 3273. https://doi.org/10.3390/su10093273
Khorami SS, Kazemeini SA, Afzalinia S, Gathala MK. Changes in Soil Properties and Productivity under Different Tillage Practices and Wheat Genotypes: A Short-Term Study in Iran. Sustainability. 2018; 10(9):3273. https://doi.org/10.3390/su10093273
Chicago/Turabian StyleKhorami, Shokoofeh Sarikhani, Seyed Abdolreza Kazemeini, Sadegh Afzalinia, and Mahesh Kumar Gathala. 2018. "Changes in Soil Properties and Productivity under Different Tillage Practices and Wheat Genotypes: A Short-Term Study in Iran" Sustainability 10, no. 9: 3273. https://doi.org/10.3390/su10093273
APA StyleKhorami, S. S., Kazemeini, S. A., Afzalinia, S., & Gathala, M. K. (2018). Changes in Soil Properties and Productivity under Different Tillage Practices and Wheat Genotypes: A Short-Term Study in Iran. Sustainability, 10(9), 3273. https://doi.org/10.3390/su10093273