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Abstract: Spatial patterns of tourist mobility are important for tourism management and planning.
A large number of traveler-generated content accumulated on the internet provide a unique
opportunity for revealing comprehensive spatial patterns of tourist movements. Instead of
concentrating on a single city or attraction in previous research, this work investigates the intercity
travel flows extracted from the online travel blogs in China from 2012 to 2016. The descriptive
statistics of travel flows are first analyzed. The distribution of travel volume is found to satisfy the
power-law distribution. Based on the intercity travel flows, a network structure is then constructed
to investigate tourism interactions between cities. After four communities and 14 sub-communities
being detected from the network, a tourism spatial layout with regional agglomeration effects are
recognized. This research concludes that distance is essential in determining tourist movements based
on a spatial interaction model. Intercity travel flows decline with distance under a power-law function.
These results reveal the spatial patterns of tourist movements at an intercity scale. It will be helpful
for arranging tourism resources, predicting tourist flows, and maintaining sustainable tourism.
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1. Introduction

The tourism market in the world has been booming in recent years. The consequent influence on
the environment drives the focus of sustainable tourism. Tourism mobility is an important component
of sustainable strategies for tourism [1,2]. The destination choices, travel trips and transportation in
tourists’ mobility are essential for effective policy interventions to address the impacts of tourism on
the environment and destinations [3,4]. Supported by emerging information technologies, people enjoy
sharing their travel experiences at tourism websites. Many high-quality travel blogs and reviews that
have accumulated online provide new approaches and abundant resources for investigating tourism
mobility. By extracting information from tourists’ experiences, their travel flows can be reconstructed.
The tourist movements are not only the direct manifestation of their behavior and perception, but also
the interaction between travelers and the attractions. An in-depth understanding of the inherent
mechanism and spatial patterns will benefit tourism planning and sustainable development.

There has been research focused on tourist movements. The concept of tourism flow was first
proposed by Mercer [5] and Rajotte [6]. They concluded that the spatial scale of tourism flows was
related to the leisure time of tourists. Distance is found as another essential factor to determine
travel activities. Using questionnaires of self-driving travelers in Nanning, Liu et al. found that all
spatial characteristics of the travel flows were consistent with the general distance decay pattern,
but some attractive attractions caused irregular changes [7]. Tourist experience is determined by
various factors [8]. What affects the selection of tourist destinations, such as travelers’ age, cognition
psychology, price, spatial configuration and urban soundscape, were also investigated in detail [9–15].
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Benefiting from big data in recent years, researchers have gained deeper insight into spatial
activities of tourists. GPS traces, transit smart card data, social media, and other online contents
generated by tourists have become the most popular and convenient resources. By integrating GPS
technologies and surveys, movement patterns of various tourists were found in a city or around a
tourist attraction [16–18]. It was found from their mobile phone positioning data that the distribution
of tourist volume satisfied the attenuation effect of distance [19]. Survey questionnaires and travelers’
active participation (in-vehicle GPS data and transit smart card data) have improved the precision
of travel models [20]. Social media, tourism websites, and other online platforms provide numerous
opportunities for tourists to present their travel experience. People also create their expectations about
the tourism destination by trusting received social media contents [21]. These online user-generate
contents (UGC) contain rich information for discovering tourist movement patterns. Wise et al.
assessed UGC using an interpretative framework when the Facebook page “See You in Iran” is used
to promote the tourism of Iran [22]. Hu et al. crawled tourists’ tweets with geo-tags, and then
applied DBSCAN and network analysis methods to detect tourist movement patterns in New York [23].
Ahani et al. developed a method to predict spa hotel segmentation and travel choice by applying
machine learning approaches based on online reviews and ratings [24]. By collecting information
from an open tourism web service, the temporal heterogeneity in intracity tourist movements were
explored, and the power law of distance decay of tourist mobility was confirmed in Nanjing, China [25].
From posts on the NAVER blog in Korea, it was found that London, Paris, Venezia, and Firenze were
key cities where Korean backpackers tended to enter Europe [26]. Tourist trajectories were extracted
from Flicker’s geo-tagged photos and then motif tourist mobility patterns were detected [27]. Wu et al.
introduced a tourism hotspot network approach to investigate travel patterns from social media data
for tourism resources planning [28]. Moreover, Travel topics or sentiments were discovered from online
traveler-generated content, such as Flicker’s geo-tagged photos [29,30], tweets [31], or multi-source
travelogues [32]. Based on various data sources, travelers’ profiles and movement patterns were
depicted, tourism market segmentation and travel choice were predicted, and finally the tourism was
promoted. Multi-source data provide power for tourism researches and applications.

Most of the previous works focused on individual travel mobility at small scales for attraction
descriptions or tourism recommendations. The investigation of tourist movements is mainly confined
to a single city or attraction. However, tourists usually travel more often among cities within
their country. They travel from the city where they live to the destination city, constructing a
flow between the two cities. Intercity tourism is more valuable for the national tourism market.
Furthermore, collective intercity travels imply specific tourist mobility at a large spatial scale, which is
different to intracity movements. Intercity tourism involves more long-distance transportation,
accommodation, entertainment, shopping and so on. These are all primary elements of sustainable
tourism. Characteristics of the departure and destination cities, travel modes and travel distances
affect the activities of tourists which in turn make impacts on the local environment and economy.
Revealing the spatial arrangement and patterns of intercity travels will provide the local and national
governments with necessary insights into the tourism mobility. It can help planners assess the
attractiveness and carrying capacity of tourism destinations and optimize tourism policies based
on collective travel movements. Transportation can also be improved to reduce environmental
impacts according to the tourist distributions and travel distances, and thus maintaining the
sustainable development.

Under the framework of social sensing [33], online travelogues are utilized to extract intercity
tourism flows. These tourist-generated contents provide a new perspective to investigate tourist spatial
behaviors which are different from what were found in other data sources. Disciplines of statistical
physics, complex network approaches, and spatial interaction theory are integrated to provide the
theoretical basis and methods for investigating the spatial structures, interactions and patterns of
travel mobilities [34–36]. By exploring intercity tourism flows, city-level movement patterns of tourists
are revealed from multiple perspectives and the community structure of tourist cities are discovered
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in multi-scale. These knowledge can contribute to tourism resources arrangement, tourist flows
prediction, and tourism recommendation.

2. Data

Baidu Travel (https://lvyou.baidu.com/) is one of the most popular tourism websites in China
to share travel experiences through blogs. For each trip, the origin city and the destination city
described in a blog can be extracted to the form with triple attributes (user, origin city, destination city).
Each travel entry represents one movement from one city to another. Domestic tourism is different
from the overseas because of the tourism motives and travel modes. To simplify the problem, only the
travels in mainland China were considered. The travel entries whose departures or destinations are
beyond the research area were filtered out. Finally, 1,105,928 travel entries of 72,999 users from 2012
to 2016 in China were collected. The valid travel flows between two cities in mainland China are
represented as bright red lines in Figure 1. The brighter the color in a location, the more flows are from
and to the corresponding city.

Figure 1. Intercity travel flows extracted from Baidu blogs.

Note that the amount of users cannot exactly represent the tourist distribution in cities due to
their uneven distribution in different cities. Penetration, which is proposed for human mobility in
Twitter [37], was employed for the representativeness of users in a city. The travel penetration was
defined as the proportion of users to the total population of a city. As expected, the more developed
the economy of a city, the greater the penetration was. It was similar to the popularity diffusion of
social media such as Weibo and Twitter. For the representativeness, the cities with fewer than 20 users
or less than 0.001% penetration were filtered out. Finally, 259 cities were retained.

3. Methods

Cities are connected by a large number of travel flows to form a network structure. This structure
contains rich information about the relationship between cities, revealing the topological property and
spatial arrangement of tourism movements. At the same time, the flows and structures are distributed
in space, so spatial effects, especially distance, have impacts on them. Therefore, quantitative, structural
and spatial factors were the three primary aspects of investigating tourism movements. Statistical
methods were first utilized to explore the distributions and disparities of tourists, travel inflows and
outflows. Then, a complex network structure of intercity travels was constructed based on the travel
origin and destination pairs to discover the topological and structural properties of flow patterns.
Finally, the distance decay of intercity tourism interaction was modeled to investigate the spatial effects
on tourist mobility.

https://lvyou.baidu.com/
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3.1. Statistical Analysis

Statistical analysis was used to investigate the distributions of travels described in travel blogs,
thus discovering the macroscopic patterns of collective tourist mobility between cities. The correlation
between the effective users and the rank of a city was calculated by Equation (1) using log-log
transformations,

Pr = P1r−q, (1)

where r represents the volume rank of a city, Pr is the user volume of the r− th city, P1 is the theoretical
value of the top-ranked city, and q represents the degree of decline trend in the city’s user volume
with its rank increase. In the same way, the accumulative travels of all users in a city against its rank
were fitted by log-log transformations as well. Equation (1) verifies whether the correlations satisfy the
rank–size law that is subjected to a power law distribution. It characterizes the disparity that a small
number of cities contribute or attract most tourists and most cities have a small number of tourists.

Additionally, the average gyration radius of all users in each city was calculated to measure the
collective travel pattern. The gyration radius indicates the average movement extent of all travelers
from a city. The larger the gyration radius is, the longer distance the preferred travels are.

3.2. Complex Network Analysis

Complex network analysis was used to analyze human mobility or behavior to reveal spatial
structures or interactions. Two cities are considered to interact with each other if users travel from
one to the other. All cities are connected by travel flows to construct a network structure in which a
vertex denotes a city and an edge denotes the interaction relationship. Then, the intercity interaction
characteristics were investigated by complex network methods.

Generally, a city interaction network of tourism is an indicted weighted graph represented by a
triple G = (V, E, W). A vertex in the vertex set V denotes a city. The edge set E is the subset of V ×V.
An edge in E is represented as Eij = (Vi, Vj, Wij), where Vi and Vj are two vertices in V connected by
the edge, and Wij ∈W is the weight of the edge. Wij is defined by Equation (2),

Wij = Fij + Fji, (2)

where Fij represents the travel flows from city i to city j. The number of vertices is N = |V| and the
number of edges is M = |E|.

The structural characteristics of the city interaction network were evaluated by statistical
parameters including centrality, small-world property, degree distribution and assortativeness. Degree
distribution can be described by the distribution function P(k), which is the probability that the degree
of a random node is exactly k. In the proposed network of intercity travel flows, however, the degree
spectrum is discrete with P(k) = 0 at some ks, so the cumulative degree distribution function [38],
which is the probability distribution of vertices with degrees no less than k, is employed instead here
as Equation (3),

P(k) =
∞

∑
k′=k

P(k
′
). (3)

If the degree distribution satisfies the power law P(k) ∝ k−γ, the cumulative distribution follows
the power law with an exponent of γ− 1. If the degree distribution satisfies an exponential distribution
which is P(k) ∝ e−γ∗k where γ > 0 is a constant, the cumulative distribution also satisfies the
exponential distribution with the same exponent.
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Network assortativity describes the tendencies of nodes in a network to connect to nodes with
the same degree, measured by assortativity coefficient Γ and knn(k). The assortativity coefficient Γ is
represented by Equation (4):

Γ =
|E|−1 ∑i jiki − [|E|−1 ∑i

1
2 (ji + ki)]

2

|E|−1 ∑i
1
2 (j2i + k2

i )− [|E|−1 ∑i
1
2 (ji + ki)]2

, (4)

where j and k represent the degrees of nodes at both ends of the edge, respectively. The range of Γ is
[−1, 1]. if Γ > 0, the network is assortative, i.e., the nodes with larger degrees tend to connect to the
nodes with larger degrees in the network. On the contrary, the network is disassortative, indicating
that the nodes with larger degrees tend to connect to the nodes with smaller degrees. knn(k) is the
average degree of the adjacent nodes of the nodes with a degree of k, as calculated by Equation (5):

knn(k) = ∑
k′

k′p(k′|k) (5)

If knn(k) ∝ k−µ, µ > 0, is satisfied for any k, the network is disassortative and µ is disassortativity
index. The disassortativty of a network can be proved by Γ and µ.

The city interaction network was partitioned by a community detection method to find clustering
structures. Then, the spin-glass model based on modularity optimization [39] was employed to
investigate the community structure of the city interaction network.

3.3. Spatial Interaction Model

Intercity interactions are described by travel flows of tourists, in which some cities are primarily
determined as sources with more outflows and less inflows and others are sinks with more inflows
and less outflows. The interactions reveal not only the travel patterns of each city but also the relations
between cities. The former were investigated by incoming or outgoing flows of a city as the travel
origin or destination, respectively. The latter were evaluated by the interaction model that measures
distance decay.

Intercity travel patterns were discovered from the similarity of travel flows between cities. Let Fij
denote the frequency of travels from city i to city j, and N is the number of cities, then the outflows
of city i are represented as a vector out f lowi =< Fi1, Fi2, ..., FiN >, and its inflows are in f lowi =<

F1i, F2i, ..., FNi >. The spatial distributions of the outflows or inflows indicate the choice patterns of
tourist destinations from a city or tourist origins to a city, respectively. Pearson’s correlation coefficient
was employed to measure the tourist similarity of two cities, as Equation (4),

Rij =
∑t(Fit − Fi)(Fjt − Fj)√

∑t(Fit − Fi)2
√

∑t(Fjt − Fj)2
, t 6= i, j, (6)

where Rij is the correlation coefficient between city i and city j, Fit is the flow from i to t, and Fi is the
average flow of city i. From the perspective of the tourism source, Rij measures the similarity of the
destination choices of travelers from the two cities if both Fi and Fj are average outflows. From the
perspective of a sink, on the contrary, Rij measures the similarity of tourist origins to the two cities if
both Fi and Fj are average inflows. Based on the similarity measurement, all cities were clustered by a
hierarchical method to discover the spatial patterns of the tourist flow distributions.

The intercity interaction of tourist mobility was modeled by the gravity model [40]. Constrained
by the distance decay effect, generally, the spatial interaction intensity of two cities was negatively
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correlated with the distance. The negative power-law function was employed as the distance decay
function to fit the following gravity model,

Fij = k
pα

i pβ
j

dγ
ij

, (7)

where Fij represents the flow frequency from city i to city j, pi represents the volume of users traveling
from city i, pj represents the number of users traveling to city j, dij is the geographic distance between
the two cities, and k is a constant factor. α, β and γ are parameters to be estimated, in which γ is the
distance friction coefficient evaluating the impact of distance on flows.

This model was solved by linear regression of the inverse gravity model. Equation (7) is
transformed to Equation (8) by logarithmic transformation as

lnFij = lnk + αlnpi + βlnpj − γlndij. (8)

Finally, the optimal solution of the parameters α, β and γ are solved under a certain condition by
the least square method.

4. Results

4.1. Statistical Features

4.1.1. Tourist Distributions

By fitting the effective tourist volumes of cities to Equation (1), it was found that user volumes
satisfied the power-law distribution against their rank with P1 = 8259 and q = −0.84, as shown in
Figure 2a. The amounts of users in different cities were significantly different. A small number of cities
concentrated most of the travelers, while most cities accounted for a small proportion of travelers.
The first-ranked city was Beijing with 8143 users which was very close to the estimated P1. The R2

reached 0.981 under the 0.01 significance level, indicating that the fitting result could explain almost
all the variance of the traveler counts from all cities. The spatial disparity of tourists was significant.

(a) (b)

Figure 2. Log–log distributions of (a) effective users and (b) travels over the city ranks.

The total travels of all users in each city were accumulated. Then, in the same way, the travel
volumes and ranks of the cities were fitted by Equation (1) after log-log transformations, as shown in
Figure 2b. It was estimated that P1 and q were 168,700 and 0.93, respectively, with R2 = 0.987 under
the 0.01 significance level. The travel volume in a city presented a negative power-law decay with its
rank. The spatial disparity of travel volumes was significant, too.
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4.1.2. Flow Distributions

To reveal the tourism sources and sinks, all travel inflows and outflows that were extracted from
the travel blogs in every city were quantified. The top 20 cities are shown in Figure 3. The cities with
large inflows indicated tourism sources, and the cities with large outflows were usually sinks.

Figure 3. Top 20 cities of inflows and outflows.

Among the top 20 cities of outflows, most were provincial capitals or in eastern China with
developed economic, for example, Beijing, Shanghai, Guangzhou, and Xi’an. In these cities,
the residents had relatively higher incomes, which led to more tourists. Because of more mature
social networks, people were more willing to share their travel experience on the Internet. The top
30 travel destinations from four representative tourism source cities are shown in Figure 4. It was
obvious that most travelers preferred big tourism cities or surrounding cities. Short-distance travel
was favored as well when time and cost were taken into account.

(a) (b)

(c) (d)

Figure 4. The top 30 destination cities of travelers from (a) Beijing, (b) Shanghai, (c) Guangzhou,
and (d) Xi’an.
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Among the top 30 cities of inflows, many well-known tourism cities ranked relatively high,
for instance, Guilin, Sanya, Aba Prefecture, and Qingdao. Rich tourist resources in these cities attracted
a large number of visitors all over the country, thus forming representative tourist sinks. Top cities
where travelers went to four tourist-sink cities are shown in Figure 5. Distance was no longer a
constraint factor for travels in inflows than in outflows.

(a) (b)

(c) (d)

Figure 5. The top 30 origin cities of travelers to (a) Aba Prefecture, (b) Guilin, (c) Qingdao, and (d) Sanya.

4.2. Interaction Network Features

The city interaction network of tourism was constructed as shown in Figure 6. The network
contains 259 city nodes and 9283 interaction edges. The colors of the edges are the same as the
colors of the departure cities. The cities with more connections are closer to the center, while the
cities with less connections are more likely on the periphery. Table 1 shows the basic statistics of
the network.

The average degree of nodes in the network was 71.7, which represented the average number of
interactions between cities. The diameter of the network was 2. Almost all cities connected to Beijing
that was the main hub city. Subsequently, any two cities could be associated indirectly through Beijing.
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Figure 6. City interaction network of tourism.

Table 1. The basic statistical characteristic of the city interaction network of tourism.

Metrics Values

number of nodes 259
number of edges 9283

average degree < k > 71.7
network diameter D 2

average path length L 1.72
aggregation coefficient C 0.812

degree distribution index γ 0.016
assortativity coefficient Γ −0.432

4.2.1. Centrality

Centrality indicates the importance and influence of a city in the tourism network. A city’s
prominence, transit capacity, and accessibility are measured by degree centrality, betweenness centrality,
and closeness centrality respectively. The top 20 cities of degree centrality, betweenness centrality
and closeness centrality in the city interaction network of tourism are shown in Table 2. The top
20 cities mostly the first or second-tier cities in China, including state capital (Beijing), municipality
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directly under the central government (e.g., Shanghai, Shenzhen and Chongqin) and provincial
capitals (e.g., Guangzhou, Chengdu and Wuhan) with developed economic. The correlations
between these indicators and the ranks of all cities are shown in Figure 7. They are all subjected
to exponential distributions, which are plotted as the red lines. The values of R2, which equal to
0.97, 0.99 and 0.97 under the 0.01 significance level, indicate that the correlations are strong and
significant. The degree centrality satisfied the exponential decay with its rank. Beijing ranked
first with the normalized degree centrality equaling 1. All other cities connected to Beijing directly,
which was also the reason that the diameter of the network was 2. Forty–four cities had values greater
than 0.5, which meant that these cities interacted directly with more than half of the nodes in the
network. Cities with a better economy and developed tourism industry had higher degree centrality.
The betweenness centrality satisfied the exponential decay and heavy-tailed distribution. It was
positively related with degree centrality. The descending trend of the closeness centrality satisfied the
exponential decay. Cities with a more developed economy and tourism industry had relatively higher
closeness centralities as well.

Table 2. The top 20 cities of centralities.

Rank Degree Centrality Betweenness Centrality Closeness Centrality

1 Beijing Beijing Beijing
2 Shanghai Shanghai Shanghai
3 Guangzhou Guangzhou Guangzhou
4 Shenzhen Shenzhen Shenzhen
5 Hangzhou Hangzhou Hangzhou
6 Xi’an Chengdu Xi’an
7 Chengdu Xi’an Chengdu
8 Wuhan Wuhan Wuhan
9 Tianjin Tianjin Tianjin

10 Nanjing Nanjing Nanjing
11 Suzhou Suzhou Suzhou
12 Qingdao Dali Qingdao
13 Dali Qingdao Dali
14 Zhengzhou Chongqing Zhengzhou
15 Chongqing Changsha Chongqing
16 Changsha Zhengzhou Changsha
17 Kunming Kunming Kunming
18 Xiamen Xiamen Xiamen
19 Jinan Dalian Jinan
20 Jiaxing Shenyang Jiaxing

(a) (b) (c)

Figure 7. Distribution of (a) degree centrality, (b) betweenness centrality, and (c) closeness centrality.

4.2.2. Small-World Property

Small world property measures the interconnectivity between cities. The average shortest path
length of the interaction network was 1.72, which was very close to 1.71 of the random network.
The aggregation coefficient was 0.812, which was much higher than 0.277 for the random network.
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Therefore, the city interaction network of tourism had small-world network properties and was
relatively compact. A city with more tourism resources would drive surrounding small cities to form a
large tourism region.

4.2.3. Degree Distribution

Degree distribution measures the disparity of the connections between cities. The degree of the
interaction network satisfied the exponential distribution as shown in Figure 8a. The disparity of travel
flows was obvious, although it was less strong than that under a power-law distribution that was more
common in complex networks. A small number of famous cities attracted plenty of tourists from most
cities, while most cities only had tourists from a few cities. Less than 13% of cities interacted more than
half of other cities.

(a) (b)

Figure 8. (a) The cumulative degree distribution; (b) the correlation between k and knn(k).

4.2.4. Disassortativity

Disassortativity indicates the connectivity between dissimilar cities. The correlation between
k and knn(k) is plotted in Figure 8b. The network conformed to heterozygosity because the index
satisfied the power-law decay, i.e., knn(k) ∝ k−µ with the heterogeneity index µ = 0.297. As a result,
cities with high degrees were intermediary hub nodes, and they were dispersed in the network rather
than clustered together. Conversely, cities with low degrees were usually at the periphery of the
network. On the other side, the assortativity coefficient Γ was −0.43. The negative exponent verified
the disassortativity of the network. Cities with high degrees tended to connect the low ones, and vice
versa. Therefore, travels were more popular between big cities and small cities. Short tours around
cities were the main choice on short holidays because of the convenience and limited time. Cities with
more tourism resources promoted the tourism of the adjacent small cities.

4.2.5. Community

Modularity is designed to measure the strength of division of a network into communities.
Higher modularity represents a closer connection between nodes in a community and sparser
connection between communities. By iteratively setting the classification numbers of the spin-glass
model, the modularity of the city interaction network peaked at four, so the network was partitioned
into four communities as shown in Figure 9a. There were more travel flows between cities inside
a community.

The four communities formed four significantly clustered regions in China mainland.
Community ]1 was the northeastern region centered on Beijing, mainly including the
Beijing–Tianjin–Hebei–Shanxi–Inner Mongolia region, the three northeastern provinces, and Shandong
Peninsula. Community ]2 was the eastern region centered on Shanghai, mainly including Jiangsu,
Zhejiang, Shanghai, and Fujian. Community ]3 was the southern region mainly consisting of Hunan,
Hubei, Guangdong, Guangxi, and Hainan. Community ]4 was the western region including Xinjiang,
Qinghai, and some northwestern and southwestern cities.
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(a) (b)

Figure 9. Spatial distributions of the communities detected of the network: (a) four communities,
(b) 14 sub-communities.

To reveal more details, the network was further partitioned into 14 sub-communities as shown
in Figure 9b based on the previous four communities. For example, community ]1 was divided
into three sub-communities including the Shandong Peninsula, the three northeastern provinces,
and Beijing–Tianjin–Hebei–Shanxi–Inner Mongolia. Each sub-community contained a core city with
higher degree centrality, betweenness centrality, and close centrality. The core city drove the tourism
development of its adjacent cities together.

Regional boundaries of the communities were consistent with the administrative boundaries.
For example, the Shandong Peninsula region was completely consistent with the provincial boundary of
Shandong Province. It implied provincial administrations had a great influence on tourism arrangement.
As the city interaction network of tourism was a small-world network, cities within a community had
more travel flows between each other, but less travel flows occurred between communities. Actually,
the communities consisted of the tourism regions resulted in by its small-world property.

4.3. Interaction Features

4.3.1. Similarity of Travel Flows

Travel flows of a city can reveal its tourism patterns. The outflows indicate a source city and its
choices of tourist destination. Similarly, the inflows manifest a sink city and its tourist origins. Through the
outflow and inflow vectors of cities, tourism choices about destinations or origins were discovered.

For the tourism sources, the similarity between a given city and others was measured by the
Pearson’s correlation coefficients of their outflows. Four representative source cities, including Beijing,
Shanghai, Guangzhou, and Xi’an, were selected to illustrate the spatial distribution of outflow similarities
as shown in Figure 10. In each map, the green point represents the location of the specific city, and the
gradient colors denote the similarities between this specific city and the corresponding regions. Cities with
shorter distances usually exhibit higher travel similarities with more similar travel destinations.

Hierarchical clustering was employed to investigate the global travel similarities of all cities.
In the hierarchical clustering dendrogram, several cutting levels were artificially chosen from the
bottom to the top according to its tree structure. After trials and errors to obtain good cluster separation
and visualization, four cluster numbers, 29, 14, 7 and 2, were selected to explore spatial aggregation
trends in near cities. Four level hierarchical results, i.e., 29, 14, 7, and 2 clusters, are shown in Figure 11.
The results exhibited the similarity of travel destination choices of all cities. In the process of bottom-up
aggregation, cities with a shorter distance tended to merge into one region. In the end, two regions of
the north and the south separated by the Yangtze River were distinguished.

In the same way, the similarities of inflows, as well as of tourist origins, were measured to
investigate the sink cities. Four famous tourism cities including Aba, Chengdu, Dali, and Guilin are
selected to plot the spatial distribution of inflow similarities in Figure 12, in which the green points
represent the four cities. The clustering results are shown in Figure 13. It was found that distance
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had less effect on tourist origins than on destination choices. Even though the trend of geographical
aggregation still existed, similar cities usually attracted similar tourists. For example, developed cities
and tourism cities were usually clustered into their respective groups.

(a) (b)

(c) (d)

Figure 10. The spatial distribution of outflow similarities of (a) Beijing, (b) Shanghai, (c) Guangzhou,
and (d) Xi’an.

(a) (b)

(c) (d)

Figure 11. Hierarchical clustering by travel similarities. (a) 29 clusters, (b) 14 clusters, (c) seven clusters,
and (d) two clusters.
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(a) (b)

(c) (d)

Figure 12. The spatial distribution of inflow similarities of (a) Aba, (b) Chengdu, (c) Dali, and (d) Guilin.

(a) (b)

(c) (d)

Figure 13. Hierarchical clustering by similarities of tourist origins. (a) 29 clusters, (b) 14 clusters,
(c) seven clusters, and (d) two clusters.
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4.3.2. Distance Decay Effect

The correlation between the travel frequency and its distance satisfied the negative power-law
distribution as shown in Figure 14a with exponent γ = 0.585. The correlation between the travel
frequency and the gyration radius of travelers is shown in Figure 14b. It was not a one-way declining
trend as expected but rather divided into two parts. When the gyration radius was less than 800 m,
the travel frequency increased linearly. After that, an increase in the gyration radius led to a sharp
drop in the travel frequency. By fitting the second part individually, the correlation approximately
satisfied the negative power-law distribution with exponent γ = 1.60. The exponent was in a similar
value range as the results obtained from other mobility datasets that also obey the negative power-law
distributions, such as the cell phone call records (γ = 1.75) [41], the dispersal of bank notes in the
United States (γ = 1.59) [42], Foursquare check-ins (γ = 1.88) [43], and geo-located tweets across the
world in 2012 (γ = 1.62) [37].

(a) (b)

Figure 14. Distance impact on travel frequencies: (a) geographical distance; (b) radius of gyration.

4.3.3. Gravity Law

By solving the gravity model defined by Equation (5), the parameters α, β and γ were estimated
as 0.716, 0.275 and 0.48, respectively. As a result, the tourist volume, no matter in origin or destination
cities, had a sublinear correlation with the travel flows, but the former had a stronger influence than
the latter. The declining distance friction coefficient was slightly smaller (γ = 0.48), so the tourist
movement between cities had a slight distance decay effect. The exponent was essentially consistent
with what was obtained by Xiao et al. (0.4 < γ < 0.6) from the air passenger flows in China [44].
The exponent that was approximately 0.5 indicated a hybrid tourist pattern of both long-distance
travels to determinate destinations and short-haul trips of random choices.

5. Conclusions

Social media and online content generated by travelers provide a good way to investigate tourist
activities and experiences. Using travel blogs from online tourism websites, the collective spatial
patterns of intercity tourist movement are discovered from multiple perspectives. The rank of travel
volume satisfies the power-law distribution. Developed cities generate more tourists, and more
travel flows occur between developed cities. To investigate intercity travels, an interaction network is
constructed based on intercity travel flows. The network is found to have an exponential degree
distribution, disassortativity, and small-world property. The spatial arrangement of tourism in
mainland China is also recognized after four communities and 14 sub-communities are detected.
Intercity tourism presents a regional agglomeration effect because travel flows exist more in one
community but less between communities. By distinguishing tourist sinks and sources, it is found
that tourists from similar cities usually have similar tourism choices. Specifically, distance is essential
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in determining tourist movements. Intercity travel flows decline with distance under a negative
power-law distribution.

These results reveal the spatial patterns of tourist movements at an intercity scale. The spatial
disparity of tourist sources is significant in China. Developed cities contribute most of the tourists
because of their developed economy and large population. Tourists from similar cities have similar
travel choices, and similar attractions have similar tourist sources. Spatial factors, especially the travel
distance, make a large impact on tourist mobility. Tourism intentions have significant regionality.
The spatial mobility, arrangement and patterns of tourism discovered in the results will be helpful for
arranging tourism resources, predicting tourist flows, and understanding tourist activities. They can
provide a basis for local, regional and national governments for tourism planning, city management,
and sustainable development.

More efforts can be made for further expansion and deepening. The textual contents of online
travel blogs are not included in this research. Text mining can be further conducted to discover detailed
thematic information about tourist attractions. Moreover, the representativeness of travel blogs for
general tourist mobility is still a worthwhile discussion because of the sparsity, incompleteness,
and possible bias.
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