Assessment of Municipal Solid Waste Generation in Universiti Putra Malaysia and Its Potential for Green Energy Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Survey Activity
2.2. Questionnaires
2.3. Statistical Analysis of the Questionnaires
2.4. Sampling Activities of Waste Generation from the Restaurant
2.5. Physical and Chemical Analysis of Organic MSW
2.6. Biogas Production Potential
2.7. Biogas Pilot Plant Set-up
2.8. Start-up Biogas Production
3. Result and Discussion
3.1. Solid Waste Management in UPM
3.2. Waste Generation from Administrative Offices
3.3. Waste Generation from Residentials
3.4. A Survey from Restaurant and Cafeteria
3.5. Amount of Organic and Inorganic Waste Generated from the Restaurant
3.6. Physical and Chemical Analysis of the MSW Generated
3.7. Potential Biogas Generation from the Organic Fraction
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic Digestion |
APHA | American Public Health Association |
COD | Chemical Oxygen Demand |
d | Days |
GDP | Gross Domestic Product |
h | hour |
MSW | Municipal solid waste |
SDGs | Sustainability development goals |
TKN | Total Kjeldahl Nitrogen |
t | Tone |
UPM | Universiti Putra Malaysia |
UCO | Used Cooking Oil |
HRT | Hydraulic Retention Time |
OLR | Organic Loading Rate |
TS | Total Solid |
VS | Volatile Solid |
w | week |
References
- JPSPN, K. Survey on Solid Waste Composition, Characteristics & Existing Practice of Solid Waste Recycling in Malaysia. Available online: http://jpspn.kpkt.gov.my/resources/index/user_1/Sumber_Rujukan/kajian/Final_Report_REVz.pdf (accessed on 12 February 2019).
- Ionescu, G.; Rada, E.C.; Ragazzi, M.; Mărculescu, C.; Badea, A.; Apostol, T. Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes. Energy Convers. Manag. 2013, 76, 1083–1092. [Google Scholar] [CrossRef]
- Wikström, F.; Williams, H.; Trischler, J.; Rowe, Z. The Importance of Packaging Functions for Food Waste of Different Products in Households. Sustainability 2019, 11, 2641. [Google Scholar] [CrossRef]
- Oke, M.A.; Annuar, M.S.M.; Simarani, K. Mixed Feedstock Approach to Lignocellulosic Ethanol Production—Prospects and Limitations. Bioenergy Res. 2016, 9, 1189–1203. [Google Scholar] [CrossRef]
- Khandelwal, H.; Dhar, H.; Thalla, A.K.; Kumar, S. Application of life cycle assessment in municipal solid waste management: A worldwide critical review. J. Clean. Prod. 2019, 209, 630–654. [Google Scholar] [CrossRef]
- Chen, Y.-C. Effects of urbanization on municipal solid waste composition. Waste Manag. 2018, 79, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Khair, H.; Putri, C.N.; Dalimunthe, R.A.; Matsumoto, T. Examining of solid waste generation and community awareness between city center and suburban area in Medan City, Indonesia. IOP Conf. Ser. Mater. Sci. Eng. 2018, 309, 012050. [Google Scholar] [CrossRef]
- Karak, T.; Bhagat, R.M.; Bhattacharyya, P. Municipal Solid Waste Generation, Composition, and Management: The World Scenario. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1509–1630. [Google Scholar] [CrossRef]
- Yadav, P.; Samadder, S.R. A critical review of the life cycle assessment studies on solid waste management in Asian countries. J. Clean. Prod. 2018, 185, 492–515. [Google Scholar] [CrossRef]
- Ngoc, U.N.; Schnitzer, H. Sustainable solutions for solid waste management in Southeast Asian countries. Waste Manag. 2009, 29, 1982–1995. [Google Scholar] [CrossRef]
- Noor, Z.Z.; Yusuf, R.O.; Abba, A.H.; Abu Hassan, M.A.; Mohd Din, M.F. An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario. Renew. Sustain. Energy Rev. 2013, 20, 378–384. [Google Scholar] [CrossRef]
- PEMANDU, J. Solid Waste Management Lab 2015. Available online: http://www.kpkt.gov.my/resources/index/user_1/Attachments/hebahan_slider/slaid_dapatan_makmal.pdf (accessed on 12 February 2019).
- Moreira, R.; Malheiros, T.F.; Alfaro, J.F.; Cetrulo, T.B.; Ávila, L.V. Solid waste management index for Brazilian Higher Education Institutions. Waste Manag. 2018, 80, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Badgie, D.; Samah, M.A.A.; Manaf, L.A.; Muda, A.B. Assessment of Municipal Solid Waste Composition in Malaysia: Management, Practice, and Challenges. Pol. J. Environ. Stud. 2012, 21, 539–547. [Google Scholar]
- Zarak, S.A.M.; Adam, J.H. Study on generation and composition of solid waste produced in UNIMAS cafeterias. J. Civ. Eng. Sci. Technol. 2009, 1, 1–6. [Google Scholar] [CrossRef]
- Malakahmad, A.; Che Mohd Nasir, M.Z.Z.; Kutty, S.R.M.; Isa, M.H. Solid Waste Characterization and Recycling Potential for University Technology PETRONAS Academic Buildings. Am. J. Environ. Sci. 2010, 6, 422–427. [Google Scholar] [CrossRef]
- Sobrinho, G.V. “Cradle-to-grave” sustainability: Extension of input-output models to municipal Solid Wastes and to corporate social and environmental responsibility in the retail sector. Ambient. Soc. 2013, 16, 21–40. [Google Scholar]
- Sharma, K.D.; Jain, S. Overview of Municipal Solid Waste Generation, Composition, and Management in India. J. Environ. Eng. 2019, 145, 04018143. [Google Scholar] [CrossRef]
- Mirmohamadsadeghi, S.; Karimi, K.; Tabatabaei, M.; Aghbashlo, M. Biogas production from food wastes: A review on recent developments and future perspectives. Bioresour. Technol. Rep. 2019, 7, 100202. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Maeda, T.; Mohd Yusoff, M.Z.; Ogawa, H.I. Effect of azithromycin on enhancement of methane production from waste activated sludge. J. Ind. Microbiol. Biotechnol. 2014, 41, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Peres, S.; Monteiro, M.R.; Ferreira, M.L.; do Nascimento Junior, A.F.; de Los Angeles Perez Fernandez Palha, M. Anaerobic Digestion Process for the Production of Biogas from Cassava and Sewage Treatment Plant Sludge in Brazil. Bioenergy Res. 2019, 12, 150–157. [Google Scholar] [CrossRef]
- Perrot, J.-F.; Subiantoro, A. Municipal Waste Management Strategy Review and Waste-to-Energy Potentials in New Zealand. Sustainability 2018, 10, 3114. [Google Scholar] [CrossRef]
- Zhao, X.; Li, L.; Wu, D.; Xiao, T.; Ma, Y.; Peng, X. Modified Anaerobic Digestion Model No. 1 for modeling methane production from food waste in batch and semi-continuous anaerobic digestions. Bioresour. Technol. 2019, 271, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Yasin, N.H.M.; Mumtaz, T.; Hassan, M.A.; Abd Rahman, N.A. Food waste and food processing waste for biohydrogen production: A review. J. Environ. Manag. 2013, 130, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Hafid, H.S.; Nor ’Aini, A.R.; Mokhtar, M.N.; Talib, A.T.; Baharuddin, A.S.; Umi Kalsom, M.S. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Manag. 2017, 67, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.I.H.A.; Hanafiah, M.M.; Gheewala, S.H. A review on life cycle assessment of biogas production: Challenges and future perspectives in Malaysia. Biomass Bioenergy 2019, 122, 361–374. [Google Scholar] [CrossRef]
- Doble, M.; Kruthiventi, A.K. (Eds.) Alternate Energy Sources. In Green Chemistry and Engineering; Academic Press: Burlington, VT, USA, 2007; pp. 171–192. [Google Scholar]
- Khanal, S.K. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications; Wiley-Blackwell: Ames, IA, USA, 2008. [Google Scholar]
- Atelge, M.R.; Krisa, D.; Kumar, G.; Eskicioglu, C.; Nguyen, D.D.; Chang, S.W.; Atabani, A.E.; Al-Muhtaseb, A.H.; Unalan, S. Biogas Production from Organic Waste: Recent Progress and Perspectives. Waste Biomass Valor. 2018. Available online: https://doi.org/10.1007/s12649-018-00546-0 (accessed on 23 June 2019). [CrossRef]
- QS, Q.S.L. QS World University Rankings. Available online: https://www.topuniversities.com/universities/universiti-putra-malaysia-upm#888193 (accessed on 12 February 2019).
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; Sage Publications: London, UK, 2009. [Google Scholar]
- Krejcie, R.V.; Morgan, D.W. Determining Sample Size for Research Activities. Educ. Psychol. Meas. 1970, 30, 607–610. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater; APHA-AWWA-WEF: Washington, DC, USA, 2005. [Google Scholar]
- Kawai, M.; Nagao, N.; Kawasaki, N.; Imai, A.; Toda, T. Improvement of COD removal by controlling the substrate degradability during the anaerobic digestion of recalcitrant wastewater. J. Environ. Manag. 2016, 181, 838–846. [Google Scholar] [CrossRef]
- Kim, S.-H.; Shin, H.-S. Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste. Int. J. Hydrogen Energy 2008, 33, 5266–5274. [Google Scholar] [CrossRef]
- Zhu, H.; Parker, W.; Basnar, R.; Proracki, A.; Falletta, P.; Béland, M.; Seto, P. Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges. Int. J. Hydrogen Energy 2008, 33, 3651–3659. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
Month | Weight (t) | Description |
---|---|---|
May | 125.65 | Fasting month |
June | 118.79 | Semester break |
July | 190.41 | Semester break |
August | NA | |
September | 123.49 | Semester break |
October | 230.34 | Normal semester |
November | 222.06 | Normal semester |
December | 240.80 | Normal semester |
Description | Budget Allocated (USD/month) | Respondent (%) |
---|---|---|
The overall internal budget allocated by the offices for municipal solid waste management includes: | 0 * | 39 |
0 | 4 | |
Cleaning services | Less than 1,200 | 4 |
E-waste disposal | 1200–2400 | 23 |
Chemical and clinical waste disposal | 2400–4800 | 23 |
Other maintenance regarding waste management | 4800–7200 | 4 |
More than 7200 | 4 |
Day | Types of waste (kg/d) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Organic | Plastic | Paper | Metal | Others | ||||||
Normal | Fasting | Normal | Fasting | Normal | Fasting | Normal | Fasting | Normal | Fasting | |
1 | 19.0 | 7.0 | 3.5 | 2.3 | 1.4 | 0.8 | 0.12 | 0.1 | 0.23 | 0.3 |
2 | 14.7 | 5.9 | 2.4 | 1.7 | 0.7 | 1.3 | 0.17 | 0.1 | 0.1 | 0.5 |
3 | 15.4 | 9.0 | 2.3 | 2.3 | 1.0 | 1.1 | 0.10 | 0.1 | 0.14 | 0.13 |
4 | 14.4 | 11.2 | 2.7 | 1.7 | 0.9 | 0.4 | 0.12 | 0.2 | 0.23 | 0.24 |
5 | 22.4 | 8.6 | 4.1 | 1.54 | 1.2 | 0.8 | 0.24 | 0.1 | 0.5 | 0.3 |
Average | 17.2 ± 3.3 | 8.34 ±2.0 | 3.0 ± 0.8 | 1.9 ± 0.4 | 1.04 ± 0.3 | 0.9 ± 0.36 | 0.15 ± 0.06 | 0.12 ± 0.04 | 0.24 ± 0.16 | 0.3 ± 0.13 |
Parameter | This study | Reference | |
---|---|---|---|
Moisture Content | 50%–70% | 70% | [25] |
Total Solid | 30%–50% | 17% | [35] |
Volatile Solid | 20%–35% | 16% | [35] |
Ash | 3%–8% | 13% | [25] |
Chemical oxygen demand (COD) | 200–600 g/L | 190–346 g/L | [24] |
Total Kjeldahl nitrogen (TKN) | 0.1–0.3 g/L | 0.50 g/L | [36] |
Group | Waste Generation (kg/d/premise) | Total Amount (kg/d) | Organic Amount (kg/d) |
---|---|---|---|
Administrative offices | 40–50 | 1040–1300 | 104–130 |
House residentials | 2–3 | 160–240 | 64–100 |
Colleges | 0.2–0.3 | 2720–4080 | 500–820 |
Restaurant premises | 20–22 | 1060–1200 | 850–960 |
Total waste generation | 4900–6800 | 1500–2200 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulkifli, A.A.; Mohd Yusoff, M.Z.; Abd Manaf, L.; Zakaria, M.R.; Roslan, A.M.; Ariffin, H.; Shirai, Y.; Hassan, M.A. Assessment of Municipal Solid Waste Generation in Universiti Putra Malaysia and Its Potential for Green Energy Production. Sustainability 2019, 11, 3909. https://doi.org/10.3390/su11143909
Zulkifli AA, Mohd Yusoff MZ, Abd Manaf L, Zakaria MR, Roslan AM, Ariffin H, Shirai Y, Hassan MA. Assessment of Municipal Solid Waste Generation in Universiti Putra Malaysia and Its Potential for Green Energy Production. Sustainability. 2019; 11(14):3909. https://doi.org/10.3390/su11143909
Chicago/Turabian StyleZulkifli, Ahmad Aiman, Mohd Zulkhairi Mohd Yusoff, Latifah Abd Manaf, Mohd Rafein Zakaria, Ahmad Muhaimin Roslan, Hidayah Ariffin, Yoshihito Shirai, and Mohd Ali Hassan. 2019. "Assessment of Municipal Solid Waste Generation in Universiti Putra Malaysia and Its Potential for Green Energy Production" Sustainability 11, no. 14: 3909. https://doi.org/10.3390/su11143909
APA StyleZulkifli, A. A., Mohd Yusoff, M. Z., Abd Manaf, L., Zakaria, M. R., Roslan, A. M., Ariffin, H., Shirai, Y., & Hassan, M. A. (2019). Assessment of Municipal Solid Waste Generation in Universiti Putra Malaysia and Its Potential for Green Energy Production. Sustainability, 11(14), 3909. https://doi.org/10.3390/su11143909