Meat Analogs from Different Protein Sources: A Comparison of Their Sustainability and Nutritional Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assessed Products
2.2. Data for GHG Emissions of Meat Analog Products
2.3. Nutritional Value of Meat Analog Products
2.4. Classification of Meat Analog Products
3. Results
3.1. GHG Emissions of Meat Analog Products
3.2. Nutritional Value of Meat Analog Products
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.B.; et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef] [PubMed]
- Rippe, J.M.; Angelopoulos, T.J. Relationship between Added Sugars Consumption and Chronic Disease Risk Factors: Current Understanding. Nutrients 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Warensjo, E.; Nolan, D.; Tapsell, L. Dairy food consumption and obesity-related chronic disease. Adv. Food Nutr. Res. 2010, 59, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Burlingame, B.; Dernini, S. Sustainable diets and biodiversity: Directions and solutions for policy, research and action. In Proceedings of the International Scientific Symposium Biodiversity and Sustainable Diets United Against Hunger, FAO, Rome, Italy, 3–5 November 2012. [Google Scholar]
- Johnston, J.L.; Fanzo, J.C.; Cogill, B. Understanding Sustainable Diets: A Descriptive Analysis of the Determinants and Processes That Influence Diets and Their Impact on Health, Food Security, and Environmental Sustainability. Adv. Nutr. 2014, 5, 418–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow; Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; pp. 1–407. [Google Scholar]
- Tukker, A.; Guinee, J.; Heijungs, R.; de Koning, A.; van Oers, L.; Suh, S.; Geerken, T.; Van Holderbeke, M.; Jansen, B.; Nielsen, P. Environmental Impact of PRoducts (EIPRO) Analysis of the Life Cycle Environmental Impacts Related to the Final Consumption of the EU-25; Institue for Prospective Technological Studies: Seville, Spain, 2006; pp. 1–141. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popp, A.; Lotze-Campen, H.; Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Chang. 2010, 20, 451–462. [Google Scholar] [CrossRef]
- Sabate, J.; Soret, S. Sustainability of plant-based diets: Back to the future. Am. J. Clin. Nutr. 2014, 100, 476S–482S. [Google Scholar] [CrossRef] [PubMed]
- Garnett, T. Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 2011, 36, S23–S32. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: A global modelling analysis with country-level detail. Lancet Planet. Health 2018, 2, e451–e461. [Google Scholar] [CrossRef]
- American Dietetic Association; Dietitians Association of Canada. Position of the American Dietetic Association and dietitians of Canada: Vegetarian diets. Can. J. Diet. Pract. Res. 2003, 64, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J.; Mangels, A.R.; American Dietetic Association. Position of the American Dietetic Association: Vegetarian diets. J. Am. Diet. Assoc. 2009, 109, 1266–1282. [Google Scholar] [PubMed]
- Archundia Herrera, M.C.; Subhan, F.B.; Chan, C.B. Dietary Patterns and Cardiovascular Disease Risk in People with Type 2 Diabetes. Curr. Obes. Rep. 2017, 6, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Abbate, R.; Gensini, G.F.; Casini, A.; Sofi, F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3640–3649. [Google Scholar] [CrossRef] [PubMed]
- Le, L.; Sabaté, J. Beyond Meatless, the Health Effects of Vegan Diets: Findings from the Adventist Cohorts. Nutrients 2014, 6, 2131–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soret, S.; Mejia, A.; Batech, M.; Jaceldo-Siegl, K.; Harwatt, H.; Sabate, J. Climate change mitigation and health effects of varied dietary patterns in real-life settings throughout North America. Am. J. Clin. Nutr. 2014, 100, 490S–495S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fresan, U.; Martinez-Gonzalez, M.A.; Sabate, J.; Bes-Rastrollo, M. Global sustainability (health, environment and monetary costs) of three dietary patterns: Results from a Spanish cohort (the SUN project). BMJ Open 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Clune, S.; Crossin, E.; Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef] [Green Version]
- Fresan, U.; Martinez-Gonzalez, M.A.; Sabate, J.; Bes-Rastrollo, M. The Mediterranean diet, an environmentally friendly option: Evidence from the Seguimiento Universidad de Navarra (SUN) cohort. Public Health Nutr. 2018, 21, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Ruby, M.B. Vegetarianism. A blossoming field of study. Appetite 2012, 58, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, D.L. The psychology of vegetarianism: Recent advances and future directions. Appetite 2018, 131, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Corrin, T.; Papadopoulos, A. Understanding the attitudes and perceptions of vegetarian and plant-based diets to shape future health promotion programs. Appetite 2017, 109, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Goodland, R.; Anhang, J. Livestock and Climate Change: What If the Key Actors in Climate Change are Cows, Pigs, and Chickens; World Watch Institute: Washington, DC, USA, 2009; Available online: http://www.worldwatch.org/files/pdf/Livestock%20and%20Climate%20Change.pdf (accessed on 14 May 2018).
- Malav, O.P.; Talukder, S.; Gokulakrishnan, P.; Chand, S. Meat analog: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1241–1245. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Mintel. Meat Alternatives—US—June 2013. 2015. London, UK. Available online: https://store.mintel.com/meat-alternatives-us-june-2013 (accessed on 25 March 2018).
- Hoek, A.C.; Luning, P.A.; Weijzen, P.; Engels, W.; Kok, F.J.; de Graaf, C. Replacement of meat by meat substitutes. A survey on person- and product-related factors in consumer acceptance. Appetite 2011, 56, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.; Moses, R.; Sammons, N.; Birkved, M. Potential to curb the environmental burdens of American beef consumption using a novel plant-based beef substitute. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Smetana, S.; Mathys, A.; Knoch, A.; Heinz, V. Meat Alternatives: Life Cycle Assessment of Most Known Meat Substitutes. Int. J. Life Cycle Assess. 2015, 20. [Google Scholar] [CrossRef]
- Heller, M.C.; Keoleian, G.A. Beyond Meat’s Beyond Burger Life Cycle Assessment: A Detailed Comparison between A Plant-Based and An Animal-Based Protein Source; Center for Sustainable Systems, University of Michigan: 2018. Available online: http://css.umich.edu/sites/default/files/publication/CSS18-10.pdf (accessed on 22 April 2019).
- Mejia, M.A.; Fresán, U.; Harwatt, H.; Oda, K.; Uriegas-Mejia, G.; Sabaté, J. Life Cycle Assessment of the Production of a Large Variety of Meat Analogs by Three Diverse Factories. J. Hunger. Environ. Nutr. 2019, 1–13. [Google Scholar] [CrossRef]
- Dettling, J.; Qingshi, T.; Faist, M.; DelDuce, A.; Mandlebaum, S. A Comparitive Life Cycle Assessment of Plant-Based Foods and Meat Foods; Quantis: Boston, MA, USA, 2016. [Google Scholar]
- US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Legacy. Version Current: April 2018. Available online: https://ndb.nal.usda.gov/ndb/ (accessed on 14 May 2018).
- The National Chicken Council. Per Capita Consumption of Poultry and Livestock, 1965 to Estimated 2019, in Pounds. 2019. Available online: https://www.nationalchickencouncil.org/about-the-industry/statistics/per-capita-consumption-of-poultry-and-livestock-1965-to-estimated-2012-in-pounds/ (accessed on 4 June 2019).
- International Agency for Research on Cancer Working Group on the Evaluation of Carcinogenic Risk to Humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. In Red Meat and Processed Meat; International Agency for Research on Cancer: Lyon, France, 2018. [Google Scholar]
- Heller, M.C.; Keoleian, G.A. Life cycle energy and greenhouse gas analysis of a large-scale vertically integrated organic dairy in the United States. Environ. Sci. Technol. 2011, 45, 1903–1910. [Google Scholar] [CrossRef]
- Sandars, D.L.; Audsley, E.; Cañete, C.; Cumby, T.R.; Scotford, I.M.; Williams, A.G. Environmental Benefits of Livestock Manure Management Practices and Technology by Life Cycle Assessment. Biosyst. Eng. 2003, 84, 267–281. [Google Scholar] [CrossRef]
- Venkat, K. Comparison of twelve organic and conventional farming systems: A life cycle greenhouse gas emissions perspective. J. Sustain. Agric. 2012, 36, 620–649. [Google Scholar] [CrossRef]
- SimaPro [computer software]. Pre Product Ecology Consultants, 8th ed.; Amersfoort, The Netherlands, 2014. [Google Scholar]
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A New Life Cycle Impact Assessment Methodology. Int. J. Life Cycle Assess. 2003. [Google Scholar] [CrossRef]
- Schakel, S.F.; Sievert, Y.A.; Buzzard, I.M. Sources of data for developing and maintaining a nutrient database. J. Am. Diet. Assoc. 1988, 88, 1268–1271. [Google Scholar] [PubMed]
- Singh, P.; Kumar, R.; Sabapathy, S.N.; Bawa, A.S. Functional and Edible Uses of Soy Protein Products. Compr. Rev. Food Sci. Food Saf. 2008, 7, 14–28. [Google Scholar] [CrossRef]
- De Souza, R.G.M.; Schincaglia, R.M.; Pimentel, G.D.; Mota, J.F. Nuts and Human Health Outcomes: A Systematic Review. Nutrients 2017, 9. [Google Scholar] [CrossRef]
Main Source of Protein | |||||
---|---|---|---|---|---|
Wheat | Soy | Wheat/Soy | Nuts | p Value * | |
Number of products (n) | 32 | 7 | 10 | 7 | |
Kcal | 176.52 ± 36.79 | 234.62 ± 67.21 | 185.52 ± 30.53 | 204.60 ± 43.63 | 0.01 |
Protein (g) | 21.68 ± 2.96 | 24.96 ± 17.19 | 21.44 ± 2.90 | 18.12 ± 5.03 | 0.30 |
Total fat (g) | 5.68 ± 4.00 | 6.63 ± 4.14 | 5.64 ± 3.06 | 11.59 ± 8.33 | 0.03 |
Saturated fatty acids (g) | 0.77 ± 0.54 | 0.94 ± 0.62 | 0.75 ± 0.39 | 1.70 ± 1.30 | 0.01 |
Monounsaturated fatty acids (g) | 1.44 ± 1.08 | 1.64 ± 1.08 | 1.47 ± 0.85 | 5.13 ± 4.51 | 0.00 |
Polyunsaturated fatty acids (g) | 3.05 ± 2.20 | 3.63 ± 2.34 | 3.01 ± 1.68 | 4.11 ± 2.46 | 0.64 |
Omega 3 (g) | 0.11 ± 0.12 | 0.24 ± 0.27 | 0.08 ± 0.04 | 0.04 ± 0.05 | 0.04 |
Carbohydrates (g) | 10.95 ± 3.18 | 20.31 ± 8.22 | 13.94 ± 2.90 | 9.63 ± 3.70 | 0.00 |
Fiber (g) | 1.35 ± 0.65 | 6.35 ± 5.70 | 2.71 ± 0.58 | 3.01 ± 0.89 | 0.01 |
Cholesterol (mg) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | -- |
Iron (mg) | 2.38 ± 0.69 | 6.05 ± 3.03 | 3.06 ± 0.99 | 3.62 ± 1.70 | 0.00 |
Zinc (mg) | 0.88 ± 0.89 | 4.29 ± 2.02 | 1.24 ± 0.61 | 3.18 ± 1.83 | 0.00 |
Sodium (mg) | 251.20 ± 163.50 | 267.06 ± 186.00 | 189.65 ± 162.30 | 162.18 ± 157.51 | 0.46 |
Vitamin A (μg) | 9.91 ± 9.26 | 7.30 ± 6.80 | 13.87 ± 13.43 | 17.08 ± 20.54 | 0.34 |
Vitamin B1(μg) | 0.05 ± 0.03 | 0.26 ± 0.23 | 0.09 ± 0.02 | 0.13 ± 0.09 | 0.00 |
Riboflavin (μg) | 0.04 ± 0.05 | 0.15 ± 0.11 | 0.07 ± 0.03 | 0.05 ± 0.01 | 0.00 |
Niacin (μg) | 0.32 ± 0.21 | 0.87 ± 0.71 | 0.35 ± 0.07 | 2.47 ± 2.43 | 0.00 |
Vitamin B6 (μg) | 0.06 ± 0.03 | 0.24 ± 0.20 | 0.12 ± 0.02 | 0.13 ± 0.04 | 0.00 |
Vitamin B12 (μg) | 1.10 ± 1.16 | 0.87 ± 1.08 | 2.24 ± 1.51 | 1.02 ± 0.72 | 0.17 |
Folic acid (μg) | 20.37 ± 14.02 | 121.33 ± 123.37 | 40.33 ± 7.00 | 56.54 ± 26.62 | 0.00 |
Totally Plant-Based | With Egg | p Value * | |
---|---|---|---|
Number of products (n) | 41 | 15 | |
Kcal | 186.42 ± 49.57 | 202.11 ± 34.13 | 0.19 |
Protein (g) | 22.37 ± 7.23 | 19.87 ± 4.41 | 0.13 |
Total fat (g) | 6.12 ± 5.28 | 8.15 ± 4.11 | 0.14 |
Saturated fatty acids (g) | 0.86 ± 0.79 | 1.08 ± 0.53 | 0.24 |
Monounsaturated fatty acids (g) | 1.90 ± 2.45 | 2.17 ± 1.13 | 0.58 |
Polyunsaturated fatty acids (g) | 2.94 ± 2.16 | 4.38 ± 2.24 | 0.04 |
Omega 3 (g) | 0.11 ± 0.16 | 0.11 ± 0.05 | 1.00 |
Carbohydrates (g) | 12.03 ± 5.76 | 13.91 ± 2.41 | 0.09 |
Fiber (g) | 2.39 ± 2.97 | 2.57 ± 0.78 | 0.72 |
Cholesterol (mg) | 0.00 ± 0.00 | 0.00 ± 0.00 | -- |
Iron (mg) | 3.11 ± 1.90 | 3.23 ± 1.40 | 0.80 |
Zinc (mg) | 1.59 ± 1.62 | 1.85 ± 1.94 | 0.65 |
Sodium (mg) | 235. 28 ± 167.40 | 206.99 ± 168.41 | 0.58 |
Vitamin A (μg) | 8.54 ± 10.46 | 18.65 ± 12.38 | 0.10 |
Vitamin B1(μg) | 0.44 ± 0.66 | 0.61 ± 0.70 | 0.42 |
Riboflavin (μg) | 0.24 ± 0.36 | 0.37 ± 0.39 | 0.27 |
Niacin (μg) | 3.55 ± 5.43 | 4.64 ± 5.78 | 0.53 |
Vitamin B6 (μg) | 0.37 ± 0.52 | 0.52 ± 0.56 | 0.38 |
Vitamin B12 (μg) | 1.13 ± 1.52 | 1.61 ± 1.54 | 0.31 |
Folic acid (μg) | 42.14 ± 62.87 | 38.52 ± 17.10 | 0.74 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fresán, U.; Mejia, M.A.; Craig, W.J.; Jaceldo-Siegl, K.; Sabaté, J. Meat Analogs from Different Protein Sources: A Comparison of Their Sustainability and Nutritional Content. Sustainability 2019, 11, 3231. https://doi.org/10.3390/su11123231
Fresán U, Mejia MA, Craig WJ, Jaceldo-Siegl K, Sabaté J. Meat Analogs from Different Protein Sources: A Comparison of Their Sustainability and Nutritional Content. Sustainability. 2019; 11(12):3231. https://doi.org/10.3390/su11123231
Chicago/Turabian StyleFresán, Ujué, Maximino Alfredo Mejia, Winston J Craig, Karen Jaceldo-Siegl, and Joan Sabaté. 2019. "Meat Analogs from Different Protein Sources: A Comparison of Their Sustainability and Nutritional Content" Sustainability 11, no. 12: 3231. https://doi.org/10.3390/su11123231
APA StyleFresán, U., Mejia, M. A., Craig, W. J., Jaceldo-Siegl, K., & Sabaté, J. (2019). Meat Analogs from Different Protein Sources: A Comparison of Their Sustainability and Nutritional Content. Sustainability, 11(12), 3231. https://doi.org/10.3390/su11123231