Comparison of Response Scales as Measures of Indoor Environmental Perception in Combined Thermal and Acoustic Conditions
Abstract
:1. Introduction
1.1. Background and Objectives
1.2. Literature Review on Response Scales in Indoor Environmental Perception
2. Methods
2.1. Respondents
2.2. Test Laboratory and Experimental Conditions
2.3. Response Scales and Semantic Adjectives
2.4. Experimental Design and Procedure
2.5. Statistics
3. Results
3.1. Response Times
3.2. Correlation Coefficients for Repeated Measures
3.3. Effects of Repeat and Response Scales
3.4. Effects of Temperature and Sound
3.5. Respondents’ Survey
4. Discussion
4.1. Reliability (Duplicate Sample Analysis)
4.2. Sensitivity (Degree of Differentiation by Indoor Physical Factors)
4.3. Validity in Use for Indoor Environmental Sensation and Perception Assessment
4.4. Unipolar and Bipolar
4.5. Respondent Preferences
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DeCastellarnau, A. A classification of response scale characteristics that affect data quality: A literature review. Qual. Quant. 2018, 52, 1523–1559. [Google Scholar] [CrossRef] [PubMed]
- Andrews, F.M. Construct validity and error components of survey measures: A structural modeling approach. Public Opin. Q. 1984, 48, 409–442. [Google Scholar] [CrossRef]
- Rodgers, W.L.; Andrews, F.M.; Regula Herzog, A. Quality of survey measures: A structural modeling approach. J. Off. Stat. 1992, 8, 251. [Google Scholar]
- Krosnick, J.A.; Fabrigar, L.R. Designing Rating Scales for Effective Measurement in Surveys. In Survey Measurement and Process Quality; Lyberg, L., Biemer, P., Collins, M., Leeuw, E.D., Dippo, C., Schwarz, N., Trewin, D., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1997. [Google Scholar]
- Standardization IOF. Ergonomics of the Thermal Environment—Assessment of the Influence of the Thermal Environment Using Subjective Judgement Scales; ISO 10551: 1995; ISO: Geneva, Switzerland, 1995. [Google Scholar]
- Standardization IOF. Acoustics—Assessment of Noise Annoyance by Means of Social and Socio-Acoustic Surveys; ISO/TS 15666: 2003; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- Fanger, P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970; p. 244. [Google Scholar]
- Standardization CECF. Indoor Environmental Input Parameters for Design Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; EN 15251: 2007; European Committee for Standardization: Brussels, Belgium, 2007. [Google Scholar]
- Nagano, K.; Horikoshi, T. New index of combined effect of temperature and noise on human comfort: summer experiments on hot ambient temperature and traffic noise. Arch. Complex Environ. Stud. 2001, 13. [Google Scholar]
- Pellerin, N.; Candas, V. Effects of steady-state noise and temperature conditions on environmental perception and acceptability. Indoor Air 2004, 14, 129–136. [Google Scholar] [CrossRef]
- Witterseh, T.; Wyon, D.P.; Clausen, G. The effects of moderate heat stress and open-plan office noise distraction on SBS symptoms and on the performance of office work. Indoor Air 2004, 14, 30–40. [Google Scholar] [CrossRef]
- Nagano, K.; Horikoshi, T. New comfort index during combined conditions of moderate low ambient temperature and traffic noise. Energy Build. 2005, 37, 287–294. [Google Scholar] [CrossRef]
- Tiller, D.K.; Wang, L.M.; Musser, A.; Radik, M. Combined effects of noise and temperature on human comfort and performance. ASHRAE Trans. 2010, 116, 522–540. [Google Scholar]
- Yang, W.; Moon, H.J.; Kim, M.-J. Combined effects of short-term noise exposure and hygrothermal conditions on indoor environmental perceptions. Indoor Built Environ. 2018, 27, 1119–1133. [Google Scholar] [CrossRef]
- Yang, W.; Moon, H.J. Cross-modal effects of noise and thermal conditions on indoor environmental perception and speech recognition. Appl. Acoust. 2018, 141, 1–8. [Google Scholar] [CrossRef]
- Reips, U.-D.; Funke, F. Interval-level measurement with visual analogue scales in Internet-based research: VAS Generator. J. Behav. Res. Methods 2008, 40, 699–704. [Google Scholar] [CrossRef]
- Bond, A.; Lader, M. The use of analogue scales in rating subjective feelings. Br. J. Med. Psychol. 1974, 47, 211–218. [Google Scholar] [CrossRef]
- Yang, W.; Moon, H.J. Combined effects of acoustic, thermal, and illumination conditions on the comfort of discrete senses and overall indoor environment. Build. Environ. 2019, 148, 623–633. [Google Scholar] [CrossRef]
- Humphreys, M.A. Quantifying occupant comfort: Are combined indices of the indoor environment practicable? Build. Res. Inf. 2005, 33, 317–325. [Google Scholar] [CrossRef]
- Andersen, R.V.; Toftum, J.; Andersen, K.K.; Olesen, B.W. Survey of occupant behaviour and control of indoor environment in Danish dwellings. Energy Build. 2009, 41, 11–16. [Google Scholar] [CrossRef]
- Li, Q.; You, R.; Chen, C.; Yang, X. A field investigation and comparative study of indoor environmental quality in heritage Chinese rural buildings with thick rammed earth wall. Energy Build. 2013, 62, 286–293. [Google Scholar] [CrossRef]
- Mui, K.W.; Tsang, T.W.; Wong, L.T.; William Yu, Y.P. Evaluation of an indoor environmental quality model for very small residential units. Indoor Built Environ. 2018, 28, 470–478. [Google Scholar] [CrossRef]
- Paul, W.L.; Taylor, P.A. A comparison of occupant comfort and satisfaction between a green building and a conventional building. Build. Environ. 2008, 43, 1858–1870. [Google Scholar] [CrossRef]
- Bluyssen, P.M.; Aries, M.; van Dommelen, P. Comfort of workers in office buildings: The European HOPE project. Build. Environ. 2011, 46, 280–288. [Google Scholar] [CrossRef]
- Frontczak, M.; Schiavon, S.; Goins, J.; Arens, E.; Zhang, H.; Wargocki, P. Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental quality and building design. Indoor Air 2012, 22, 119–131. [Google Scholar] [CrossRef]
- Hwang, T.; Kim, J.T. Assessment of Indoor Environmental Quality in Open-Plan Offices. Indoor Built Environ. 2013, 22, 139–156. [Google Scholar] [CrossRef]
- Fassio, F.; Fanchiotti, A.; Vollaro, R. Linear, Non-Linear and Alternative Algorithms in the Correlation of IEQ Factors with Global Comfort: A Case Study. Sustainability 2014, 6, 8113–8127. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.-H.; Chen, C.-P.; Hwang, R.-L.; Shih, W.-M.; Lo, S.-C.; Liao, H.-Y. Satisfaction of occupants toward indoor environment quality of certified green office buildings in Taiwan. Build. Environ. 2014, 72, 232–242. [Google Scholar] [CrossRef]
- Woo, J. A systematic post-occupancy evaluation in green-rated high-rise office buildings. In Proceedings of the Across: Architectural Research through to Practice: 48th International Conference of the Architectural Science Association 2014, Genoa, Italy, 10–13 December 2014; Madeo, F., Ed.; Genova University Press: Genoa, Italy, 2014. [Google Scholar]
- Pei, Z.; Lin, B.; Liu, Y.; Zhu, Y. Comparative study on the indoor environment quality of green office buildings in China with a long-term field measurement and investigation. Build. Environ. 2015, 84, 80–88. [Google Scholar] [CrossRef]
- Ravindu, S.; Rameezdeen, R.; Zuo, J.; Zhou, Z.; Chandratilake, R. Indoor environment quality of green buildings: Case study of an LEED platinum certified factory in a warm humid tropical climate. Build. Environ. 2015, 84, 105–113. [Google Scholar] [CrossRef]
- Martellotta, F.; Simone, A.; Della Crociata, S.; D’Alba, M. Global comfort and indoor environment quality attributes for workers of a hypermarket in Southern Italy. Build. Environ. 2016, 95, 355–364. [Google Scholar] [CrossRef]
- Xue, P.; Mak, C.M.; Ai, Z.T. A structured approach to overall environmental satisfaction in high-rise residential buildings. Energy Build. 2016, 116, 181–189. [Google Scholar] [CrossRef]
- Karmann, C.; Schiavon, S.; Graham, L.T.; Raftery, P.; Bauman, F. Comparing temperature and acoustic satisfaction in 60 radiant and all-air buildings. Build. Environ. 2017, 126, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-H.; Moon, J. Impacts of human and spatial factors on user satisfaction in office environments. Build. Environ. 2017, 114, 23–35. [Google Scholar] [CrossRef]
- Wong, L.T.; Mui, K.W.; Hui, P.S. A multivariate-logistic model for acceptance of indoor environmental quality (IEQ) in offices. Build. Environ. 2008, 43, 1–6. [Google Scholar] [CrossRef]
- Lai, A.C.K.; Mui, K.W.; Wong, L.T.; Law, L.Y. An evaluation model for indoor environmental quality (IEQ) acceptance in residential buildings. Energy Build. 2009, 41, 930–936. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.; Ouyang, Q.; Cao, B. A study on the effects of thermal, luminous, and acoustic environments on indoor environmental comfort in offices. Build. Environ. 2012, 49, 304–309. [Google Scholar] [CrossRef]
- Ricciardi, P.; Buratti, C. Environmental quality of university classrooms: Subjective and objective evaluation of the thermal, acoustic, and lighting comfort conditions. Build. Environ. 2018, 127, 23–36. [Google Scholar] [CrossRef]
- Wetzel, E.; Greiff, S. The World Beyond Rating Scales. Eur. J. Psychol. Assess. 2018, 34, 1–5. [Google Scholar] [CrossRef]
- Standard, A. Thermal Environmental Conditions for Human Occupancy; Standard 55-2004; ASHRAE: Atlanta, GA, USA, 2004; pp. 9–11. [Google Scholar]
- Jones, L.A.; Berris, M. (Eds.) The psychophysics of temperature perception and thermal-interface design. In Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2002 HAPTICS 2002, Orlando, FL, USA, 24–25 March 2002. [Google Scholar]
- Yang, W.; Jeon, J.Y. Performance and preference of response scales for semantic differentials in auditory perception among university students. Can. Acoust. 2019, 47, 41–49. [Google Scholar]
- Kraus, U.; Breitner, S.; Hampel, R.; Wolf, K.; Cyrys, J.; Geruschkat, U.; Gu, J.; Radon, K.; Peters, A.; Schneider, A. Individual daytime noise exposure in different microenvironments. Environ. Res. 2015, 140, 479–487. [Google Scholar] [CrossRef]
- Pitkanen, P. Stream Small Water Flow 01 XY. 2018. Available online: https://www.soundsnap.com (accessed on 17 September 2018).
- Funke, F. A Web Experiment Showing Negative Effects of Slider Scales Compared to Visual Analogue Scales and Radio Button Scales. Soc. Sci. Comput. Rev. 2016, 34, 244–254. [Google Scholar] [CrossRef]
- Rausch, M.; Zehetleitner, M. A comparison between a visual analogue scale and a four point scale as measures of conscious experience of motion. Conscious. Cogn. 2014, 28, 126–140. [Google Scholar] [CrossRef]
- Budescu, D.V.; Appelbaum, M.I. Variance Stabilizing Transformations and the Power of the F Test. J. Educ. Stat. 1981, 6, 55–74. [Google Scholar] [CrossRef]
- Box, G.E.P. Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, II. Effects of Inequality of Variance and of Correlation Between Errors in the Two-Way Classification. Ann. Math. Stat. 1954, 25, 484–498. [Google Scholar] [CrossRef]
- Lawless, H.T.; Popper, R.; Kroll, B.J. A comparison of the labeled magnitude (LAM) scale, an 11-point category scale and the traditional 9-point hedonic scale. Food Qual. Prefer. 2010, 21, 4–12. [Google Scholar] [CrossRef]
- Lewis, J.R.; Erdinç, O. User experience rating scales with 7, 11, or 101 points: does it matter? J. Usability Stud. 2017, 12, 73–91. [Google Scholar]
- Scott, J.; Huskisson, E.C. Graphic representation of pain. Pain 1976, 2, 175–184. [Google Scholar] [CrossRef]
- Bolognese, J.A.; Schnitzer, T.J.; Ehrich, E.W. Response relationship of VAS and Likert scales in osteoarthritis efficacy measurement. Osteoarthr. Cartil. 2003, 11, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Couper, M.P.; Tourangeau, R.; Conrad, F.G.; Singer, E. Evaluating the Effectiveness of Visual Analog Scales: A Web Experiment. Soc. Sci. Comput. Rev. 2006, 24, 227–245. [Google Scholar] [CrossRef]
- Schaik, P.V.; Ling, J. Design parameters of rating scales for web sites. ACM Trans. Comput.-Hum. Interact. 2007, 14, 4. [Google Scholar] [CrossRef]
- Davey, H.M.; Barratt, A.L.; Butow, P.N.; Deeks, J.J. A one-item question with a Likert or Visual Analog Scale adequately measured current anxiety. J. Clin. Epidemiol. 2007, 60, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Stone, E.A.; Wakabayashi, H.; Tochihara, Y. Issues in combining the categorical and visual analog scale for the assessment of perceived thermal sensation: Methodological and conceptual considerations. Appl. Ergon. 2010, 41, 282–290. [Google Scholar] [CrossRef]
- Singh, M.K.; Mahapatra, S.; Atreya, S.K. Adaptive thermal comfort model for different climatic zones of North-East India. Appl. Energy 2011, 88, 2420–2428. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Singh, M.K.; Reiter, S. An adaptive thermal comfort model for hot humid South-East Asia. Build. Environ. 2012, 56, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Taleghani, M.; Tenpierik, M.; Kurvers, S.; van den Dobbelsteen, A. A review into thermal comfort in buildings. Renew. Sustain. Energy Rev. 2013, 26, 201–215. [Google Scholar] [CrossRef]
- Indraganti, M.; Ooka, R.; Rijal, H.B.; Brager, G.S. Adaptive model of thermal comfort for offices in hot and humid climates of India. Build. Environ. 2014, 74, 39–53. [Google Scholar] [CrossRef]
- Buratti, C.; Palladino, D.; Ricciardi, P. Application of a new 13-value thermal comfort scale to moderate environments. Appl. Energy 2016, 180, 859–866. [Google Scholar] [CrossRef]
- Goldstein, E.B.; Brockmole, J. Sensation and Perception; Wadsworth Cengage Learning: Belmont CA, USA, 2016. [Google Scholar]
- Schweiker, M.; Fuchs, X.; Becker, S.; Shukuya, M.; Dovjak, M.; Hawighorst, M.; Kolarik, J. Challenging the assumptions for thermal sensation scales. Build. Res. Inf. 2017, 45, 572–589. [Google Scholar] [CrossRef]
- Alwin, D.F. Margins of Error: A Study of Reliability in Survey Measurement; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Hjermstad, M.J.; Fayers, P.M.; Haugen, D.F.; Caraceni, A.; Hanks, G.W.; Loge, J.H.; Fainsinger, R.; Aass, N.; Kaasa, S. European Palliative Care Research Collaborative. Studies Comparing Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales for Assessment of Pain Intensity in Adults: A Systematic Literature Review. J. Pain Symptom Manag. 2011, 41, 1073–1093. [Google Scholar] [CrossRef] [PubMed]
- Akad, K.; Solmaz, D.; Sari, I.; Onen, F.; Akkoc, N.; Akar, S. Performance of response scales of activity and functional measures of ankylosing spondylitis: numerical rating scale versus visual analog scale. Rheumatol. Int. 2013, 33, 2617–2623. [Google Scholar] [CrossRef] [PubMed]
- Yazici Sayin, Y.; Akyolcu, N. Comparison of Pain Scale Preferences and Pain Intensity According to Pain Scales among Turkish Patients: A Descriptive Study. Pain Manag. Nurs. 2014, 15, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Preston, C.C.; Colman, A.M. Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preferences. Acta Psychol. 2000, 104, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J.; Levy, J. Measuring usability: preference vs. performance. J. Commun. ACM 1994, 37, 66–75. [Google Scholar] [CrossRef]
Study | Population (Category) | Sample Size | Scale | Survey Tool | |||
---|---|---|---|---|---|---|---|
Type | Polarity | Length | |||||
Effects of indoor environmental sensation and perception in thermal and acoustic conditions | |||||||
Nagano & Horikoshi 2001 [9] | Lab | Age 19–37 | 29 men | VAS | Unipolar | 0 to 100 | Paper |
Pellerin & Candas 2004 [10] | Lab | Mean age 23.1 to 24.1 | 18 (W9/M9) | VAS | |||
(Sensation, Preference) | Bipolar | 0 to 100 | Not identified | ||||
(Comfort) | Unipolar | −50 to 50 | |||||
Witterseh et al. 2004 [11] | Lab | Age 18–29 | 30 (W14/M16) | VAS | Bipolar | 0 to 100 | Not identified |
Nagano & Horikoshi 2005 [12] | Lab | Age 19–26 | 22 men | VAS | Unipolar | 0 to 100 | Paper |
Tiller et al. 2010 [13] | Lab | 30 (W16/M14) | VAS | Unipolar | 0 to 100 | Computer | |
Yang et al. 2017 [14] | Lab | Mean age 25.5 to 25.8 | 26 (W13/M13) | VAS | Bipolar | −5.0 to 5.0 | Paper |
Yang and Moon 2018 [15] | Lab | Age 19–27 | 24 (W12/M12) | VAS | Bipolar | −5.0 to 5.0 | Paper |
Yang and Moon 2019 [18] | Lab | Mean age 21.3 to 23.3 | 60 (W30/M30) | 11-point numerical scale with five verbal labels | Unipolar | 0 to 10 | Tablet |
Indoor environmental quality | |||||||
Humphreys 2005 [19] | Field | 26 office buildings, France, Greece, Portugal, Sweden, UK | 4655 responses | Not identified | |||
(TH, AV, H, L N) | 5-point verbal scale | Bipolar | 0 to 2 | ||||
(IAQ) | 7-point verbal scale | Bipolar | 0 to 2 | ||||
(Overall comfort) | 6-point verbal scale | Bipolar | 0 to 5 | ||||
Wong et al. 2008 [36] | Field | Typical AC offices, Hong Kong | 293 | ||||
(Thermal/IAQ) | Dichotomous scale | Acceptable/not acceptable | Yes (1), No (0) | ||||
(Visual/Acoustic) | VAS | ||||||
Andersen et al. 2009 [20] | Field | Dwellings, Denmark | 933 summer 636 winter | Paper via mail | |||
(L, IAQ) | VAS | Bipolar | 0 to 100 | ||||
(A) | VAS | Bipolar | −50 to 50 | ||||
(TH) | 7-point interval scale | Bipolar | −3 to 3 | ||||
Li et al. 2013 [21] | Field | Traditional Chinese buildings vs. rural buildings | 139 Tulou 97 normal rural | Not identified | |||
(Satisfaction/Dissatisfaction) | Dichotomous scale | Unipolar | 1 to 0, 0 to −1 | ||||
(Sensation TH) | 7-point numerical scale | Bipolar | −3 to 3 | ||||
(Sensation V, L) | 5-point numerical scale | Bipolar | −2 to 2 | ||||
(Sensation IAQ, A) | 5-point numerical scale | Unipolar | 0 to 4 | ||||
Ricciardi and Buratti 2018 [39] | Field | 7 university classrooms, Italy | Not identified | ||||
(TH) | 331 | 13-point scale | Bipolar | −3 to 3 | |||
(L, A) | 597 | 11-point numerical scale | Unipolar | 0 to 10 | |||
Mui et al. 2018 [22] | Field | Small residential units, Hong Kong | 52 | Dichotomous scale | Acceptable /unacceptable | Not identified | |
(TH) | 7-point numerical-verbal scale | Bipolar | −3 to 3 | ||||
(IAQ) | 5-point verbal scale | Bipolar | |||||
(A, L) | Point award | 0 to 100 | |||||
Paul and Taylor 2008 [23] | Field | 1 green building, 1 conventional building, Australia | 40 green 53 conventional | 7-point numerical scale | Bipolar | 1 to 7 | Paper |
Lai et al. 2009 [37] | Field | 32 residential apartments, Hong Kong | 125 (W82/M43) | Dichotomous scale | Acceptable/not acceptable | Yes (1), No (0) | Interview |
Bluyssen et al. 2011 [24] | Field | 59 office buildings, Germany, Switzerland, Italy, Finland, Denmark, Portugal, The Netherlands, UK | 5732 | 7-point scale | Bipolar | 1 to 7 | Paper via mail |
Huang et al. 2012 [38] | Lab | Mean age 22, Chana | 120 (W60/M60) | Dichotomous scale | Unipolar | −1 and 0 0 and 1 | Not identified |
Frontczak et al. 2012 [25] | Field | CBE POE data 351 office buildings, USA | 52980 | 7-point ordered scale | Bipolar | −3 to 3 | Web-based |
Hwang and Kim 2013 [26] | Field | 1 office building, Korea | 2744 (5 times) | 7-point | Bipolar | −3 to 3 | Web-based |
Fassio et al. 2014 [27] | Field | 1 university classroom, Italy | 17 | 4-point verbal scale | Bipolar | 0 to 3 | Paper |
Liang et al. 2014 [28] | Field | 3 green buildings, 2 conventional buildings, Taiwan | 134 green 99 conventional | 7-point verbal scale | Unipolar | 0 to 100 | Paper |
Woo 2014 [29] | Field | 4 green buildings, Korea | 114 | 5-point verbal scale | Bipolar | 1 to 5 | |
Pei et al. 2015 [30] | Field | 10 green buildings, China | +1000 | 6-point scale | Unipolar | −1 and 0 0 and 1 | Paper |
Ravindu et al. 2015 [31] | Field | 1 LEED certified factory, Sri Lanka | 70 | 5-point scale | Unipolar | 1 to 5 | Not identified |
Martellotta et al. 2016 [32] | Field | 1 hypermarket, Italy | 120 | 7-point verbal scale | Unipolar | 1 to 7 | Not identified |
Xue et al. 2016 [33] | Field | 5 40-story residential buildings, Hong Kong | 482 | 5-point verbal scale | Unipolar | 1 to 5 | Paper via mail |
Karmann et al. 2017 [34] | Field | 34 all-air buildings 26 radiant buildings, USA | 2247 all-air 1645 radiant | 7-point verbal scale | Unipolar | Verbal analysis | Web-based |
Choi and Moon 2017 [35] | Field | 9 university buildings, 5 commercial buildings, USA | 411 | 7-point numerical scale | Bipolar | 3-point: negative, neutral, positive 2-point: negative, positive | Paper |
Gender | Age (years) | Height (cm) | Weight (kg) | BMI (kg/m2) | |
---|---|---|---|---|---|
Women | Mean (S.D.) | 21.8 (1.9) | 163.0 (6.0) | 56.2 (5.6) | 21.2 (2.0) |
Men | Mean (S.D.) | 23.2 (1.9) | 173.7 (6.7) | 69.4 (9.1) | 23.0 (2.2) |
Target Temperature Relative Humidity | Measured Temp Mean (S.D.) | Measure RH Mean (S.D.) | Sensation ASHRAE 55-2013 |
---|---|---|---|
19.0 °C, 40% | 19.5 °C (0.4) | 43.3% (2.0) | Cool |
24.5 °C, 40% | 24.7 °C (0.3) | 40.8% (1.4) | Neutral |
30.0 °C, 40% | 29.8 °C (0.2) | 38.9% (1.2) | Warm |
Bipolar VAS | Bipolar7 | Unipolar11 | Combined | |||||
---|---|---|---|---|---|---|---|---|
1st (s) | 45.2 | C | 44.4 | C | 64.4 | A | 57.9 | B |
2nd (s) | 40.2 | B | 38.7 | B | 56.9 | A | 54.6 | A |
Average (s) | 42.7 | 41.5 | 61.1 | 55.7 |
N | Sensation | Acoustic | Thermal | Indoor Environmental | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soft (L)–Loud (R) | Cold (L)–Hot (R) | Discomfort (L)–Comfort (R) | Discomfort (L)–Comfort (R) | Discomfort (L)–Comfort (R) | ||||||||
Bipolar VAS | 750 | 0.860 | B | 0.870 | A | 0.775 | A | 0.813 | A | 0.772 | B | |
Bipolar7 | 750 | 0.820 | C | 0.843 | B | 0.764 | AB | 0.771 | B | 0.775 | B | |
Unipolar11 | L | 750 | 0.766 | D | 0.866 | A | 0.757 | AB | 0.727 | C | 0.747 | B |
R | 750 | 0.877 | AB | 0.845 | B | 0.750 | AB | 0.734 | C | 0.692 | C | |
Combined | L | 750 | 0.778 | D | 0.850 | AB | 0.735 | B | 0.746 | BC | 0.922 | A |
R | 750 | 0.895 | A | 0.780 | A |
Acoustic Sensation | Thermal Sensation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bipolar VAS | Bipolar 7 | Unipolar 11 | Combined | Bipolar VAS | Bipolar 7 | Unipolar 11 | |||||
Soft–Loud | Soft–Loud | Soft | Loud | Soft | Cold–Hot | Cold–Hot | Cold | Hot | |||
Bipolar7 | Soft–Loud | 0.905 | Cold–Hot | 0.913 | |||||||
Unipolar11 | Soft | −0.813 | −0.826 | Cold | −0.793 | −0.777 | |||||
Loud | 0.883 | 0.869 | −0.765 | Hot | 0.785 | 0.773 | −0.480 | ||||
Combined | Soft | −0.784 | −0.797 | 0.891 | −0.715 | Cold–Hot | 0.907 | 0.927 | −0.782 | 0.779 | |
Loud | 0.875 | 0.869 | −0.744 | 0.932 | −0.727 |
Acoustic Comfort | Thermal Comfort | Indoor Environmental Comfort | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BipolarVAS | Bipolar7 | Unipolar11 | Combined | BipolarVAS | Bipolar7 | Unipolar11 | BipolarVAS | Bipolar7 | Unipolar11 | |||||||
D–C | D–C | D | C | D | D–C | D–C | D | C | D–C | D–C | D | C | ||||
Bipolar7 | D–C | 0.882 | D–C | 0.893 | D–C | 0.892 | ||||||||||
Unipolar11 | D | −0.785 | −0.804 | D | −0.808 | −0.797 | D | −0.785 | −0.767 | |||||||
C | 0.841 | 0.845 | −0.801 | C | 0.865 | 0.846 | −0.836 | C | 0.840 | 0.810 | −0.797 | |||||
Combined | D | −0.800 | −0.779 | 0.868 | −0.768 | D–C | 0.883 | 0.886 | −0.785 | 0.834 | D–C | 0.853 | 0.876 | −0.758 | 0.802 | |
C | 0.833 | 0.838 | −0.758 | 0.877 | −0.800 |
Acoustic Sensation | Thermal Sensation | Acoustic | Thermal | Indoor Environmental | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soft | Loud | Cold | Hot | D | C | D | C | D | C | |||
Within Subjects | Repeat | p | 0.307 | 0.872 | 0.000 | 0.008 | 0.390 | 0.081 | 0.000 | 0.024 | 0.000 | 0.083 |
ƞ2 | 0.000 | 0.000 | 0.007 | 0.004 | 0.000 | 0.001 | 0.012 | 0.003 | 0.017 | 0.000 | ||
Repeat x | p | 0.304 | 0.139 | 0.092 | 0.819 | 0.013 | 0.508 | 0.849 | 0.029 | 0.333 | 0.868 | |
Scale | ƞ2 | 0.002 | 0.003 | 0.003 | 0.001 | 0.005 | 0.001 | 0.000 | 0.005 | 0.002 | 0.000 | |
Between Subjects | Scale | p | 0.000 | 0.927 | 0.003 | 0.000 | 0.830 | 0.003 | 0.010 | 0.811 | 0.076 | 0.000 |
ƞ2 | 0.013 | 0.000 | 0.007 | 0.017 | 0.000 | 0.006 | 0.007 | 0.001 | 0.004 | 0.018 | ||
Sound | p | 0.000 | 0.000 | 0.295 | 0.574 | 0.000 | 0.000 | 0.095 | 0.554 | 0.000 | 0.000 | |
ƞ2 | 0.096 | 0.374 | 0.003 | 0.002 | 0.265 | 0.172 | 0.005 | 0.002 | 0.166 | 0.086 | ||
Temperature | p | 0.666 | 0.199 | 0.000 | 0.000 | 0.102 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
ƞ2 | 0.000 | 0.002 | 0.446 | 0.292 | 0.002 | 0.011 | 0.133 | 0.071 | 0.034 | 0.035 | ||
Sound x | p | 0.182 | 0.081 | 0.997 | 0.930 | 0.413 | 0.654 | 0.936 | 0.980 | 0.101 | 0.530 | |
Scale | ƞ2 | 0.007 | 0.009 | 0.001 | 0.003 | 0.006 | 0.004 | 0.003 | 0.002 | 0.010 | 0.006 | |
Temp. x | p | 0.943 | 0.986 | 0.000 | 0.000 | 0.802 | 0.433 | 0.000 | 0.001 | 0.000 | 0.054 | |
Scale | ƞ2 | 0.001 | 0.000 | 0.018 | 0.015 | 0.001 | 0.003 | 0.017 | 0.013 | 0.015 | 0.007 |
Soft | Cold | Hot | AC | TD | IEC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
p | ƞ2 | p | ƞ2 | p | ƞ2 | p | ƞ2 | p | ƞ2 | p | ƞ2 | |
0.000 | 0.036 | 0.003 | 0.007 | 0.003 | 0.008 | 0.003 | 0.006 | 0.010 | 0.007 | 0.000 | 0.018 | |
bipolar VAS | 6.38 | A | 3.64 | A | 2.28 | B | 4.64 | A | 4.95 | A | 3.99 | A |
bipolar7 | 5.14 | B | 2.83 | B | 2.03 | B | 4.07 | B | 4.35 | A | 3.72 | B |
unipolar11 | 4.37 | C | 3.39 | AB | 2.92 | A | 4.81 | A | 4.07 | AB | 4.51 | A |
combined | 4.35 | C | 2.96 | AB | 1.66 | B | 4.76 | A | 4.26 | B | 3.76 | B |
unipolar11 | bipolar7 | bipolar7 | unipolar11 | bipolar7 | bipolar7 |
Scale | p | Repeat | |||||
---|---|---|---|---|---|---|---|
1st | 2nd | ||||||
Acoustic sensation | Soft–Loud | BipolarVAS | 0.321 | −0.843 | A | −0.669 | A |
Bipolar7 | 0.874 | −0.248 | A | −0.231 | A | ||
Soft | Unipolar11 | 0.506 | 4.315 | A | 4.429 | A | |
Loud | Unipolar11 | 0.907 | 4.008 | A | 3.987 | A | |
Soft | Combined | 0.645 | 4.389 | A | 4.311 | A | |
Loud | Combined | 0.340 | 3.845 | A | 4.019 | A | |
Thermal sensation | Cold–Hot | BipolarVAS | 0.017 | −0.403 | A | −0.698 | B |
Bipolar7 | 0.002 | −0.209 | A | −0.456 | B | ||
Cold | Unipolar11 | 0.044 | 3.208 | B | 3.563 | A | |
Hot | Unipolar11 | 0.051 | 3.064 | A | 2.768 | A | |
Cold–Hot | Combined | 0.018 | −0.223 | A | −0.421 | B | |
Acoustic comfort | D–C | BipolarVAS | 0.976 | 0.406 | A | 0.402 | A |
Bipolar7 | 0.187 | 0.099 | A | −0.029 | A | ||
D | Unipolar11 | 0.805 | 3.877 | A | 3.917 | A | |
C | Unipolar11 | 0.973 | 4.813 | A | 4.808 | A | |
D | Combined | 0.303 | 3.727 | A | 3.893 | A | |
C | Combined | 0.713 | 4.787 | A | 4.729 | A | |
Thermal comfort | D–C | BipolarVAS | 0.005 | 0.408 | A | −0.021 | B |
Bipolar7 | 0.170 | 0.068 | A | −0.065 | A | ||
D | Unipolar11 | 0.002 | 3.820 | B | 4.316 | A | |
C | Unipolar11 | 0.010 | 4.779 | A | 4.359 | B | |
D–C | Combined | 0.058 | 0.076 | A | −0.109 | A | |
Indoor Environmental Comfort | D–C | BipolarVAS | 0.100 | 0.148 | A | −0.079 | A |
Bipolar7 | 0.379 | −0.132 | A | −0.211 | A | ||
D | Unipolar11 | 0.035 | 4.328 | B | 4.641 | A | |
C | Unipolar11 | 0.131 | 4.623 | A | 4.401 | A | |
D–C | Combined | 0.246 | −0.065 | A | −0.168 | A |
Acoustic Sensation | Thermal Sensation | Acoustic Comfort | Thermal Comfort | Indoor Environmental | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soft | Soft–Loud | Loud | Cold | Cold–Hot | Hot | D | D–C | C | D | D–C | C | D–C | D | D–C | C | D–C | |||||||||||
Unipolar11 | Combined (Unipolar11) | Bipolar VAS | Bipolar7 | Unipolar11 | Combined (Unipolar11) | Combined (Unipolar11) | Bipolar VAS | Bipolar7 | Unipolar11 | Combined (Unipolar11) | Unipolar11 | Combined (Unipolar11) | Bipolar VAS | Bipolar7 | Unipolar11 | Combined (Unipolar11) | Unipolar11 | Bipolar VAS | Bipolar7 | Unipolar11 | Combined (bipolar7) | Unipolar11 | Bipolar VAS | Bipolar7 | Unipolar11 | Combined (bipolar7) | |
Ambient | A | A | C | C | B | C | A | A | A | A | A | C | D | A | A | A | A | B | A | A | A | A | C | A | A | A | A |
WS42dB | A | A | C | C | B | C | A | A | A | A | A | C | D | AB | AB | AB | A | AB | AB | AB | AB | AB | C | A | A | A | A |
T42dB | A | B | C | C | B | C | A | A | A | A | A | C | C | B | B | B | B | AB | A | AB | AB | AB | C | A | A | A | A |
WS61dB | B | C | B | B | A | B | A | A | A | A | A | B | B | C | C | C | C | AB | AB | AB | AB | AB | B | B | B | B | B |
T61dB | C | D | A | A | A | A | A | A | A | A | A | A | A | D | D | D | D | A | B | B | B | B | A | C | C | C | C |
19.0 °C | A | A | A | A | A | A | A | C | C | C | C | A | A | B | B | B | B | A | C | C | C | C | A | B | C | C | C |
24.5 °C | A | A | A | A | A | A | B | B | B | B | B | A | AB | A | AB | A | A | C | A | A | A | A | C | A | A | A | A |
30.0 °C | A | A | A | A | A | A | C | A | A | A | A | A | B | A | A | A | A | B | B | B | B | B | B | A | B | B | B |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Moon, H.J.; Jeon, J.Y. Comparison of Response Scales as Measures of Indoor Environmental Perception in Combined Thermal and Acoustic Conditions. Sustainability 2019, 11, 3975. https://doi.org/10.3390/su11143975
Yang W, Moon HJ, Jeon JY. Comparison of Response Scales as Measures of Indoor Environmental Perception in Combined Thermal and Acoustic Conditions. Sustainability. 2019; 11(14):3975. https://doi.org/10.3390/su11143975
Chicago/Turabian StyleYang, Wonyoung, Hyeun Jun Moon, and Jin Yong Jeon. 2019. "Comparison of Response Scales as Measures of Indoor Environmental Perception in Combined Thermal and Acoustic Conditions" Sustainability 11, no. 14: 3975. https://doi.org/10.3390/su11143975
APA StyleYang, W., Moon, H. J., & Jeon, J. Y. (2019). Comparison of Response Scales as Measures of Indoor Environmental Perception in Combined Thermal and Acoustic Conditions. Sustainability, 11(14), 3975. https://doi.org/10.3390/su11143975