Is Technical Efficiency Affected by Farmers’ Preference for Mitigation and Adaptation Actions against Climate Change? A Case Study in Northwest Mexico
Abstract
:1. Introduction and Objectives
Description of the Study Area
2. Materials and Methods
2.1. Survey Data
2.2. Technical Efficiency
2.3. Farmers’ Preferences for Climate Change Mitigation and Adaptation Actions
2.4. Farmers’ Environmental Attitudes and Opinions by NEP Scale Method
2.5. Farmers’ Risk Attitude Using the MPL Lottery Method
2.6. Farmers’ Perceptions of Climate Change
3. Results and Discussion
3.1. Technical Efficiency
3.2. Adaptation and Mitigation Preferences
3.3. Environmental Attitudes
3.4. Risk Attitudes
3.5. Climate Change Perceptions
3.6. Socio-Economic Characteristicvs
3.7. Technical Efficiency with Regard to Farmers’ Preferences, Risk, and Environmental Attitudes and Climate Change Perceptions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smit, B.; Pilifosova, O. Adaptation to climate change in the context of sustainable development and equity. Sustain. Dev. 2003, 8, 9. [Google Scholar]
- Lampis, A.; Pabón-Caicedo, J.D. Presentación del dossier Cambio climático: Territorios e instituciones. Cuad. Geogr.-Rev. Colomb. Geogr. 2018, 27, 225–226. [Google Scholar]
- Tao, S.; Xu, Y.; Liu, K.; Pan, J.; Gou, S. Research progress in agricultural vulnerability to climate change. Adv. Clim. Chang. Res. 2011, 2. [Google Scholar] [CrossRef]
- Zamora, M. Cambio climático. Rev. Mex. Cienc. For. 2015, 6, 4–7. [Google Scholar]
- Gornall, J.; Betts, R.; Burke, E.; Clark, R.; Camp, J.; Willett, K.; Wiltshire, A. Implications of climate change for agricultural productivity in the early twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2973–2989. [Google Scholar] [CrossRef] [PubMed]
- Vargas, A.R. Cambio Climático, Agua y Agricultura; Desde la Dirección de Liderazgo Técnico y Gestión del Conocimiento-IICA: San José, Costa Rica, 2007; p. 13. [Google Scholar]
- Pomareda, C. Políticas Públicas para la Adaptación a la Variabilidad del Clima y al Cambio Climático; Políticas y Sistemas de Incentivos para el Fomento y Adopción de Buenas Prácticas Agrícolas; CATIE: Turrialba, Costa Rica, 2009; p. 147. [Google Scholar]
- Campos, M.; Velazquez, A.; McCall, M. Adaptation strategies to climatic variability: A case study of small-scale farmers in rural Mexico. Land Use Policy 2014, 38, 533–540. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Mitigation of Climate Change; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Alston, J.; Pardey, P. Agriculture in the global economy. J. Econ. Perspect. 2014, 28, 121–146. [Google Scholar] [CrossRef]
- World Bank. Employment in Agriculture (% of Total Employment) (Modeled ILO Estimate). 2019. Available online: https://data.worldbank.org/indicator/sl.agr.empl.zs (accessed on 24 May 2019).
- Orduño, M.; Kallas, Z.; Ornelas, S. Analysis of Farmers’ Stated Risk Using Lotteries and Their Perceptions of Climate Change in the Northwest of Mexico. Agronomy 2019, 9, 4. [Google Scholar] [CrossRef]
- Khanal, U.; Wilson, C.; Lee, B.; Hoang, V.-N. Do climate change adaptation practices improve technical efficiency of smallholder farmers? Evidence from Nepal. Clim. Chang. 2018, 147, 507–521. [Google Scholar] [CrossRef] [Green Version]
- Saiyut, P.; Bunyasiri, I.; Sirisupluxana, P.; Mahathanaseth, I. The impact of age structure on technical efficiency in Thai agriculture. Kasetsart J. Soc. Sci. 2017, 1–7. [Google Scholar] [CrossRef]
- Ullah, R.; Shivakoti, G.P.; Ali, G. Factors Effecting Farmers’ Risk Attitude and Risk Perceptions: The Case of Khyber Pakhtunkhwa, Pakistan. Int. J. Disaster Risk Reduct. 2015, 13, 151–157. [Google Scholar] [CrossRef]
- Mase, A.S.; Gramig, B.M.; Prokopy, L.S. Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern US crop farmers. Clim. Risk Manag. 2017, 15, 8–17. [Google Scholar] [CrossRef]
- Castaño, N.; Cardona, M. Determining factors in Colombian agricultural sector instability. En Contexto 2014, 2, 1–258. [Google Scholar]
- Ghaffar, A. Climate change and associated spatial heterogeneity of Pakistan: Empirical evidence using multidisciplinary approach. Sci. Total Environ. 2018, 634, 95–108. [Google Scholar]
- Bellow, T.; Mutabazi, K.; Kirschke, D.; Franke, Ch.; Siëer, S.; Siebert, R.; Tscherning, K. Can farmers’ adaptation to climate change be explained by socio-economic household-level variables? Glob. Environ. Chang. 2012, 22, 223–235. [Google Scholar] [CrossRef]
- Martínez-Castillo, R. Sistemas de producción agrícola sostenible. Rev. Tecnol. Marcha 2009, 22, 23. [Google Scholar]
- Bizimana, J.C.; Richardson, J. Agricultural technology assessment for smallholder farms: An analysis using a farm simulation model (FARMSIM). Comput. Electron. Agric. 2019, 156, 406–425. [Google Scholar] [CrossRef]
- Bidegain, M.; Crisci, C.; Del Puerto, L.; Inda, H.; Mazzeo, N.; Taks, J.; Terra, R. Clima de Cambios: Nuevos Desafíos de Adaptación en Uruguay. Project FAO-MGAP. TCP URU/3302. 2012. Available online: http://www.fao.org/climatechange/80141/es/ (accessed on 24 April 2018).
- Cecena, M.I.; Vega, D.C. Agricultural chemicals and its impact on the quality of water resources: The case of the Valley of Carrizo, Sinaloa, Mexico. AQUA Mundi 2011, 157–162. [Google Scholar] [CrossRef]
- CONAGUA Comisión Nacional del Agua; Secretaría de Medio Ambiente y Recursos Naturales. Estadísticas Agrícolas de los Distritos de Riego Año Agrícola 2015–2016; Edición: Mexico City, Mexico, 2017. [Google Scholar]
- Lara, P.E.; Valdez, V.J.; Medina, T.S.; Martinez, R.R. Situación de la agricultura de Mayos y Mestizos del norte del Sinaloa, Mexico. Agric. Soc. Desarro 2017, 14, 577–597. [Google Scholar]
- López, A.; Hernández, D. Cambio climático y agricultura: Una revisión de la literatura con énfasis en América Latina. Trimest. Econ. 2016, 83, 459–496. [Google Scholar] [CrossRef]
- Rojas, R. Guía para Realizar Investigaciones Sociales, 40th ed.; Plaza y Valdez S.A.: Mexico City, Mexico, 2005. [Google Scholar]
- Kallas, Z.; Serra, T.; Gil, J. Farmers’ objectives as determinants of organic farming adoption: The case of Catalonian vineyard production. Agric. Econ. 2010, 41, 409–423. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Meeusen, W.; van den Broeck, J. Technical efficiency and dimension of the firm: Some results on the use of frontier production functions. Empir. Econ. 1977, 2, 109–122. [Google Scholar] [CrossRef]
- Guesmi, B.; Serra, T.; Kallas, Z.; Gil Roig, J.M. The productive efficiency of organic farming: The case of grape sector in Catalonia. Span. J. Agric. Res. 2012, 3, 552–566. [Google Scholar] [CrossRef]
- Saaty, T.L. Toma de Decisiones para Líderes; RWS Publications: Pittsburg, CA, USA, 1997. [Google Scholar]
- Saaty, T.L. Fundamentals of the analytic hierarchy process. In The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Mendoza, A.; Ospino, W.A.; y Romero, D.S. Aplicación de los métodos de toma de decisiones LP-GW-AHP y lógica difusa para la selección de una electiva académica en la Universidad del Atlántico, Colombia. Rev. Virtual Univ. Catól. Norte 2016, 48, 351–364. [Google Scholar]
- Lee, D.; Edmeades, S.; De Nys, E.; McDonald, A.; Janssen, W. Developing local adaptation strategies for climate change in agriculture: A priority-setting approach with application to Latin America. Glob. Environ. Chang. 2014, 29, 78–91. [Google Scholar] [CrossRef]
- Olesen, J.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Castells, D.; Lopez, M.; McDermott, T. Adaptation to climate change: A review through a development economics lens. World Dev. 2018, 104, 183–196. [Google Scholar] [CrossRef]
- Xiaohong, Z.; Jia, H.; Junxin, C. Study on Mitigation Strategies of Methane Emission from Rice Paddies in the Implementation of Ecological Agriculture. Energy Proced. 2011, 5, 2474–2480. [Google Scholar] [CrossRef] [Green Version]
- Moniruzzaman, S. Crop choice as climate change adaptation: Evidence from Bangladesh. Ecol. Econ. 2015, 118, 90–98. [Google Scholar] [CrossRef]
- Mangalassery, S.; Mooney, S.; Sparkes, D.; Fraser, W.; Sjogersten, S. Impacts of zero tillage on soil enzyme activities, microbial characteristics and organic matter functional chemistry in temperate soils. Eur. J. Soil Biol. 2015, 68, 9–17. [Google Scholar] [CrossRef]
- Mohamed, H.; Krauss, S.; Samsuddin, S. A systematic review on Asian’s farmers’ adaptation practices towardsclimate change. Sci. Total Environ. 2018, 644, 683–695. [Google Scholar]
- Liu, X.; Zhang, S.; Bae, J. The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four. J. Clean. Prod. 2017, 164, 1239–1247. [Google Scholar] [CrossRef]
- Waha, K.; Muller, C.; Bondeau, A.; Dietrich, J.; Kurukulasuriya, P.; Heinke, J.; Lotze-Campen, H. Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Glob. Environ. Chang. 2013, 23, 130–143. [Google Scholar] [CrossRef]
- Yue, Q.; Xu, X.; Hillier, J.; Cheng, K.; Pan, G. Mitigating greenhouse gas emissions in agriculture: From farm production to food consumption. J. Clean. Prod. 2017, 149, 1011–1019. [Google Scholar] [CrossRef]
- Siraj, S.; Mikhailov, L.; Keane, J. Decision Support Contribution of individual judgments toward inconsistency in pairwise comparisons. Eur. J. Oper. Res. 2015, 242, 557–567. [Google Scholar] [CrossRef]
- Holt, C.A.; Laury, S.K. Risk Aversion and Incentive Effects. Am. Econ. Rev. 2002, 92, 1644–1655. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L.; y Vargas, L.G. Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios. Math. Model. 1984, 5, 309–324. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Reyna, C.; Bressán, E.; Mola, D.; Belaus, A. Validating the Structure of the New Ecological Paradigm Scale among Argentine Citizens through Different Approaches. Pensam. Psicol. 2018, 16, 107–118. [Google Scholar] [CrossRef]
- Gomera, A.; Villamandos, F.; Vaquero, M. Construction of indicators of environmental beliefs from the NEP scale. Acc. Psicol. 2013, 10, 147–160. [Google Scholar]
- Moreno, M.; Corraliza, J.A.; Ruiz, J.P. Escala de actitudes ambientales hacia problemas específicos. Psicothema 2005, 17, 502–508. [Google Scholar]
- Sharma, S.; Aragón Correa, J.A.; Rueda, A. Gestión medioambiental proactiva: Validación de un instrumento de medida. In Comunicación Presentada en el XIII Congreso Nacional de ACEDE; Publisher: Salamanca, Spain, 2003. [Google Scholar]
- Dunlap, R.; Liere, K.V.; Mertig, A.; Jones, R.E. Measuring Endorsement of the New Ecological Paradigm: A Revised NEP Scale. J. Soc. Issues 2000, 56, 425–442. [Google Scholar] [CrossRef]
- Hawcroft, L.; Milfont, T.L. The use (and abuse) of the new environmental paradigm scale over the last 30 years: A meta-analysis. J. Environ. Psychol. 2010, 30, 143–158. [Google Scholar] [CrossRef]
- Vozmediano, L.; San Juan, C. Escala Nuevo Paradigma Ecológico: Propiedades psicométricas con una muestra española obtenida a través de Internet. Medio Ambient. Comport. Hum. 2005, 6, 37–49. [Google Scholar]
- Mejìa, J. Tolerancia y Aversión al Riesgo. 2015. Available online: https://www.21tradingcoach.com/es/formaci%C3%B3n-gratuita/an%C3%A1lisis-cuantitativo/128-tolerancia-y-aversi%C3%B3n-al-riesgo (accessed on 8 February 2019).
- Brick, K.; Visser, M.; Burns, J. Risk Aversion: Experimental Evidence from South African Fishing Communities. Am. J. Agric. Econ. 2012, 94, 133–152. [Google Scholar] [CrossRef]
- IDAE. Instituto para la Diversificación y Ahorro de la Energía. Ahorro, Eficiencia Energética y Sistemas de Laboreo Agrícola; IDEA: Madrid, Spain, 2006. [Google Scholar]
- Alam, G.M.; Alam, K.; Mushtaq, S. Climate change perceptions and local adaptation strategies of hazard-prone rural households in Bangladesh. Clim. Risk Manag. 2017, 17, 52–63. [Google Scholar] [CrossRef]
- Niles, M.T.; Mueller, N.D. Farmer perceptions of climate change: Associations with observed temperature and precipitation trends, irrigation, and climate beliefs. Glob. Environ. Chang. 2016, 39, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Gori, A.; Brito, B.; Ruiz, J. Climate Change and Agriculture: Do Environmental Preservation and Ecosystem Services Matter? Ecol. Econ. 2018, 152, 27–39. [Google Scholar]
- Greenpeace. La Agricultura Mexicana y el Cambio; Greenpeace: Mexico City, Mexico, 2010; Volume 1, pp. 4–11. [Google Scholar]
- Morales-Casco, L.A.; Zúniga-González, C. A Impactos del cambio climático en la agricultura y seguridad alimentaria. Rev. Iberoam. Bioecon. Cambio Clim. 2016, 2, 269. [Google Scholar]
- Fadhelab, S.; Rico, M.A.; Hana, D. Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate. J. Hydrol. 2018, 560, 546–559. [Google Scholar] [CrossRef] [Green Version]
- Araus, J.; Slafer, G.; Royo, C.; Serret, M. Breeding for yield potential and stress adaptation in cereals. Crit. Rev. Plant Sci. 2008, 27, 377–412. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Cambio Climático. Bases Físicas. 2013. Available online: https://www.ipcc.ch/pdf/ assessment-report/ar5/wg1/WG1AR5_SummaryVolume_FINAL_SPANISH.pdf (accessed on 21 September 2018).
- Quiroga, A. Impactos del Cambio Climático en la Incidencia de Plagas y Enfermedades de los Cultivos. 2013. Available online: https://www.croplifela.org/es/actualidad/articulos/197-impactos-del-cambio-climatico-en-la-incidencia-de-plagas-y-enfermedades-de-los-cultivos (accessed on 12 September 2017).
- Vásquez, L. Cambio Climático, Incidencia de Plagas y Prácticas Agroecológicas Resilientes; Instituto Nacional de Ciencias Agrícolas (INCA): La Habana, Cuba, 2011. [Google Scholar]
- Galindo, L.M. La Economía del Cambio Climático en Mexico. Semarnat 2013, 53, 1689–1699. [Google Scholar]
- Márquez, T.; Velásquez, A.; Flores, J.; Flores, S.; y Garzón, H. Determinantes de la eficiencia técnica de explotaciones de frijol ubicadas en Portuguesa, Venezuela. Temas Agrar. 2013, 18, 67–82. [Google Scholar] [CrossRef]
- Karunarathna, M.; Wilson, C. Agricultural biodiversity and farm level technical efficiency: An empirical investigation. J. For. Econ. 2017, 29, 38–46. [Google Scholar] [CrossRef]
- Ovares, R.G. El cambio climático en la agenda política: Un problema mundial. Rev. Ing. 2016, 26, 59–70. [Google Scholar]
- Perdomo, J.; y Hueth, D. Funciones de Producción y Eficiencia Técnica en el eje Cafetero Colombiano: Una Aproximación con Frontera Estocástica; Universidad de los Andes: Bogotá, Colombia, 2010. [Google Scholar]
- Bragado, M.A. El Régimen Internacional del Cambio Climático y los Retos para México; El Colegio de San Luis A.C.: San Luis Potosí, Mexico, 2016. [Google Scholar]
- Naess, A. Self-Realization: An Ecological Approach to Being in the World. In Deep Ecology for the 21st Century; Sessions, G., Ed.; Shambhala: Boston, MA, USA; Londres, UK, 1995; pp. 224–239. [Google Scholar]
- Pennings, J.M.E.; Garcia, P. Measuring producers’ risk preferences: A global risk-attitude construct. Am. J. Agric. Econ. 2001, 83, 993–1009. [Google Scholar] [CrossRef]
- Perdomo, J.A.; y Mendieta, J.C. Factores que afectan la eficiencia técnica y asignativa en el sector cafetero colombiano: Una aplicación con análisis envolvente de datos. Rev. Desarro. Soc. 2007. [Google Scholar] [CrossRef]
- Sánchez, B.I.; Kallas, Z.; Rojas, O.; Gil, J.M. Determinant Factors of the Adoption of Improved Maize Seeds in Southern Mexico: A Survival Analysis Approach. Sustainability 2018, 10, 3543. [Google Scholar] [CrossRef]
- Cardozo, N.; de Oliveira Bordonal, R.; La Scala, N., Jr. Sustainable intensification of sugarcane production under irrigation systems, considering climate interactions and agricultural efficiency. J. Clean. Prod. 2018, 204, 861–871. [Google Scholar] [CrossRef]
- Alvarez, A.; Del Corral, J. Identifying different technologies using a latent class model: Extensive versus intensive dairy farms. Eur. Rev. Agric. Econ. 2010, 37, 231–250. [Google Scholar] [CrossRef]
- Parks, M.M.; Brekken, C.A. Cosmovisions and Farming Praxis: An Investigation of Conventional and Alternative Farmers along the Willamette River. Cult. Agric. Food Environ. 2018. [Google Scholar] [CrossRef]
- Ortiz, R. El Cambio Climático y la Producción Agrícola; Banco Interamericano de desarrollo: Washington, DC, USA, 2012; pp. 13–17. [Google Scholar]
A Adaptation Measures [35] | M Mitigation Measures [36] |
---|---|
A1 Invest in improved irrigation facilities [37] | M1 Use organic agriculture [38] |
A2 Change crops [39] | M2 Use zero tillage management [40] |
A3 Introduce improved and resistant seeds [41] | M3 Use renewable energy [42] |
A4 Adapt the sowing calendar [43] | M4 Use low-polluting emission and energy-efficient machinery [44] |
A. Adaptation Measures. | M. Mitigation Measures | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orduño Torres, M.A.; Kallas, Z.; Ornelas Herrera, S.I.; Guesmi, B. Is Technical Efficiency Affected by Farmers’ Preference for Mitigation and Adaptation Actions against Climate Change? A Case Study in Northwest Mexico. Sustainability 2019, 11, 3291. https://doi.org/10.3390/su11123291
Orduño Torres MA, Kallas Z, Ornelas Herrera SI, Guesmi B. Is Technical Efficiency Affected by Farmers’ Preference for Mitigation and Adaptation Actions against Climate Change? A Case Study in Northwest Mexico. Sustainability. 2019; 11(12):3291. https://doi.org/10.3390/su11123291
Chicago/Turabian StyleOrduño Torres, Miguel Angel, Zein Kallas, Selene Ivette Ornelas Herrera, and Bouali Guesmi. 2019. "Is Technical Efficiency Affected by Farmers’ Preference for Mitigation and Adaptation Actions against Climate Change? A Case Study in Northwest Mexico" Sustainability 11, no. 12: 3291. https://doi.org/10.3390/su11123291
APA StyleOrduño Torres, M. A., Kallas, Z., Ornelas Herrera, S. I., & Guesmi, B. (2019). Is Technical Efficiency Affected by Farmers’ Preference for Mitigation and Adaptation Actions against Climate Change? A Case Study in Northwest Mexico. Sustainability, 11(12), 3291. https://doi.org/10.3390/su11123291