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Abstract: The relationship between oil prices and food prices is complex, and maize is the most
prominent example. Whether the development of bioenergy will exacerbate the price increase of
maize caused by the increasing price of oil is a topic that is attracting great attention. This paper
studies the relationship between oil prices and maize prices. First, the effects of the development of
biomass energy on maize price in theory is analyzed by constructing a theoretical model that includes
the effects of the cost channel and the demand channel, while setting the maize–oil price ratio as a
trigger for the demand channel. Then, this paper empirically analyzes the price data. Both theoretical
and empirical analyses show the effects of the demand channel in the long term; that is, the effect of
the development of bioenergy on maize prices is weak, and maize prices did not increase sharply.
The effect of the cost channel is the main cause of the increases in the price of maize and other foods.
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1. Introduction

With the development and application of science and technology in energy and agriculture, the
link between oil price and food price becomes complex and strong. Among all the crops in this
relationship, maize could be the most representative, and it plays an important role. On the one hand,
fossil energy, represented by oil, is involved in the production and circulation of food such as maize
directly or indirectly, and oil price make up the cost of production and circulation of maize. In modern
agricultural production, farmers replace other factors by increasing the investment capital in various
forms, including agricultural machinery, energy power, fertilizers, pesticides, etc., which are direct
products of the petrochemical industry, or closely related. On the other hand, fossil energy causes the
derived demand for maize, which affects the price of maize and other foods. The development of the
bioenergy industry (such as the ethanol fuel industry) has brought biocrops such as maize into energy
production activities directly, where maize becomes an input to bioenergy, which is a substitute for
petroleum products. The biocrops have changed the food market as never before. In addition, both oil
and maize are commodities, and their prices are affected by macroeconomic factors, especially when
the financial attributes of the commodities increase gradually. Figure 1 shows an increasingly relevant
trend between oil prices and maize prices in such a complicated relationship.
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Figure 1. Nominal prices of maize and oil: January 1980–June 2016. Data Source: International 
Monetary Fund Data (IMF Data). 
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relationship between the oil market and the food market has been discussed. However, because of 
the budding development of bioenergy, the relationship between oil and food was relatively simple, 
and the research also just revealed a simple causal relationship [1]. Although oil prices have been 
confirmed through extensive research to affect food prices, such as maize prices, through cost 
channels [2,3], the increasingly violent fluctuations in food prices, especially since the international 
food crisis in 2006 and the accompanying rise in food prices, has brought attention from many 
scholars to this issue. Scholars began to doubt the simple influence described above and proposed 
various theories. One focus is how oil prices affect the prices of maize and other foods, i.e., whether 
the development of bioenergy leads to an increase in the prices of maize and other foods. Some 
scholars believe that the development of bioenergy makes the conflict with the food supply worse. 
For example, Brown [4] claimed that the development of the ethanol fuel industry will stimulate the 
world food prices like never before. Mitchell [5] estimated that the rapid growth of bioenergy in 
Europe and the United States contributed 70% of the increase in world food prices, which is similar 
to the conclusions of Lipsky [6]. This positive effect on food prices was confirmed by other analyses 
[7–10]. However, some studies have shown that the impact of oil prices on food prices via the 
demand for bioenergy is not as intense as indicated above but is short-term, mild, or does not affect 
food prices, and the production cost channel is mainly affected rather than the derived demand 
channel, especially as the new bioenergy technology reduces this derived demand for food [11–16]. 

In short, a key point in the studies is whether the development of bioenergy will aggravate the 
rising prices of food such as maize when the oil price is growing. 

Although the literature fails to agree on the answer to this question, two obvious and direct 
channels through which oil prices influence maize prices are summarized: (production) the cost 
channel and (derived) the demand channel. However, some points remain debatable in the 
theoretical and empirical analysis. As for the theoretical analysis, most studies ignore the threshold 
conditions of the demand channel. That is, the demand channel will work only when the production 
of bioenergy is relatively more profitable than fossil energy, or if the effect of the demand channel 
does not exist, as with empirical analysis, the interaction between the oil prices and maize prices (or 
food prices) is ignored, which may lead to an endogenous problem. 

Therefore, this study first constructs a petroleum price–maize price model that combines the 
cost channel and the demand channel and then it establishes the threshold conditions for the 
demand channel to play a role in the model, thereby theoretically analyzing the impact of oil prices 

Figure 1. Nominal prices of maize and oil: January 1980–June 2016. Data Source: International
Monetary Fund Data (IMF Data).

The similar price volatility in oil and food markets raises the worry and questions about their links:
how do oil prices affect food prices, such as maize? And, how does the development of bioenergy
change this effect?

Discussions on this issue have been around for a long time. As early as the end of the 1980s, the
relationship between the oil market and the food market has been discussed. However, because of the
budding development of bioenergy, the relationship between oil and food was relatively simple, and
the research also just revealed a simple causal relationship [1]. Although oil prices have been confirmed
through extensive research to affect food prices, such as maize prices, through cost channels [2,3], the
increasingly violent fluctuations in food prices, especially since the international food crisis in 2006 and
the accompanying rise in food prices, has brought attention from many scholars to this issue. Scholars
began to doubt the simple influence described above and proposed various theories. One focus is how
oil prices affect the prices of maize and other foods, i.e., whether the development of bioenergy leads
to an increase in the prices of maize and other foods. Some scholars believe that the development
of bioenergy makes the conflict with the food supply worse. For example, Brown [4] claimed that
the development of the ethanol fuel industry will stimulate the world food prices like never before.
Mitchell [5] estimated that the rapid growth of bioenergy in Europe and the United States contributed
70% of the increase in world food prices, which is similar to the conclusions of Lipsky [6]. This positive
effect on food prices was confirmed by other analyses [7–10]. However, some studies have shown that
the impact of oil prices on food prices via the demand for bioenergy is not as intense as indicated
above but is short-term, mild, or does not affect food prices, and the production cost channel is mainly
affected rather than the derived demand channel, especially as the new bioenergy technology reduces
this derived demand for food [11–16].

In short, a key point in the studies is whether the development of bioenergy will aggravate the
rising prices of food such as maize when the oil price is growing.

Although the literature fails to agree on the answer to this question, two obvious and direct
channels through which oil prices influence maize prices are summarized: (production) the cost
channel and (derived) the demand channel. However, some points remain debatable in the theoretical
and empirical analysis. As for the theoretical analysis, most studies ignore the threshold conditions of
the demand channel. That is, the demand channel will work only when the production of bioenergy
is relatively more profitable than fossil energy, or if the effect of the demand channel does not exist,
as with empirical analysis, the interaction between the oil prices and maize prices (or food prices) is
ignored, which may lead to an endogenous problem.
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Therefore, this study first constructs a petroleum price–maize price model that combines the cost
channel and the demand channel and then it establishes the threshold conditions for the demand
channel to play a role in the model, thereby theoretically analyzing the impact of oil prices on maize
prices. Then, the empirical analysis is carried out in combination with the price data, and the estimation
bias problem that may exist in the model is overcome, and the robustness test is designed to further
ensure the model estimation result. These efforts are a positive complement to existing research,
re-examining the complex relationship between oil prices and food prices, such as for maize, and
answering the question of whether the development of biomass energy would exacerbate the problem
of rising maize prices because of rising oil prices.

This article considers the relationship between oil prices and maize prices in many ways, although
some points are adopted from other studies. The threshold condition for demand channel of the
effects on maize prices by oil prices has rarely been incorporated, except by Ciaian and Kancs [9].
In this paper, a model is used that could infer the important and interesting result that developing
bioenergy would not exacerbate the price increase of maize, and a negative feedback mechanism of
developing bioenergy is proposed. Most empirical research results about this issue did not overcome
the endogenous problem, and thus the causality of the results may be biased. This paper tries to avoid
this problem by keeping the model above unchanged. This paper also provides evidence about the
empirical threshold.

The rest of the paper is organized as follows: Section 2 introduces the theoretical model construction
and analyzes the impact of oil prices on maize prices based on this model. Section 3 discusses the
influence by empirical analysis, including benchmark regression, and some robustness analyses. All
these empirical analyses are based on the theoretical model in Section 3. The last section concludes
this paper.

2. Theoretical Framework

How do oil prices affect food prices in theory? For researchers, an equilibrium model is adopted
generally for the analysis of the effect of oil prices on maize prices [10,17–20]. Earlier, Gardner et
al. [21] considered the cross-price elasticity among biomass, ethanol, and fossil energy. Gorter and
Just [22–24] linked oil prices to bioenergy prices by considering the profit maximization of bioenergy
suppliers. However, the studies above only focused on the cost of agricultural production, which we
earlier defined as the cost channel. An important contribution to the theoretical model comes from
Chen et al. [25], a study that added the demand channel, building a model consisting of both the cost
and demand channels. Ciaian and Kancs [9] made an important further expansion to Gardner et al. 21
and Gorter and Just [22,24] by adding consideration of a price competition between biofuel and fuel
into the model. The theoretical analysis of this paper is constructed with reference to the model of
Ciaian and Kancs [9].

The relationship between oil prices and maize prices, considering the cost and the demand
channels, is shown in Figure 2. At first, an economy with two sectors—energy and agriculture
sectors—is assumed. In the agricultural product market, the maize produced by the agricultural sector
is mainly sold to two consumers: one consumer uses maize for traditional non-energy uses such as
food and feed, and the other uses maize for bioenergy. In the agricultural factors market, agricultural
producers purchase fuel, chemical fertilizers, pesticides, machinery, and other petrochemical products
or related products; in the energy factors market, energy producers purchase fossil energy or biomass;
and in the energy product market, energy producers sell their fuel or related petrochemical products,
such as chemical fertilizer, pesticides, and machinery, to agricultural producers directly or indirectly.
Through the cost channel and the demand channel, i.e., the products market and factors market, the
agriculture sector and energy sector are connected, and the oil prices will influence the maize prices. In
addition, the markets are clear.
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For the agriculture sector, this study is based on the cropland allocation model of McConnell [26],
Gardner et al. [21], and Chen et al. [25], and the model assumes that the agricultural producers need
to allocate their limited land (the limited land assumption is actually a strong assumption, because
farmers would reclaim land or adjust their planting crops if producing maize is more profitable. There
is some evidence to support the increase in maize planting. However, weakening this assumption
has little effect on our conclusions, because planting more maize would slow down the maize price
increase, that is, a weaker assumption here means a smaller effect of developing bioenergy on the
maize price increase than our theoretical results. This makes our results more credible) to produce
maize for non-energy use (NM) and energy use (EM). We further assume that no differences exist
between these two kinds of maize when they are produced; that is, they have the same production
condition and yields. The prices are respectively pEM and pNM, the outputs are qEM and qNM, and the
total output of maize is qM = qEM + qNM. The demand for maize, in the non-energy use market, i.e.,
the traditional agricultural product market, is DNM, and its inverse demand function is as follows:

DNM : pNM = c− d · qNM (1)

It is assumed that agricultural production requires two inputs, one is fuel (and petrochemical
products), indicated by fuelA, and the other one, which is not related to the energy sector, is represented
by land, indicated by L. The quantities of these two inputs are q f uelA with L. As we assumed above, the
inputs and technology of producing NM and EM are similar. We assume that the production function
is f (·), and the total supply quantity of maize in the agriculture sector is SA, which is determined
as follows:

SA : qA = f (LEM + LNM, q f uelEM + q f uelNM) = qEM + qNM = f (LEM, q f uelEM) + f (LNM, q f uelNM) (2)

This means that maize output is dependent on the amount of fuel and land inputs. Furthermore,
if land is constant, the maize output depends only on the amount of fuel. We set the demand for fuel in
the agriculture sector to D f uelA and the fuel price to p f uel, so the inverse demand function is as follows:

D f uelA : p f uel = a− b · q f uelA (3)
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We set the unit land rent to pL, and then the profit function of the agriculture sector is as follows:

πA = pEM · qEM + pNM · qNM − p f uel · (q f uelEM + q f uelNM) + pL · (LEM + LNM) (4)

The first-order optimal condition of the profit function is as follows:

FOC :
∂πA
∂qEM

= ∂π
∂q f uelEM

·
∂q f uelEM
∂qEM

= (pEM ·
∂qEM

∂q f uelEM
−

a
b +

2
b q f uel) ·

∂q f uelEM
∂qEM

= 0
∂πA
∂qNM

= ∂π
∂q f uelNM

·
∂q f uelNM
∂qNM

= (pNB ·
∂qNM

∂q f uelNM
−

a
b +

2
b q f uel) ·

∂q f uelNM
∂qNM

= 0
(5)

The yield of maize varies with the amount of fuel input, i.e., ∂qA
∂q f uelA

=
∂qEM

∂q f uelEM
=

∂qNM
∂q f uelNM

, 0,

therefore:
pEM = ( a

b −
2
b q f uelA) ·

∂q f uelEM
∂qEM

= (2p f uel −
a
b ) ·

∂q f uelEM
∂qEM

pNM = ( a
b −

2
b q f uelA) ·

∂q f uelNM
∂qNM

= (2p f uel −
a
b ) ·

∂q f uelNM
∂qNM

(6)

The equilibrium for facing two maize markets requires the following:

pNM = pEM (7)

For the energy sector, when we assume that only one product “fuel” is produced, whose output is
q f uel and price is p f uel, whereas the demand for fuel is D f uel, the inverse demand function is as follows:

D f uel : p f uel = w− v · q f uel (8)

The production of fuel requires raw materials e, whose quantity is qe. We assume that two sources
of homogeneous materials exist, which could fully substitute for each other, with bioenergy raw
materials being indicated by BO and fossil energy raw materials being indicated by FO. The quantity
is, respectively, qBO and qFO. The total demand for raw materials e is De:

De = Se = DBO + DFO = SBO + SFO : qe = qBO + qFO (9)

where the demand for FO (such as oil) is related to its price as determined below:

DFO : qFO = m− n · pFO (10)

Similarly, the production of the energy sector follows a production function g(·):

q f uel = g(qe, qother) (11)

Therefore, the profit function of the energy sector is as follows:

πe = p f uel · q f uel − pe · qe − pother · qother (12)

The first-order optimal condition is as follows:

FOC :
∂πe

∂q f uel
=
∂πe

∂qe
·
∂qe

∂q f uel
= (w ·

∂q f uel

∂qe
− 2v · q f uel ·

∂q f uel

∂qe
− pe) ·

∂qe

∂q f uel
= 0 (13)

Similarly, the production of fuel is related to the inputs of raw materials, namely:
∂q f uel
∂qe

, 0,
therefore the following:

q f uel =
1
2v
·
∂qe

∂q f uel
(w ·

∂q f uel

∂qe
− pe) =

w
2v
−

1
2v
·
∂qe

∂q f uel
· pe (14)
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Because the bioenergy raw materials BO and fossil energy raw materials FO can substitute for
each other fully, the equilibrium requires the following:

pe = pFO (15)

Considering the formulas (8), (13), and (14), a relationship between fuel prices and fossil energy
prices is as follow:

p f uel =
∂qe

2∂q f uel
· pe =

∂qe

2∂q f uel
· pFO (16)

The demand for bioenergy raw materials of the energy sector, indicated by DBO, comes from the
insufficient supply of fossil fuels; therefore, this demand equals the difference between the demand for
total energy e and fossil energy FO:

DBO = De −DFO : qBO = qe − qFO = qe −m + n · pFO = g−1(q f uel) −m + n · pFO (17)

τ is set as the conversion rate of maize to its bioenergy equivalent to fossil energy, so the supply of
bioenergy raw materials is as follows:

SBO : qBO = τ · qEM (18)

In general, considering the conversion rate, if the price of bioenergy raw materials is higher than
the price of fossil energy raw materials, a rational energy producer will not use biomass energy raw
materials, and bioenergy will not be in demand. Referring to Ciaian and Kancs [9], this paper believes
that the demand for bioenergy will occur only when its price is not higher than the fossil energy price.
Thus, we set an indicator function η: if pEM ≤ τ · pFO, then η = 1; otherwise η = 0. Therefore, the actual
demand for bioenergy of the energy sector is as follows:

DBO = η(De −DFO) : qBO = η(qe − qFO) (19)

The demand for maize for energy use is DEM:

DEM : qEM =
η

τ
qBO =

η

τ
(qe −m + n · pFO) (20)

Considering the formulas (1), (15), (2), (16), and (19), the following results are derived:

pNM = c− d · f (a− b ·
∂qe

∂q f uel
· pFO, L) +

dη
τ
· (g−1(w1 − v1 ·

∂qe

∂q f uel
· pFO, qother) −m + n · pFO) (21)

Obviously, in the formula (20), the non-energy use maize price pNM depends on the fossil energy
price pFO. However, the relationship between the non-energy use maize price and the fossil energy
price is also related to the production function of agriculture and energy sector, as indicated by f (·)
and g(·).

Let us assume a function in the form of Cobb–Douglas for f (·), and a function in which the output
is directly proportional to the quantity of raw materials for g(·):

qA = f (L, q f uel) = A · qθ1
f uel · L

θ2 (22)

qe = g−1(q f uel) = k · q f uel (23)
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Because the land is constant, the formula (20) could be simplified as follow:

pNM = c−A · d · Lθ2 · (a− b · k · pFO)
θ1 + η(

d(kw1−m)
τ +

d(n−v1k2)
τ · pFO)

= α0 + η · α01 − α1 · (a− α2 · pFO)
θ + η · α3 · pFO

(24)

where α0 = c, α01 =
d(kw1−m)

τ , α1 = A · d · Lθ2 , α2 = b · k, β3 =
d(n−v1k2)

τ .
As a power function item is included in formula (23), an approximation is obtained by taking the

nth-order terms of a Taylor series expansion at pFO = 0 for the power function term:

pNM = α0 + η · α01 − α1 · (a− α2 · pFO)
θ + η · α3 · pFO

� α0 + η · α01 + η · α3 · pFO − α1aθ + α1α2aθ−1θ · pFO

−
α1α

2
2aθ−2θ(θ−1)

2 · p2
FO

+ · · ·+ (−1)n+1 α1α
n
2aθ−nθ(θ−1)···(θ−n+1)

n! · pn
FO

(25)

Then, the following formula is a simplified function of non-energy use maize price pNB relative to
the fossil energy price pFO:

pNB = β0 + ηβ01 + ηβ11 · pFO + β1 · pFO + β2 · p2
FO

+ · · ·+ βn · pn
FO

(26)

where η(th) =
{
th = pEM/pFO ≤ th∗

}
, which is equivalent to η(th) =

{
th = pEM/τpFO ≤ 1

}
, where th a

threshold variable, and th∗ is the threshold value.
The theoretical model tells us some facts we already knew. The first one is that the fossil energy

(oil) prices do impact maize prices. The second one is that the effect of oil prices on maize prices works
through two channels: cost and demand. Oil prices could affect the factor allocation and total cost of
agricultural production, and then affect the maize prices, which is called the cost channel. Oil prices
also affect the demand for bioenergy and cause the demand for maize for energy use, which is called
the demand channel. Both channels may work.

In addition, this theoretical approach also shows us some other truths. A very important one is
that a threshold or a trigger exists in this influence. The threshold compares the bioenergy prices to
fossil prices and determines whether the demand channel would work. This means that, even if the oil
prices are rising, the demand channel may not work at all. As shown in formula (25), η equals zero, and
two terms fail to contribute to the dependent variable. Because of this threshold, the demand channel
does not seem to affect maize prices intensely. It means that developing bioenergy does not have a
long-term serious pulling effect on maize prices; if the oil prices are relatively high and maize prices
are low, possibly with oil prices rising sharply, an energy producer would face a rising cost of using
fossil oil, and producing bioenergy would be more profitable, so the threshold would open the demand
channel, which would raise the lower maize prices and restrict the oil price increase. However, if the
oil prices are relatively low and maize prices are high, possibly with maize prices rising sharply, an
energy producer could use fossil oil at a relatively low price, and the threshold would close the demand
channel and slow down the increase in maize price, which would reduce the demand for energy-use
maize and restrict the maize price increase. That is, through the demand channel, the relationship
between oil prices and maize prices becomes closer, and this channel is more like a stabilizer than an
intensifier, because of its negative feedback mechanism.

These results will be empirically validated in the next section.

3. Empirical Analysis

3.1. Data, Variables, and Model

The main data are the monthly global price data for oil and maize from the International Monetary
Fund (IMF). The oil price is calculated on average from the Brent crude oil price, the West Texas
Intermediate crude oil price and the Dubai crude oil price. From January 1980 to June 2017 (this is
a long period for this research. Some changes in this long period may influence the analysis. To
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alleviate this worry, two parts of robustness test use a shorter period, which is the focus period of most
studies (see regression 8 to 11 in Table 4), 450 observations were obtained. As these time series are
too long, these prices are influenced by a complex set of factors of the macroeconomic environment,
and the price data need to be deflated to eliminate or weaken the impact of currency prices and some
macroeconomic changes on commodity price changes. The month-on-month core consumer price
index (core CPI) released by the United States Department of Labor is used.

Some serious problems need to be solved. Time series data may have serial correlation problems
and heteroscedasticity problems, and as shown in the previous analysis, endogeneity is obviously due
to an interaction between maize prices and oil prices. A feasible generalized least squares estimation
(feasible GLS, FGLS) provides a solution to heteroscedasticity or serial correlation problems, and its
estimators are uniform and asymptotic. Rao and Griliches [27] proved that the estimators of FGLS
are better than Ordinary Least Squares (OLS) when the serial correlation problem is serious. Stock
and Watson [28] proposed dynamic OLS (DOLS), a new estimation method by adding the lag term
and lead term of the first-order difference term of the independent variable, which eliminates the
interference of the lag or lead term on the residuals. DOLS overcomes the problems with endogeneity
and serial correlation. Furthermore, the use of the feasible generalized least squares method to estimate
this model with lead and lag terms is called the dynamic feasible generalized least squares method
(dynamic feasible GLS, DFGLS). Using this method, the estimators are unbiased, efficient, and uniform,
even if the prior model is endogenous [29].

Formula (25), in the theoretical analysis, has more than n items. The choice of n is a trade-off

between fitting precision and the degree of freedom. To determine the form of the Taylor series
expansion, this paper attempts to expand from 1st to 4th order, then choose the best one according to
the Akaike information criterion (AIC) and Bayesian information criterion (BIC), shown in Table 1.
The optimal expansion order of the model is 1st order.

Table 1. Choosing the order of Taylor series expansion.

Order 1 1# 2 2# 3

Parameters 14 5 19 7 8
Observations 450 450 450 450 450

ln(L) −1728.541 −1781.972 −1735.372 −1778.514 −1766.553
Adjust R-sq 0.6891 0.7008 0.7133 0.7040 0.7187

AIC 3485.081 * 3573.944 3508.744 3571.027 3549.106
BIC 3542.296 * 3594.479 3586.522 3599.777 3581.962

Notes: * represents the optimal result determined according to the Akaike information criterion (AIC) and Bayesian
information criterion (BIC). Considering the dynamic feasible generalized least squares (DFGLS) method, a DOLS
estimation, which has the same variables as the DFGLS estimation, is used in this choosing process. DOLS estimation
adds the difference term of independent variables based on formula (25), and includes the difference term’s optimal
lag and lead terms, which are also the same as those in DFGLS. The periods of lag or lead are also determined by the
AIC and BIC. To ensure the results, this table also shows the results of 0-period lead and lag in 1# and 2#. For the
3rd-order model, the 0-period lead and lag terms are optimal.

The 1st order terms of a Taylor series expansion model is:

pEMt = β0 + ηtβ01 + ηtβ11 · pFOt + β1 · pFOt + εt (27)

where pEMt and pFOt are the maize prices and oil prices at the t-th, period respectively, ηt is the indicator
described above, and εt is the residual. When the indicator η = 0, oil prices only affect maize prices
through cost channel, β1 indicates the marginal effect of oil prices through the cost channel. Otherwise,
when the indicator η = 1, the demand channel will work, β11 and β01 indicate the effect of oil prices
through the demand channel. If β11 and β01 are positive and statistically significant, this proves that
developing bioenergy does exacerbate the price increase of maize caused by rising oil prices. Otherwise,
this assertion is not supported, and if the Taylor expansion is more than 1st order, consideration of the
coefficients of all the terms with the indicator η is necessary.



Sustainability 2019, 11, 4845 9 of 16

The formation and fluctuation of maize and other food prices is complicated. This study attempts
to control these complex influencing factors or weaken their influence on the empirical results. First,
some shocks, such as severe meteorological disasters, crop diseases, and insect pests, shock the food
prices, especially annual prices. Utilizing the characteristics of production cycle and analyzing a
long-term month-on-month change data could weaken these uncertain shocks on price change. Second,
we eliminate some macro factors reflected in the price index by deflating. Third, we use wheat prices to
control other confounding factors. Wheat and maize are both bulk crops, they can both be consumed as
food or feed, and the conditions of their production, such as the natural environment and mechanical
work, are similar. Thus, controlling wheat prices could exclude many potential factors that are hard to
measure. Luckily, a fundamental difference exists in the energy market between maize and wheat,
whereby wheat is rarely use as bioenergy. Therefore, controlling wheat prices would not indicate
interference in the empirical analysis.

Before the regression estimation, some work must be done on the variables.
The first is that we must test the stationary or cointegration of the time series variables. As shown

in Figure 3, the price variables, pEMt and pFOt are both almost stable with a trend, so a trend term and
an intercept term are added to the unit root test. The augmented Dickey–Fuller (ADF) unit root test
results show that both pEMt and pFOt are stationary. In the unit root test, the lag orders, determined
according to AIC and BIC, are both one period. The results show that the value of t-test of pNMt and
pFOt are −2.862 and −2.804, significant at the 1% level. An ADF test without intercept term was also
taken, the results show that the variables are still significant.
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Figure 3. Oil price and maize price between January 1980 and June 2016 (Notes: The price data are
from IMF data. We deflated the prices using the month-on-month core CPI released by the United
States Department of Labor).

Secondly, we need to confirm the causal relationship of the variables. The correlation coefficient
between the maize price and oil price is 0.6411, showing a positive correlation. The Granger causality
tests show that the oil price will cause the maize price, but this is not a reverse causal relationship.

3.2. Benchmark Model Results

Table 2 shows the benchmark model estimation results of the impact of oil prices on maize
prices. Ignoring the threshold, maize price has a long-term positive relation with oil price, shown in
regression (1).
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Table 2. Benchmark model results: the impact of oil prices on maize prices.

(1) (2) (3) (4) (5)

Methods OLS OLS FGLS DOLS DFGLS

pFO 0.6027 *** 1.4831 *** 0.4995 *** 1.4688 *** 1.0832 ***
(0.0568) (0.1234) (0.1311) (0.1322) (0.2298)

η× pFO −0.4956 *** −0.1296 * −0.3979 *** −0.1352
(0.1199) (0.0783) (0.1294) (0.0941)

Constants 6.4359 *** 7.8273 *** 25.3107 *** 7.0040 *** 15.1055 ***
(1.3418) (1.5253) (4.8804) (1.6273) (5.1710)

η× constants −3.3492 # 0.0281 −4.5416 * −0.0779
(2.3061) (1.3923) (2.3749) (1.5290)

Control
variable Yes Yes Yes Yes Yes

Observations 450 450 450 440 440
R2 0.8240 0.8493 0.3496 0.8389 0.4424

Notes: Standard errors are in parentheses; ***, *, # indicate significance at the 1%, 10%, and 15% level. Total samples
are used in this table. In regression (4) and (5) and in the DOLS and DFGLS estimation, the difference terms of the
independent variables and the leading and lag terms of the difference terms are obtained, according to AIC and BIC.
The leading and lag periods are 0 and 9, respectively. The estimation results of the leading terms, lag terms, and the
difference terms are not listed.

According to Hansen [30–32], the threshold, th, is 3.7098. All data points could be divided into
two different fields by the threshold, as shown in Table 3 and Figure 4. When the threshold variable
is less than 3.7098, the relative price of maize price to oil price is lower, and producing bioenergy is
profitable. Both cost channel and demand channel will work. When the threshold variable is greater
than 3.7098, the relative price of maize price to oil price is higher, and only the cost channel will work.

Table 3. Descriptive statistics of oil prices and maize prices divided by threshold value.

Threshold Situation Mean St.D. Min Max Obs.

Oil prices
pFO

Greater than the value 12.25488 6.395254 4.541481 35.21339 245
Less than the value 24.15976 8.922167 10.14971 46.65927 205

Total 17.67821 9.675938 4.541481 46.65927 450

Maize prices
pNM

Greater the value 64.24099 23.57433 35.02612 136.3484 245
Less than the value 63.56004 23.6714 31.55833 133.7373 205

Total 63.93078 23.59471 31.55833 136.3484 450

Notes: All samples are divided by the threshold situation, greater or less than the threshold value 3.7098.

Considering the threshold effect, regressions (2) to (5) are the results of the estimating formula
(26) when using the different methods. For example, different results are obtained when using FGLS
and DFGLS, which means that, if the problem of endogeneity is not considered, the results will be
biased. The results show that the coefficient of impact of oil price is positive and significant at the 1%
level, whereas the cross term of the indicator and oil price and the cross terms of the indicator and
the constant term are not statistically significant. The results imply that oil prices have a significant
positive impact on maize prices through the cost channel and the demand channel. However, in
the long term, the positive effects mainly work through cost demand. Although the development of
bioenergy indeed changes the demand for maize, it has only limited impact on maize prices. This is
consistent with the result of the theoretical analysis.

Some earlier empirical data indicated that the economical threshold of using maize to produce
bioenergy diverged from $36 per barrel to $45 per barrel. Notably, our threshold means an economic
development of bioenergy only when the maize prices (USD/ton) is less than 3.7098 times the oil prices
(USD/barrel). Compared to the empirical threshold data, this threshold takes the price changes of oil
and maize into account. If we transfer our threshold value, 3.7098, to an average nominal price with
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the same period of those empirical data, the threshold will be $34.4357 per barrel, which is close to the
empirical threshold data.
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3.3. Robustness Test

Some problems, mentioned earlier, will influence the empirical model and results, which requires
discussion to ensure the accuracy. The priority aim of robustness is to test whether the demand channel
will work in the long term.

The first robustness test is to adjust the order of the Taylor series expansion. The order is adjusted
to 2nd from 1st. Finding a new threshold value, DOLS and DFGLS estimation are used. The results
are shown in Table 4 for regression (6) to regression (7). When we take a 2nd order Taylor expansion,
the threshold value is still 3.7098, and the optimal lead and lag periods of the difference term are 1
and 5. Although, some differences exist in the results of the benchmark model, the overall fitting
trend is consistent. In the DFGLS estimation, the coefficients of the cross-term of the indicator and the
petroleum price, the indicator, and the constant term are not significant. Another important evidence
is the fitting curve (see Figure 5). The fitting curve with a working demand channel situation is located
below the fitting curve without a working demand channel, which is the same as the benchmark
results. This means that the development and utilization of bioenergy does not raise maize prices.
Therefore, this paper excludes possible bias due to the order of the Taylor series expansion.
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Table 4. Robustness test: the impact of oil prices on maize prices.

(6) (7) (8) (9) (10) (11)

Methods DOLS DFGLS DOLS DFGLS DOLS DFGLS

p2
FO 0.031 *** 0.043 *** 0.049 *** 0.044 *** 0.004 # 0.007 ***

(0.008) (0.015) (0.011) (0.013) (0.003) (0.002)
pFO 0.328 −1.086 # 0.628 −1.318 * 0.151 −0.595 **

(0.304) (0.739) (0.874) (0.777) (0.252) (0.283)
η× pFO −0.800 *** −0.139 # −1.705 * −0.407 −0.155 −0.279 #

(0.152) (0.089) (0.867) (0.341) (0.285) (0.191)
Constants 14.743 *** 36.695 *** 12.136 41.345 *** 13.426 * 43.214 ***

(2.449) (8.398) (9.479) (10.963) (7.274) (11.577)
η× constants 4.186 0.818 17.121 * 4.295 −2.452 13.015 #

(2.980) (1.537) (10.110) (4.048) (13.798) (8.727)
Control
variable Yes Yes Yes Yes Yes Yes

Observations 443 443 213 213 209 209
R2 0.858 0.423 0.796 0.427 0.796 0.431

Notes: Standard errors are in parentheses; ***, **, *, # indicate significance at the 1%, 5%, 10%, and 15% level. All
periods of the leading and lag terms of the difference terms are determined according to AIC and BIC. Leading and
lag terms and difference terms are not listed. In regression (6) and (7), a 2nd order Taylor series expansion with total
samples, which is not optimal, is tried. Regression (8) and (9) used partial samples, from July 1999 to June 2017,
to narrow the difference between the different threshold situations. For regressions (10) and (11), the threshold
variable is adjusted to the empirical threshold, according to whether oil prices are higher than $45 per barrel after
the prices are deflated to January 2007 prices. Partial samples are used in regressions (10) and (11) to avoid a time
series that is too long.
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The second robustness test is to use partial samples. The points located over or below the ray
pNB = th∗ × pFO(pFO > 0) represent the different situations of threshold. Points far from the ray have a
greater sample-to-sample difference. The differences may be different periods, different prices of oil
and maize, and so on. Choosing some points near the ray is important to help determine whether a
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significant change exists in the influence of the demand channel when only changing the situation
of the threshold, i.e., only making the demand channel work or not. Another thought is to choose
periods of widespread use of bioenergy. Based on the above two ideas, we choose partial samples with
consecutive months. The rule of choosing minimizes the mean differences of two groups of points over
or below the ray. A partial sample from July 1999 to June 2017 is reserved. In the optimal 2nd order
Taylor series expansion estimation, as shown in regression (8) to regression (9) of Table 4, coefficients
of the cross-term of the indicator and the oil prices, the cross-term of the indicator, and the constant
term are still not significant. The fitting curve with a working demand channel situation is located
below the fitting curve without the working demand channel (see Figure 5). These are similar to the
results above.

Thirdly, the threshold of empirical data is used to test whether the development of bioenergy will
aggravate the rising maize prices. We will completely change the threshold from a maize–oil price
ratio to oil prices, which is consistent with the empirical data. Specifically, the oil price data need to
be adjusted to a new series, setting January 2007 as the base month. If the new adjusted oil prices
are higher than $45 per barrel, let the indicator η = 1; otherwise, let η = 0. One concern about this
series that is too long term is the inability to obtain an accurate price adjustment, so only the data
period after January 2000 is reserved in this estimation. The results of estimation of the 2nd order
optimal expansion formula are shown in Table 4 for regression (10) to regression (11). Although one of
the coefficients of concern becomes significant, the fitting curve with the working demand channel
situation is still located below the fitting curve without working the demand channel (see Figure 5),
thereby providing results consistent with those above.

The fourth one is to use price gaps between maize and wheat and between maize and rice. The
correlation between oil prices and food prices is different among the different crop varieties. For
example, in the demand channel, maize is the crop most related to oil, with wheat following, and with
rice showing the weakest relation of these three crops. Therefore, if the development of bioenergy
will aggravate the rising maize prices, when the indicator is above η = 1, the demand channel works,
and the price gap between maize and wheat or rice will be significantly reduced. The reason for the
reduction is that the prices of rice and wheat are higher than maize, 335.60, 165.46, and 137.62 (dollars
per ton) during our observation periods. Data are from IMF. Of course, the impact through the cost
channel must be assumed to be similar among these three crops, which is the limitation of the analysis
used here. Based on formula (26), the prices gap could be expressed as follows:

pd = γ0 + γ1 · η+ γ2 · ηpFO + γ3 · pFO + δ (28)

where pd indicates the gap between the price of wheat or rice and maize. If the coefficients of γ1 and γ2

are negative and significant, it means that the development of bioenergy will raise the maize prices.
As shown in Table 5, the estimated results reject this speculation, which means developing bioenergy
would not aggravate maize prices and cause an increase in the long term.

All the empirical analyses confirm the results we obtained with the theoretical analysis. These
results suggest that, in the long term, the effect of oil prices on maize prices through demand channels
is not very effective, and the production of bioenergy will not significantly increase maize prices. These
results are similar to those of some recent related studies such as those of Dillon and Barrett [15] and
Hochman and Zilberman [16].
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Table 5. The impact of oil prices on the price gap among maize, wheat, and rice.

Dependent Variables Price Gap between Wheat and Maize Price Gap between Rice and Maize

(12) (13) (14) (15)

η 1.199 # −1.867 1.989 −1.081
(0.813) (1.864) (1.994) (4.591)

η× pFO 0.188 * 0.171
(0.105) (0.259)

pFO −0.098 0.121
(0.167) (0.435)

Constants 15.522 *** 16.595 *** 106.331 *** 103.365 ***
(3.297) (4.336) (17.460) (18.754)

N 450 450 450 450
R2 0.024 0.031 0.039 0.042

Notes: Standard errors are in parentheses; ***, **, *, # indicate significance at the 1%, 5%, 10%, and 15% level. The
results reported are estimated by the FGLS methods; this study also tried to use DFGLS estimates, and the results
are very similar.

4. Conclusions

This paper has revealed the relationship between oil prices and maize prices, especially considering
the influence of developing and producing bioenergy. The major concern is whether the development
of bioenergy exacerbates the rise in maize prices when the oil price is growing. This study used the
following analyses to answer the question. The first analysis was a theoretical analysis. This study
established a theoretical model of the impact of oil prices on maize prices, including the influence of
cost channel and demand channel, and set a necessary threshold (or a ‘trigger’) for indicating whether
the demand channel works. The second analysis was an empirical analysis. This paper used oil price
and maize price data to test the model of theoretical analysis and estimate the effect. A series of
robustness tests were also conducted.

The results of theoretical and empirical analysis consistently show that (1) oil prices have a positive
impact on maize prices; (2) the development of bioenergy makes the relationship between oil prices
and maize prices closer but will not seriously raise maize prices; and (3) the impact of oil prices on
maize prices has a threshold, which is the profit gained when using maize to produce bioenergy.
This threshold affects the impact that oil prices have on maize prices through a negative feedback
mechanism and will limit the continuous sharp price increase in maize for the long term. Another
possible reason is the renewal and development of bioenergy technology. Finally, the results also show
that (4) the cost channel is the main channel of the food price increases caused by oil prices.
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