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Abstract: The consequence of climate variations on hydrology remains the greatest challenging aspect
of managing water resources. This research focused on the quantitative approach of the uncertainty
in variations of climate influence on drought pattern of the Cheongmicheon watershed by assigning
weights to General Circulation Models (GCMs) based on model performances. Three drought indices,
Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Precipitation Index (SPI)
and Streamflow Drought Index (SDI) are used for three durations 3-, 6- and 9-months. This study
included 27 GCMs from Coupled Model Intercomparison Project 5 (CMIP5) and considered three
future periods (2011–2040, 2041–2070 and 2071–2100) of the concentration scenario of Representation
Concentration Pathway (RCP) 4.5. Compared to SPEI and SDI, SPI identified more droughts in
severe or extreme categories of shorter time scales than SPEI or SDI. The results suggested that
the discrepancy in temperature plays a significant part in characterizing droughts. The Reliability
Ensemble Averaging (REA) technique was used to give a mathematical approximation of associated
uncertainty range and reliability of future climate change predictions. The uncertainty range and
reliability of Root Mean Square Error (RMSE) varied among GCMs and total uncertainty ranges were
between 50% and 200%. This study provides the approach for realistic projections by incorporating
model performance ensemble averaging based on weights from RMSE.

Keywords: climate change; general circulation model; reliability ensemble averaging; uncertainty;
drought index

1. Introduction

The variability in climate change is a crucial element in the hydrologic cycle. Slight discrepancies
in climate can alter variations in the hydrologic processes of the hydrologic cycle [1]. The effects
of climate change are diverse, and they vary locally and internationally with their intensity and
duration. Challenged with this realism of varying climate, law makers in expanded diverse institutions
are progressively searching for quantitative descriptions of climate forecasting. Thus, they require
projections of regional and climate changes that will influence humans, economies and ecosystems [2].
Hence, general circulation models (GCMs) are the main mechanism for forecasting changes to future
climate. Due to the intensity and severity of hydrological occurrences, it is globally recognized that the
variations in climate can reshape the geographical and secular dissemination of water resources, thus
causing extreme events such as droughts and floods [3–5]. Therefore, the effects of climate variation on
hydrological occurrences has been extensively studied [6,7]. The hydrological influence of a changing
climate on hydrology is usually analyzed using various climatological models with climate change
events obtained from GCMs forced with emission scenarios. However, these results have been rarely
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used in management of water resources because of the existence of uncertainties in both future climate
change projections from GCMs and assessments of climate variation effects on hydrology.

This study used 27 GCM data to quantify model uncertainty in three future periods to assess annual
precipitation in the Cheongmicheon watershed in South Korea. Established from a physical theory,
GCMs replicate observed characteristics of the recent climate, which are important mechanisms to
predict future climate involving temperature and extreme precipitation for uncertainty [8]. Describing
and quantifying uncertainty in climate variation predictions is crucial not only for the sole aim of
observation and acknowledgement but also for key perspectives to climate adaptation. The authors [9,
10] pointed out that uncertainty occurs in climate models predictions as a result of the uncertainty
in predicting anthropogenic forcing (that is, the emissions scenarios or scenario uncertainty) and
intermodal variations in physical parameterization process due to random differences and dependence
on fundamental conditions. Hence, the precariousness on various factors should be scrutinized in a
quantitative assessment.

Some studies on hydrologic impacts due to climate change have concluded that the choice of
GCMs has a bigger impact on the hydrologic output compared to the choice of emission pathway [11,12].
Moreover, the structural component of the hydrologic models is a vital part in the projected changes.
Thus, the methodological context for climate change impacts on hydrology has a critical point that
affects the projected outcome of future climate change as well as the adaptation or mitigation strategies
that arise based on the information provided. Consequently, it is significant to evaluate the potential
cause of the unreliability of the effects of climate variation studies and the outcome to a variety of
impacts that result from the present state of science.

Moreover, some interdisciplinary studies, such as hydrology and climate hazard assessment,
cannot meet the conditions of users who need to apply changes to extreme precipitation, and in order to
close this loop, downscaling methods have been used and widely applied to various studies. The authors
in [8] also applied Bias-Correction/Spatial Disaggregation (BCSD) on extreme climate estimation over
the north-eastern United States under three future scenarios. They indicated that downscaling performs
differently for the three aspects of the eleven extreme indices, generally reproducing the character
of temperature extremes better than precipitation extremes. Since statistical downscaling is usually
versatile with less calculation, it can efficiently remove errors in historical simulated values. Similarly,
data of this study was downscaled using two Bias-Correction/Spatial Disaggregation (BSCD) methods,
namely, Simple Quantile Mapping (SQM) and Spatial Disaggregation with Quantile Delta Mapping
(SDQDM) to preserve the long-term temporal trends in climate. This will provide useful insights that
will be of interest to a range of decision makers as well as water managers in South Korea involved in
the impacts of climate change hydrology and in the Cheongmicheon watershed.

To this end, this study employed a quantitative procedure considering the performance of the
models and models averaging, known as Reliability Ensemble Averaging (REA). The REA is used to
identify the uncertainty range and reliability of climate variation forecasting of 27 different GCMs of
Coupled Model Intercomparison Project Phase 5 (CMIP5) for precipitation and temperature. This
study used the term of ensemble referring to simulations of different individual GCMs and not to
different attainments with identical model. Here, climate projections for all the GCMs under the
Representation Concentration Pathway (RCP) 4.5 scenario were analyzed. The authors [13] applied
the REA method and took into account two reliability indicators that include model performance and
model convergence. The former transcribes historical climate while the later acknowledges the best
estimate of climate projection. Thus, to determine the model performance based on weights of Root
Mean Square Error (RMSE) in quantifying uncertainty we follow the idea of [14]. The authors used
performance-based ensemble averaging technique on Regional Climate Models (RCMs) over South
Korea by applying weights based on the inverse of the bias, RMSE and temporal correlation coefficient
wherein they found out that the weightings are reduced for low model performance. Furthermore,
in some preceding studies, performance-based ensemble methods by RMSEs have been found to
significantly improve the ensemble averaging results [15,16].
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A number of studies have selected appropriate GCMs based on their performances in replicating
past weather conditions. Nonetheless, these models have the constraint that the performances in a
past period cannot assure the consistent performance in a later time [17]. The concept of Multiple
Model Ensembles (MMEs) to consider the uncertainty of climate change projection has been popularly
applied in the hydrological impact analysis of climate change [17,18]. Therefore, MMEs have been
popularly used to apprehend feasible climate variation prediction by several models.

Furthermore, this study evaluated future drought severities for three general future periods to
quantify uncertainty for all GCMs. Drought happens when there is little or no occurrence of rainfall
over a long time and is most times referred to as meteorological drought and when this phenomenon
keeps occurring, it generates agricultural, hydrological and later socio-economic drought [19,20].
Thus, it is significant to evaluate drought severities at different intervals, intermittently over the year
and then grasp drought impacts on numerous elements of the water cycle. Researches have been
carried out across the world in modern days to evaluate distinct droughts at intervals of 1-, 3-, 6-,
12- and 24-months using Standard Precipitation Index (SPI), Streamflow Drought Index (SDI) and
Standard Precipitation Evapotranspiration Index (SPEI) in the Loess region [21]. The authors pointed
out feeble trends with SPEI compared to SPI. The researchers [22] analyzed the future drought of the
Han River Basin using the RCP 8.5 scenario and showed that drought frequency will increase in that
location, while [23,24] projected the future drought in Korea using the RCP 8.5 scenario and found
projected increases in both drought duration and severity. Therefore, this study aims to project future
SPEI, SDI and SPI using RCP 4.5 scenario to evaluate drought severity. Since South Korea has been
experiencing extreme droughts since 2014, this study investigated extreme future droughts under
climate variation events.

2. Methodology

2.1. Study Area and SWAT Formulation

The Cheongmicheon watershed is located in the Gyeonggi-do province of Republic of Korea. It
includes Yeongju, Gyeonggi, Icheon, Anseong, Yongin and Chungcheongbukdo. Cheongmicheon
originates from Yongin City and joins the Han River from Yeongdong-myeon, Yeoju-gun, which
is bordered by Anseong City, Icheon City, Gyeonggi Province, Gangwon Province and Chungbuk
Province. The Cheongmicheon is 60.69 km in length and its area is 595.13 km2. Because there is
no meteorological observatory in the study watershed, the observation of the Icheon meteorological
station, which is nearest, was used. Figure 1 shows the Cheongmicheon watershed consisting of six
sub-basins and three reservoirs (Seongho, Yongpung and Wondu). The climatic seasons in South Korea
include spring, summer, fall and winter. The winter season is governed by the Siberian air mass, and
because of the maritime pacific high monsoon, its summer is normally hot and humid. As a result of
this, the country has been experiencing extreme drought severity.

Soil and Water Assessment Tool (SWAT) model parameters were calibrated before and after by
SWAT Calibration Uncertainty Procedures (SWAT-CUP) following Won et al. [25]. Using the Sequential
Uncertainty Fitting Version 2 (SUFI-2) algorithm for observed flow in 2013, the simulated flow rate
was optimized. A total of 19 parameters were used for optimization, and the SUFI-2 algorithm of
simulated flow with the observed flow rate and optimal parameters. These are uncertainty parameters
related to the flow simulation to best fit the model, expressed as ranges (uniform distributions), that
account for all sources of uncertainty such as uncertainty in driving variable (for example, rainfall).
Table 1 shows the 19 optimized parameters and their fitted values.
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Figure 1. Location and description of the Cheongmicheon watershed.

Table 1. Flow optimized parameters and their fitted values used in Soil and Water Assessment Tool
(SWAT).

No. Input Parameter used
SWAT-CUP Calibration Process Fitted Value Description

1 R__CN2.mgt 56.741997 Soil Conservation Service runoff curve number for moisture
condition II

2 V__ALPHA_BF.gw 0.153 Base flow alpha factor (days)

3 V__GW_DELAY.gw 292.5 Groundwater delay time (days)

4 V__GWQMN.gw 565 Threshold depth of water in the shallow aquifer required for
return flow to occur (mm)

5 V__GW_REVAP.gw 0.18938

Groundwater “revap” or percolation coefficient describing
how readily water from the shallow aquifer can move into
the capillary fringe where it is available for evaporation
(unitless)

6 V__ESCO.hru 0.731 Soil evaporation compensation factor

7 V__CH_N2.rte −0.00039 Manning’s n value for main channel

8 R__SOL_K(..).sol 790 Saturated hydraulic conductivity(mm/hour)

9 R__SOL_AWC(..).sol 0.747 Soil available water storage capacity (mm H2O/mm soil)

10 V__CH_K2.rte 89.491791 Effective hydraulic conductivity in the main channel
(mm hr-1)

11 R__SOL_AWC(..).sol 0.975 Available water capacity of the soil layer (mm H2O /mm soil)

12 V__REVAPMN.gw 490.5 Threshold depth of water in the shallow aquifer for “revap”
or percolation to the deep aquifer to occur (mm)

13 V__RCHRG_DP.gw 0.531 Deep aquifer percolation fraction

14 V__OV_N.hru 5.43819 Manning’s “n” value for overland flow

15 V__SLSUBBSN.hru 32.259998 Average slope length (m)

16 V__SMFMX.bsn 1.06 Melt factor for snow

17 V__SMTMP.bsn 11.559999 Snow melt base temperature ◦C

18 V__ALPHA_BNK.rte 0.005 Base-flow alpha factor for bank storage

19 V__SFTMP.bsn −11.400001 Plants uptake compensation factor

Note: ‘V’, ‘R’ means an absolute increase, a replacement and a relative change to the initial parameter
value respectively.
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Figure 2 shows monthly and seasonal variability with monthly and daily flow indicating relatively
high accuracy. The two dotted lines in Figure 2a are the 95% Prediction Uncertainty (95PPU) obtained
from the calibration of the optimal parameters obtained from the SUFI-2 algorithm, which shows
the relationship and how well the simulation results match the observed data of model calibration.
They try to capture most of the measured data within 95% Prediction Uncertainty of the model which
shows the calibrated values fit the model accurately. Propagation of the uncertainties in the parameters
leads to uncertainties in the model output variables, which are expressed as 95% prediction uncertainty,
or 95PPU. These 95PPUs are model outputs in a stochastic calibration approach. In the SWAT-CUP
model, 95PPU envelops most of the observation. Observation is important because it is the culmination
of all the processes taking place in the region of study. This is quantified by fitting the simulation
expressed as 95PPU.
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For more quantitative comparison, the Nash-Sutcliffe Efficiency (NSE) and coefficient of
determination were calculated. Since the closeness of the two indices is to ‘1′, the more excellent
the simulation ability of the GCM is, the larger the values of NSE and Coefficient of determination
(R2) become after calibration. Using all the optimized parameters, daily simulation of 27 GCMs
was investigated.

2.2. Procedures

This study used MME results to quantify the uncertainty of future precipitation in Cheongmicheon
watershed. The study applied RCP 4.5 for future prediction of climate change. RCP 4.5 is an average
concentration scenario that insinuates the modification of radiative forcing at 4.5 W/m2 in the year 2100.
The concentration scenario for RCP 4.5 is approximately 650 ppm CO2 equivalent in the year 2100
without ever exceeding that value. Then, the estimated future projections of the three 30-year future
periods (Future 1: 2011–2040, Future 2: 2041–2070, and Future 3: 2071–2100) based on historical period
(1976–2005) were studied. REA performance was evaluated from precipitation for drought severity
and weight uncertainty based on SPEI and SPI in an R coded software package. Then, the streamflow
output obtained from the hydrologic simulation model (SWAT) was used to compute SDI with the
same future periods and same time scales for all drought indexes used in this study. With respect to
investigating the same drought variables for collective categorization of drought severities for both
drought types of SPEI and SPI, the same calculation method was conducted in this study. Then, the
drought conditions were evaluated, and the severities were determined. Each performance-based
ensemble method of biases, RMSE, NSE and correlation coefficient were calculated with weights
applied to each GCM and the total mean for uncertainty range was obtained. The observed data for
precipitation of SPI and SPEI (1976–2005) was obtained from the Korean Meteorological Administration
(KMA). The procedure of evaluating drought severity in this study is shown in Figure 3.

2.3. Downscaling of GCM Simulations

The downscaled data used in this study is from APCC Asia-Pacific Economic Cooperation (APEC
Climate Centre). Three methods of downscaling used were: Bias-Correction/Spatial Disaggregation
(BCSD) and the Simple Quantile Method (SQM) and Spatial Disaggregation with Quantile Delta
Mapping (SDQDM), which can maintain the long-term secular trends in climate. Therefore, this
research work used the 27 downscaled future predictions of daily precipitation and temperature of 27
climate models for RCP 4.5 at Icheon meteorological station of South Korea (Figure 1), and Table 2
shows the list of 27 GCMs studied.

Table 2. List of Asia-Pacific Climate Center for Coupled Model Intercomparison Project 5 (APCC-CMIP5)
GCMs used in this study and their modelling organizations.

No. GCM Modelling Centre (Or Group)

1 CCSM4 National Center for Atmospheric Research

2 CESMI-BGC Community Earth System Model Contributors

3 CESMI-CAM5 National Science Foundation, Department of Energy, National
Center for Atmospheric Research, USA

4 CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici

5 CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici

6 CNRM-CM5
Centre National de Recherches Météorologiques/Centre
Européen de Recherche et Formation Avancée en Calcul
Scientifique et Formation Avancée en Calcul Scientifique
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Table 2. Cont.

No. GCM Modelling Centre (Or Group)

7 CSIRO-MK3 Commonwealth Scientific and Industrial Research Organization,
Queensland Climate

8 CanESM2 Canadian Centre for Climate Modelling and Analysis

9 FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of
Sciences (China)

10 FGOALS-s2 LASG, Institute of Atmospheric Physics, Chinese Academy of
Sciences (China)

11 GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory

12 GDFL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory

13 GDFL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory

14 HadGEM2-AO National Institute of Meteorological Research/Korea
Meteorological Administration

15 HadGEM2-CC Met Office Hadley Centre

16 IPSL-CM5A-LR Institut Pierre-Simon Laplace

17 IPSL-CM5A-MR Institut Pierre-Simon Laplace

18 IPSL-CM5B-LR Institut Pierre-Simon Laplace

19 MIROC-ESM
Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute (The University of
Tokyo), and National Institute for Environmental Studies

20 MIROC-ESM-CHEM
Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute (The University of
Tokyo), and National Institute for Environmental Studies

21 MIROC5
Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute (The University of
Tokyo), and National Institute for Environmental Studies

22 MPI-ESM-LR Max-Planck-Institut für Meteorologie (Max Planck Institute for
Meteorology)

23 MPI-ESM-MR Max-Planck-Institut für Meteorologie (Max Planck Institute for
Meteorology)

24 MRI-CGCM3 Meteorological Research Institute

25 NorESM1-M Norwegian Climate Centre

26 bcc-CSM1-1 Beijing Climate Center, China Meteorological Administration

27 inmCM4 Institute for Numerical Mathematics

2.4. Simulated Data Analysis

Averages for the 30-year data were used to characterize all GCMs shown in Figure 4. The 30-year
period for 1976–2005 extracted represents the historical climate conditions to assess GCMs’ performances.
The CMIP5 daily precipitation from 1976–2005 as a reference period and data sets of 27 GCMs with
RCP 4.5 for future projections with three 30-year periods were used.

Furthermore, this study assumes that the simulation performance of the GCM varies inversely
to the bias and RMSE but relative to the change in correlation coefficients. This work calculated
the correlation between the biases and RMSE across GCMs and found out that the correlation was
predominantly small (lower than 0.5).
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2.5. Performance-Based Method for Reliability Ensemble Averaging (REA)

The study calculated the ensemble average changes across GCMs in which the reliability parameter
depends only on the model bias and not on model spread. The term “bias” here refers to the variation
linking the simulated and observed averages for the historical time. The concept is briefly described
here with salient features. This method has the capability to calculate average change, final reliability of
approximate change, average and uncertainty range from ensembles of various GCMs. The simulated
rainfall change using REA is obtained by the mean of all model simulations as shown in Equation (1):

∆P =
1
N

∑
i=1,N

∆Pi (1)

where N is the overall number of GCMs; the overline shows the group mean and ∆ shows the
model simulated variation. Based on this concept, the uncertainty is calculated commensurate to the
root-mean-square of RMSE as shown in Equation (2):

δ∆p =
1
N

[∑
i=1

N
(
∆Pi− ∆P

)2
] 1

2
(2)

The uncertainty scale is then obtained by ±δ∆p and is focused on ∆P. The ∆pi is the average bias
of the model precipitation change. In this REA technique, the mean variation, ∆P is obtained by a
weighted mean of the group members as in Equation (3):

∆P = Ã(∆P) =
∑

i RI∆Pi∑
i Ri

(3)

A mathematical calculation of the collaborative model reliability (p) in simulating future change
can be given by employing the REA mean operator to the reliability component as shown in Equation
(4) and this operator Ã in Equation (3) denotes REA averaging, Ri is the overall reliability of individual
model as function of model bias and p is the simulated precipitation of the ensemble member:

p = A(R) =
∑

Ri
2∑

Ri
(4)

In this study, weights are assigned to GCMs based on their model performances. The inverse values
of the RMSE are proportionately used as weights. A study has proven that applying various weights
for the group members based on each member’s performance has been recommended to decrease the
unwanted uncertainty in CGMs predictions [13] However, no study for the Cheongmicheon watershed
in South Korea has been conducted on performance-based ensemble averaging. Therefore, this study
used four measures to evaluate model performance for future projected change using 30-year period
for RCP 4.5 based on bias, RMSE, NSE and the coefficient of determination (R2). In addition, the
projection of future droughts using drought indexes was also investigated in this study.

2.6. SPI, SDI and SPEI Drought Indices

This approach focuses on having an understanding regarding drought deficit by assessing
meteorological and hydrological drought in the Cheongmicheon watershed through comparing SPI,
SDI and SPEI in order to evaluate drought model performances. Drought index helps to understand
the development and dynamics of droughts revealed through their severities, duration and intensity.
The SPEI and SPI were produced using the SPEI package coded in the R software, which is a free
software used for environmental and statistical calculation and illustrations; this package yields various
alternatives for computing SPI and SPEI.

The Standardized Precipitation Evapotranspiration Index (SPEI) is an extension of the widely used
Standardized Precipitation Index (SPI). The SPEI was designed to take into account both precipitation
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and potential evapotranspiration (PET) in determining drought. Thus, unlike the SPI, the SPEI captures
the main impact of increased temperatures on water demand. Similar to the SPI, the SPEI can be
calculated on a range of timescales from 1–48 months. As a result, this study calculated the SPEIs for 3-,
6- and 9-month intervals, computed with special focus on severe and extreme drought. The procedure
of the SPEI calculation depends on the actual SPI computation, but uses the monthly variation linking
precipitation (P) and PET. SPEI is the most suitable water deficit index in drought identification,
supervision and evaluation in relation to climate variation events. If only limited data are available,
say temperature and precipitation, PET can be estimated with the simple Thornthwaite method [26].
In this simplified approach, variables that can affect PET, such as wind speed, surface humidity and
solar radiation, are not accounted for. In cases where more data are available, a more sophisticated
method to calculate PET is often preferred in order to make a more complete accounting of drought
variability. However, these additional variables can have large uncertainties. Therefore, this study
used R package software for calculating the SPEI and SPI from user-selected input precipitation and
temperature data using the Hargreaves method. Calculation of the SPEI and SPI is implemented in the
R package SPEI (http://cran.r-project.org/web/packages/SPEI). This package is preferred over previous
implementation in C language (http://digital.csic.es/handle/10261/10002). This latter implementation
only allows computation of the original formulation of the SPEI based on the Thornthwaite Potential
Evapotranspiration (ETo) equation. The SPEI R package allows three ETo equations (Thornthwaite,
Hargreaves and FAO-56 Penman-Monteith).

The SPI index was developed by [27] in order to quantitatively study precipitation shortage.
It is the major water shortage index to divulge the possible severity of water based on the idea
of hydrological, agricultural and socio-economical drought. The study procedure and time scale
calculation of SPI is the same as described above. Most importantly continuous long-term data of at
least 30 years is required to compute SPI and does not allow missing data. This versatility allows SPI
to assess short, medium- and long-term water supplies and drought severity. The SPI index helps to
distinguish dry years from wet years and a drought occurs when the SPI is consecutively negative,
and its value reaches an intensity of −1 or less and ends when SPI becomes positive. Hence, the SPI
for any place is calculated based on the long-term rainfall recorded at desired station and is then first
fitted to a probability distribution (example, Gamma distribution), which was modified into a normal
distribution so that the average SPI is zero.

Peculiar to this evolving described above, Streamflow Drought Index (SDI) was employed for
distinguishing hydrological drought. SDI is interpreted depending on cumulative streamflow volumes.
The SDI has calculation techniques almost like that of the SPI. The variation linking the SDI and SPI is
that the SDI uses observed streamflow data, while the SPI uses rainfall data. The calculation of the
drought indices was carried out using the software package, DrinC (Drought indices Calculator) [28],
which was strengthened for the needs of this study. The DrinC is an MS Windows based software
through which various drought indices can be calculated. It functions on a graphical user interface
(GUI) and embodies various mechanisms that promote data handling analysis of the results, drought
auditing, spatial calculation of the indices etc. Therefore, this study fits streamflow based on gamma
distribution using various intervals of 3-, 6- and 9-months.

3. Results

3.1. Evaluation of Model Performances

The average annual means of RMSE, NSE and R2 were used to evaluate model performances.
This study calculated RMSE using Quantile Mapping bias correction method using the R software
package [29]. The bias corrected values were then used to calculate RMSE and R2. Analysis was
performed on daily precipitation from 27 climate models. Quantile mapping bias correction is usually
used to correct biases in precipitation outputs form GCMs and they are known to efficiently eliminate
historical biases related to observations. This method is relatively simple and has been successfully

http://cran.r-project.org/web/packages/SPEI
http://digital.csic.es/handle/10261/10002
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used in hydrologic and several climate impacts studies [30,31]. In this study, the purpose is to correct
the bias of precipitation applied to annual precipitation of RMSE for model performance. Table 3
presents summary of all performance ensemble means for three 30-year periods based on 27 GCMs.
The models show a positive bias in mean indicating that the CMIP5 GCMs tend to overestimate
the observed mean precipitation. The coefficient of determination (R2) is negative, indicating that
the models were weakly correlated. This may be due to poor model behavior and outliners in
model simulation results from software. This also demonstrates the limited value of R2 alone for
model performance quantification; however, these negative values do not affect the objective of this
study as the performance evaluation were based almost entirely in the bias and RMSE weighting for
model uncertainty prediction. The NSE measures were negative. The GCMs make worse predictions
compared to the observed mean. This may result from the inaccuracy of the climate GCM forcing in
reproducing historical climate for the study area. The emission scenario of the GCMs based on model
performance (NSE and R2) is shown in Figure 5, while Figure 6 indicates the RMSE of the 30-year
annual mean precipitation simulated by 27 GCMs. The emission scenario refers to an anthropogenic
representation of greenhouse gases to the atmosphere which contributes to climate change and model
variability. The results show that RMSE, NSE and determination coefficient vary significantly among
models as shown in the histograms. This indicates that model performance among scenarios varies
among GCMs and time scale. In addition, a comparison was made based on the 30-year mean of
observed climate from 1975–2005 to each three 30-year mean of future period (2011–2040, 2041–2070,
2071–2100), respectively. The results indicate that the performance indices of RMSE, NSE and R2 agree
between the observed precipitation and the simulated of the GCMs.

Table 3. Performances of multi-model ensemble (MME) mean.

Future 1 (2011–2040) Future 2 (2041–2070) Future 3 (2071–2100)

RMSE (mm) NSE R2 RMSE (mm) NSE R2 RMSE (mm) NSE R2

42.50 −0.71 0.04 43.78 −0.67 0.00 44.45 −0.48 0.01

3.2. REA Model Weights Based on Model Performance RMSE

Weights are allocated to climate models relating to their model performances. The results show
that the future climate model weights estimated with REA, based on the RMSE, varied among
models, with some models having a dominant model weight, while other models showed similar
weights shown in Figure 7: In Future 1, Model for Interdisciplinary Research on climate-Earth System
Model (MIROC-ESM) performs better with variation among models and in Future 2, Canadian Earth
System Model version 2 (CanESM2) performs better than other GCMs, while in Future 3, Geophysical
Fluid Dynamics Laboratory-Earth System Model version 2 (GFDL-ESM2) has the most outstanding
performance even among the three periods. Overall, there is not much difference of REA model
weights among GCMs, indicating that the RMSE performed significantly well. It was discovered that
weights associated with the GCMs GFDL-ESM2G and Institute of Numerical Mathematics Climate
Model version 4 (INMCM4) (Future 1), Commonwealth Scientific and Industrial Research Organization
Mark 3-6-0 (CSIRO-MK3-6-0), Geophysical Fluid Dynamics Laboratory-Earth System Model version
2 GFDL-ESM2G, Model for Interdisciplinary Research on Climate version 5 (MIROC5) (Future 2)
and Geophysical Fluid Dynamics Laboratory-Climate Model version 3 (GFDL-CM3), Hadley Global
Environment Model 2-Carbon Cycle(HadGEM2-CC) and Norwegian Earth System Model (NorESM1-1)
(Future 3) are very low, around 0.01. This is because the ensemble mean of RMSE in relation to
other GCMs is away from these climate models. Any further considerations of the models will only
enlarge the unreliability of the results without a vital contribution towards weighted average. The RCP
4.5 scenario shows that the weights for the GCMs, CanESM2 (Future 2), GFDL-ESM2M (Future 3),
MIROC-ESM (Future 1), MIROC-ESM (Future 3) and MPI-ESM-LR (Future 3) are higher than those for
others. This suggests that using more models is more efficient in predicting the best models for future
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uncertainty of climate models. Thus, using a single model generally gives worse results than using an
ensemble with weights, as far as the uncertainty of climate projection is concerned.
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In addition, the emission scenario affected model weights calculation because the future climate
projection is considered in the reliability factor. Thus, by summing the weights of the CMIP5 GCMs
climate models under each emission scenario and future period, model weights for Future 1 and Future
2 are 0.627, while for Future 3 is 0.624. This indicates that using REA model performance weights,
Future 3, has slightly more influence for future climate projections of the 27 GCMs used in this study.

As a result, the total uncertainty range computed was ±85.9 for Future 1, ±142.15 for Future 2
and ±92.78 for Future 3, respectively. Therefore, it can be concluded that variability among GCMs is
dependent on the analyzed period. Prior to explore this result and as a base for the REA method [12,14],
a simpler approach of ensemble means and the related uncertainty range for weights was conducted
in this study using Equations (1) and (2). However, the ensemble mean does not distinctly take into
consideration the reliability criteria and weights equally all models. The Simpler Approach was
compared to the Reliability Ensemble Averaging approach to show the improvement the models
uncertainty of the study. [32,33] It is worthwhile to note that, the uncertainty herein is only as a result
of various projections of the ensemble models and other sources of uncertainty are not influenced by
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the predictions used herein. More results are shown in the supplementary figures (Supplementary
Materials).

3.3. REA Model Weights of Drought Projection

Weighting criteria of uncertainty quantification of drought indices were evaluated using REA. In
this study, weights were applied based on RMSE of each GCM and observed year. The weights are
intended to predict the drought severity for numerous intervals using 3-, 6- and 9-months for SPEI, SPI
and SDI with a weighted ensemble of several GCMs for future 2011–2100. All the indices showed that
SPEI performs better followed by SPI and then SDI as indicated by the decrease of RMSE values in the
ensemble mean. For RMSE index, the suitable score is zero with a vast range (0 ≤ RMSE <∞). Results
of three future periods and three durations are shown in Table 4. It was discovered that SPEI predicted
the ideal weight value. This means that SPEI was well-matched to observations. Figure 8 shows
weights allocated to the climate models for RCP 4.5 in three future periods. The results show that the
uncertainty prediction is less in SDI compared to the other indices and indicate a lesser prediction
to SPEI. These results could precisely indicate the time-varying difference of drought conditions of
some extreme droughts. The SPI can examine the extreme conditions only based on precipitation. In
contrast, SDI, which uses runoff data, is the worst predicted index of climate models. It is noteworthy
that the 3-month time scale of all climate model weights is the worst time span in the future. This
indicated the importance of short-term plan more than long-term plan in related aspects such as water
resources planning.
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Table 4. Multi-model ensemble means of droughts from SPEI, SPI and SDI by RMSE.

Indices Future 1 (2011–2040) Future 2 (2041–2070) Future 3 (2071–2100)

3-month 6-month 9-month 3-month 6-month 9-month 3-month 6-month 9-month

SPEI 0.73 0.99 0.96 0.70 0.90 0.91 0.67 0.90 0.93
SPI 1.00 0.88 0.90 1.03 0.90 0.91 1.04 0.90 0.96
SDI −0.95 −1.18 −1.26 −1.02 −1.24 −1.24 −1.05 −1.21 −1.27

The projected uncertainty weights produced by the REA technique with the three future time
spans are identical. It is evident that the weights of 27 GCMs investigated (the blue bars-SPEI in
Figure 7) are larger than the uncertainty obtained from the SPI and SDI for all the three periods.
To quantitatively study the GCM weights, REA approach considers the performance (RMSE) of
every GCM, constituting the present-day climate and the weights of its forecast into consideration.
The magnitudes of uncertainty are inconsistent among different GCMs and periods. Moreover, the
study shows that important disparity exists between the predictions obtained with various models,
which gives rise to the unreliability of the GCM. It was also significantly observed that there is growing
disparity between the models with intervals. The quantity of uncertainty in Future 3, Figure 8(c1), is
higher than that at earlier period Future 1, Figure 8(a1). This may be due to the growing negligence
about the geological procedure with growing indication of radiative forcing. However, it is observed
that the models GFDL-ESM2M, MICRO-ESM SDI (SPEI-3), CanESM2M (SDI-6) and GFDL-CM3
(SDI-9) for Future 1 in Figure 8(a1–a3), CESMI-BGC (SDI-3) and CanESM2 (SDI-6 and 9) for Future
2 in Figure 8(b1–b3) and IPSL-CM5A-MR (SPI-3) and MPI-ESM-MR (SDI-6 and 9) for Future 3 in
Figure 8(c1–c3), performed very poorly, while CanESM2M and IPSL-CAM5A-LR (SPEI-3) for Future 1,
MICRO-ESM-CHEM, CESMI-CAM5 and HadGEM2-AO (SPEI-3) for Future 2 and CMCC-CMS and
CNRM-CM5 (SPEI-3) for Future 3 performed reasonably well. The process of labeling uncertainty in
REA, therefore, consists of assigning weights to GCMs based on their performance in the past period
and on their capability to give ‘best’ future forecasting. However, there is no distinct change of the
GCMs in weights for the three periods; the weights of the model performance vary across time.

4. Conclusions

A methodology for modeling GCM uncertainty as a result of the influence of climate variations
on hydrology in the Cheongmecheon watershed is presented in this paper. The REA technique
that is used in this study is vital for decision markers based on adaptation measures for climate
change impact on hydrology with a significant curtailment in uncertainty due to performance-based
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ensemble averaging parameter. This curtailment in unreliability range, in contrast to other model
performance and ensemble mean used in this work, proposed that REA is a feasible approach to
determine future projections of precipitation in the watershed by reducing the contribution of poorly
performing GCMs. The main ideology fundamental to REA method is to reduce the contributions
of simulations that perform poorly in simulating current climate and future projections. Therefore,
this study only extracted the most vital information from the multiple models simulated. The results
indicate that model performance variability is seen as a point of uncertainty in the prediction of climate
variation scenarios.

The suggested approach has a limitation of not taking into account the uncertainty due to model
convergence from the REA. However, it should be acclaimed that weights given to the GCMs employing
REA are based on model performance criterion. It is vital to note that the quality of the results presented
in this study is based on the modeled performance criterion and weights based on the RMSE. Hence,
the REA averaged relied on the quality of the observational data set, was used to determine the model
bias. Therefore, our analysis does not consider model convergence criteria. The uncertainty range
calculated using the REA method shows similarities across models but is intensified towards the
21st century.

Furthermore, as researchers are faced with often desperate climate change predictions from
various GCM, it is essential to elaborate with the uncertainty around future projection of climate
variation. It was also argued that, using various ensembles model information based on applied
weights from the model performance criterion, it can also represent a vital feature of uncertainty
lurking in climate change projection that should be discovered. Thus, the REA procedure gives a
simple and versatile scheme to carry out such evaluation.

In addition, this study evaluates drought features using several GCMs for many intervals under
RCP 4.5. The concept of weighting based on RMSE is recommended to lower uncertainty of climate
predictions. The major outcomes of the present study can be shown as an incitement of the rainfall
simulations using weights for multiple climate models. Projections of drought indexes show less
uncertainty with SDI compared to SPEI and SPI. More significantly, the worst prediction occurred in
3-month duration of each index than long-term duration indicating that shorter rainy times could
adversely determine water resources, with a broad effect for local human societies and ecosystems.
The influence of these rainfall variations at the watershed level is necessary in order to develop plans in
long-term water supply and demand, and thus to achieve sustainable management of water resources.
Therefore, in future studies, especially those related to model spread, ensemble forecasting using more
valid models and an evaluation of decreasing uncertainties is significant for a better comprehension of
future variations.
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