Range-Gated Imaging System for Underwater Monitoring in Ocean Environment
Abstract
:1. Introduction
2. Methods
2.1. UTOFIA System
2.2. Laser Illuminator
2.3. Camera Sensors
2.4. Deployment and Operations
2.5. Data Processing
3. Results
3.1. System Performances
3.2. Observations at Sea
3.3. Fish size and Tracking
4. Discussion
4.1. Surveying the Ocean
4.2. Improving Management of Marine Resources
4.3. Advance Marine Science
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jaffe, J.S.; Moore, K.D.; McLean, J.; Strand, M.P. Underwater Optical Imaging: Status and Prospects. Oceanography 2001, 14, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Bonin-Font, F.; Burguera, A.; Oliver, G. New Solutions in Underwater Imaging and Vision Systems. Imaging Mar. Life Macrophotogr. Microsc. Approaches Mar. Biol. 2013, 22–47. [Google Scholar]
- Jerlov, N.G.; Nielsen, E.S. Optical Aspects of Oceanography; Academic press: Cambridge, MA, USA, 1975. [Google Scholar]
- Kocak, D.M.; Dalgleish, F.R.; Caimi, F.M.; Schechner, Y.Y. A Focus on Recent Developments and Trends in Underwater Imaging. Mar. Technol. Soc. J. 2008, 42, 52–67. [Google Scholar] [CrossRef]
- Hou, W.; Gray, D.J.; Weidemann, A.D.; Fournier, G.R.; Forand, J.L. Automated Underwater Image Restoration and Retrieval of Related Optical Properties; IEEE: New York, NY, USA, 2007. [Google Scholar]
- Alfalou, A.; Brosseau, C. Recent Advances in Optical Image Processing. In Progress in Optics; Elsevier: Amsterdam, The Netherlands, 2015; Volume 60, pp. 119–262. [Google Scholar]
- Feygels, V.; Aitken, J.; Ramnath, V.; Duong, H.; Marthouse, R.; Smith, B.; Clark, N.; Renz, E.; Reisser, J.; Kopilevich, Y. Coastal Zone Mapping and Imaging Lidar (CZMIL) Participation in the Ocean Cleanup’s Aerial Expedition Project. In Proceedings of the OCEANS-Anchorage 2017, Anchorage, AK, USA, 18–21 September 2017; pp. 1–7. [Google Scholar]
- Tuell, G.; Barbor, K.; Wozencraft, J. Overview of the Coastal Zone Mapping and Imaging Lidar (CZMIL): A New Multisensor Airborne Mapping System for the US Army Corps of Engineers. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI; SPIE Press: Bellingham, WC, USA, 2010; p. 76950R. [Google Scholar]
- Howland, J.; Farr, N.; Singh, H. Field Tests of a New Camera/Led Strobe System. In Proceedings of the OCEANS 2006, Boston, MA, USA, 18–21 September 2006; pp. 1–4. [Google Scholar]
- Massot-Campos, M.; Oliver-Codina, G. Optical Sensors and Methods for Underwater 3D Reconstruction. Sensors 2015, 15, 31525–31557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Toole, M.; Achar, S.; Narasimhan, S.G.; Kutulakos, K.N. Homogeneous Codes for Energy-Efficient Illumination and Imaging. ACM Trans. Graph. (ToG) 2015, 34, 35. [Google Scholar] [CrossRef]
- Palomer, A.; Ridao, P.; Youakim, D.; Ribas, D.; Forest, J.; Petillot, Y. 3D Laser Scanner for Underwater Manipulation. Sensors 2018, 18, 1086. [Google Scholar] [CrossRef] [PubMed]
- Swartz, B.A. Laser Range Gate Underwater Imaging Advances. In Proceedings of the Oceans Engineering for Today’s Technology and Tomorrow’s Preservation (OCEANS’94), Brest, France, 13–16 September 1994; Volume 2, pp. II–722. [Google Scholar]
- Weidemann, A.; Fournier, G.R.; Forand, L.; Mathieu, P. In Harbor Underwater Threat Detection/Identification Using Active Imaging. Photonics Port Harbor Secur. 2005, 5780, 59–71. [Google Scholar]
- Busck, J.; Heiselberg, H. Gated Viewing and High-Accuracy Three-Dimensional Laser Radar. Appl. Opt. 2004, 43, 4705–4710. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.F.; Busck, J.; Heiselberg, H. Submillimeter 3-D Laser Radar for Space Shuttle Tile Inspection; Danisch Defense Research Establishment: Copenhagen, Denmark, 2013. [Google Scholar]
- Tan, C.; Seet, G.; Sluzek, A.; He, D. A Novel Application of Range-Gated Underwater Laser Imaging System (ULIS) in near-Target Turbid Medium. Opt. Lasers Eng. 2005, 43, 995–1009. [Google Scholar] [CrossRef]
- OECD. The Ocean Economy in 2030; OECD Publishing: Paris, France, 2016. [Google Scholar]
- Cametti, E.; Dell’Acqua, S.; Farinello, P.; Piccinno, G.; Reali, G. UTOFIA Project: A Novel MOPA Laser Source for a Compact, Cost-Effective System for Underwater Range-Gated Imaging. In Proceedings of the 18th Italian National Conference on Photonic Technologies (Fotonica 2016), Rome, Italy, 6–8 June 2016. [Google Scholar]
- Paschotta, R. Master Oscillator Power Amplifier. In Encyclopedia of Laser Physics and Technology; Wiley-VCH: Weinheim, Germany, 2008; Volume 1, ISBN 978-3-527-40828-3. [Google Scholar]
- Koechner, W.; Bass, M. Solid-State Lasers: A Graduate Text; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Risholm, P.; Thorstensen, J.; Thielemann, J.T.; Kaspersen, K.; Tschudi, J.; Yates, C.; Softley, C.; Abrosimov, I.; Alexander, J.; Haugholt, K.H. Real-Time Super-Resolved 3D in Turbid Water Using a Fast Range-Gated CMOS Camera. Appl. Opt. 2018, 57, 3927–3937. [Google Scholar] [CrossRef] [PubMed]
- A New, Compact and Cost-Efficient Concept for Underwater Range-Gated Imaging System. Available online: www.utofia.eu (accessed on 28 December 2018).
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; Folke, C. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- Føre, M.; Frank, K.; Norton, T.; Svendsen, E.; Alfredsen, J.A.; Dempster, T.; Eguiraun, H.; Watson, W.; Stahl, A.; Sunde, L.M.; Schellewald, C. Precision Fish Farming: A New Framework to Improve Production in Aquaculture. Biosyst. Eng. 2017, 173, 176–193. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Salman, A.; Malik, M.I.; Shafait, F.; Mian, A.; Shortis, M.R.; Harvey, E.S. Handling editor: Howard Browman. Automatic Fish Species Classification in Underwater Videos: Exploiting Pre-Trained Deep Neural Network Models to Compensate for Limited Labelled Data. ICES J. Mar. Sci. 2017, 75, 374–389. [Google Scholar] [CrossRef]
- Muñoz-Benavent, P.; Andreu-García, G.; Valiente-González, J.M.; Atienza-Vanacloig, V.; Puig-Pons, V.; Espinosa, V. Handling editor: Howard Browman. Automatic Bluefin Tuna Sizing Using a Stereoscopic Vision System. ICES J. Mar. Sci. 2017, 75, 390–401. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nation (FAO). The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; Food and Agriculture Organization of the United Nation: Rome, Italy, 2018; p. 210. [Google Scholar]
- Church, P.; Hou, W.; Fournier, G.; Dalgleish, F.; Butler, D.; Pari, S.; Jamieson, M.; Pike, D. Overview of a Hybrid Underwater Camera System. In Ocean Sensing and Monitoring VI; 2014; Volume 9111, p. 91110O. [Google Scholar]
- Dell, A.I.; Bender, J.A.; Branson, K.; Couzin, I.D.; de Polavieja, G.G.; Noldus, L.P.; Pérez-Escudero, A.; Perona, P.; Straw, A.D.; Wikelski, M.; et al. Automated Image-Based Tracking and Its Application in Ecology. Trends Ecol. Evol. 2014, 29, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Escudero, A.; Vicente-Page, J.; Hinz, R.C.; Arganda, S.; De Polavieja, G.G. IdTracker: Tracking Individuals in a Group by Automatic Identification of Unmarked Animals. Nat. Methods 2014, 11, 743. [Google Scholar] [CrossRef] [PubMed]
- Kenny, A.J.; Cato, I.; Desprez, M.; Fader, G.; Schüttenhelm, R.T.E.; Side, J. An Overview of Seabed-Mapping Technologies in the Context of Marine Habitat Classification. ICES J. Mar. Sci. 2003, 60, 411–418. [Google Scholar] [CrossRef]
- Liu, Y.; Kerkering, H.; Weisberg, R.H. Coastal Ocean Observing Systems; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
Specifications | UTOFIA Characteristics |
---|---|
Dimensions | Diameter 155 mm; length 370 mm. The total volume is 7 L. |
Weight in air | 9 kg |
Weight in water | 2 kg |
Depth range | Up to 300 m |
Visual range | >20m in clear water; Cm resolution 3D up to 3 attenuation lengths; 2D and 3D up to 4.5 attenuation lengths |
Field Of View Camera Lens | 70° diagonal 10.5/17.5 mm focal length |
3D | Real-time 3D (10 Hz) |
Power housing | Idle 130 W; Laser and camera running: 135W; Pump 15W |
Voltage | 20–30 V |
Laser safety class | OK |
Frame rate Sub-frames/laser rate | >10Hz 400–1 kHz |
Operating seawater temperature | 0–30 °C (optimized for 0–22 °C) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariani, P.; Quincoces, I.; Haugholt, K.H.; Chardard, Y.; Visser, A.W.; Yates, C.; Piccinno, G.; Reali, G.; Risholm, P.; Thielemann, J.T. Range-Gated Imaging System for Underwater Monitoring in Ocean Environment. Sustainability 2019, 11, 162. https://doi.org/10.3390/su11010162
Mariani P, Quincoces I, Haugholt KH, Chardard Y, Visser AW, Yates C, Piccinno G, Reali G, Risholm P, Thielemann JT. Range-Gated Imaging System for Underwater Monitoring in Ocean Environment. Sustainability. 2019; 11(1):162. https://doi.org/10.3390/su11010162
Chicago/Turabian StyleMariani, Patrizio, Iñaki Quincoces, Karl H. Haugholt, Yves Chardard, Andre W. Visser, Chris Yates, Giuliano Piccinno, Giancarlo Reali, Petter Risholm, and Jens T. Thielemann. 2019. "Range-Gated Imaging System for Underwater Monitoring in Ocean Environment" Sustainability 11, no. 1: 162. https://doi.org/10.3390/su11010162
APA StyleMariani, P., Quincoces, I., Haugholt, K. H., Chardard, Y., Visser, A. W., Yates, C., Piccinno, G., Reali, G., Risholm, P., & Thielemann, J. T. (2019). Range-Gated Imaging System for Underwater Monitoring in Ocean Environment. Sustainability, 11(1), 162. https://doi.org/10.3390/su11010162