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Abstract: Continuous urban expansion worldwide has resulted in significant wetland degradation
and loss. A limited number of studies have addressed the coupling of wetland and urban dynamics,
but this relationship remains unclear. In this study, a time-varying methodology of predicting wetland
distribution was developed to support decision-making. The novelty of the methodology is its
ability to dynamically simulate wetland shrinkage together with urban expansion and reveal conflicts
and potential tradeoffs under different scenarios. The developed methodology consists of three
modules: a historical change detection of wetland and urban areas module, a spatial urban sprawl
simulation and forecasting module that can accommodate different development priorities, and a
wetland distribution module with time-varying logistic regression. The methodology was applied
and tested in the Tonghu Wetland as a case study. The wetland and urban extents presented a spatially
intersecting shift, where wetlands lost more than 40% of their area from 1977 to 2017, while urban
areas expanded by 10-fold, threatening wetlands. The increase in the relative importance metric of the
time-varying regression model indicated an enhanced influence of urban expansion on the wetland.
An accuracy assessment validated a robust statistical result and a good visual fit between spatially
distributed wetland occurrence probabilities and the actual distribution of wetland. Incorporating the
new variable of urban expansion improved modeling performance and, particularly, realized a greater
ability to predict potential wetland loss than provided by the traditional method. Future wetland
loss probabilities were visualized under different scenarios. The historical trend scenario predicted
continuously expanding urban growth and wetland shrinkage to 2030. However, a specific urban
development strategy scenario was designed interactively to control the potential wetland loss.
Consideration of such scenarios can facilitate identifying tradeoffs to support wetland conservation.

Keywords: wetland loss; urban expansion; dynamic model; intersecting process; tradeoff analysis

1. Introduction

Wetlands are considered unique and important ecosystems, supplying useful products, such as peat
and food, and performing valuable ecosystem services, such as biodiversity support, water purification,
runoff regulation, flood abatement, and carbon storage [1]. However, wetland ecosystems are among
the most threatened ecosystems, in which agricultural reclamation, afforestation, and residential
and commercial development have caused huge losses of wetland area [2,3]. It has been reported
that the global extent of wetlands has declined by more than 50% in the 20th century [4]. The key
services provided by wetlands are impaired when wetlands are degraded or lost [5]. This causes loss of
hydrological function [6], aggravates water shortage [7], exacerbates flood risks under climate change [8],
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weakens the carbon sink and climate stabilizer function [9], leads to habitat fragmentation and loss of
fish and wildlife protection, and further results in a decline in species [10]. Moreover, demands for land
and water resources intensify wetland degradation and loss continues worldwide [2,11]. In policy-
and decision-making, there is a great need to understand the process of wetland loss, including the
causes of loss [12]. Wetland and other land-use types compete with one another, and modeling their
dynamics is necessary to support wetland conservation and restoration.

Multiple models for simulating land-use dynamics have been developed and applied to provide a
platform for approximating land-use trajectories and projecting future change [13–16]. These models
have ranged from those using pattern-based methods to those using structural or process-based
methods [17,18], and five key types of modeling approaches have been identified [17]. The first type is
machine learning models, which use statistical methods to simulate the relationships between land
uses and variables and project the land-use changes using a spatially explicit allocation procedure.
An example is the conversion of land use and its effects at small regional extents model (CLUE-S) [19]
and its adapted versions [20,21]. The second approach is the cellular automata model, which is
a cell-based land-use simulation system governed by combining maps of likelihood with spatial
interaction effects [15]. The third and fourth types are economic models, sector-based economic models
and spatially disaggregated economic models, and describe the land change as a market process [17].
The fifth type, agent-based modeling, consists of a number of ‘agents’ and flexibly incorporates the
influence of human decision-making on land use [18,22]. These models simulate the land system
process under different strategies.

Using land-use change modeling approaches, mainly including machine learning models with
statistical methods and the cellular automata model, previous studies have performed wetland
distribution and change simulation. Especially, numerous statistical methods, including the logistic
regression model, maximum entropy approach, SimWeight machine learning procedure, and random
forests model, have been utilized in previous studies. The logistic regression model is a non-linear
regression analysis of the relationship between explanatory variables and binary response variables
for calculating wetland occurrence probability [23–26]. The maximum entropy approach simulates
and predicts how the distribution of wetlands would be modified in response to given environmental
changes [27]. The SimWeight machine learning procedure uses the logic of the modified K-nearest
neighbor to generate the wetland transition potential surface with the two classes of change and
persistence [3]. The random forests model builds multiple decision trees, with each tree containing a
random subset of variables to predict wetland distribution by a machine learning algorithm [28,29].
The cellular automata model generalizes the transition rules of cells by a self-adaptive method
and neighbor conditions to model wetland change [30,31]. These models, consisting of different
mathematical principles and model settings, have been used with different levels of model fitness
in previous studies. Improving model performance calls for better quantification of the relationship
between the driving forces and wetland change, particularly, precisely depicting the temporal and
spatial details of the main driving factors.

Among the numerous driving factors, human disturbance, one key cause of wetland loss,
changes dynamically within a range of intensities, and its influence on wetlands is also altered.
However, among the aforementioned model applications, few studies simulating the wetland change
process have simultaneously taken dynamic human activities into consideration [23,25]. To project
wetland distribution, previous models have used data of driving factors at several periods to quantify
changes in human activity [23,25], but have lacked the ability to forecast future change in human activity
and its impact on wetlands. Most studies have built static models, assuming the influence of human
activity to be a constant [26–31]. Limitations in the quantification and detection of dynamic human
activity can easily lead to bias and uncertainties in model performance, especially when forecasting the
future trend of wetlands under increasing pressure of anthropogenic disturbance [26,28]. In particular,
urbanized areas, characterized by rapid population growth and spatial expansion in the past century,
and likely continuing into the future [32], have had a dramatic and intense impact on wetland
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shrinkage [33–35]. Human disturbance within and near urbanized areas, such as the building of roads,
utility corridors, and houses; dumping, filling, channelizing, and dredging; and the construction of
drainage ditches and control dams, causes wetland degradation or loss [12]. Thus, the construction of
a time-varying method of the intersecting dynamics of wetlands and human activity can better reveal
the underlying drivers of wetland dynamics, and thus improve simulation accuracy.

However, the models that have been developed and applied recently project changes in
wetlands [24,28–31] and urban extents [36,37] separately. Urban expansion has been simulated by
extensive models, such as cellular automata, artificial neural networks, fractal geometry, linear/logistic
regression, and agent-based models [38]. The slope, land use, exclusion, urban extent, transportation,
and hillshade (SLEUTH) model is a modified cellular automata model that relaxes the many classic
cellular automata limitations [15,37]. As one of the popular urban growth models, the SLEUTH model
has been applied broadly to many study areas to simulate historic urban growth [39]. With its flexibility
of output, the SLEUTH model has provided an opportunity for its integration with wetland dynamics
models for a new methodology.

Thus, the objective of this study was to develop a novel methodology, named the time-varying
wetland shrinkage and urban expansion (TVWSUE) methodology, to quantify and explore how
urban growth has influenced wetland change. The TVWSUE methodology can detect the historical
changes of wetland and urban extent, explore the time-varying impacts of driving factors on wetland
shrinkage, and forecast future changes in wetlands. The Tonghu Wetland, which has experienced
significant wetland loss under rapid urbanization in the past four decades, was selected as the study
area. The methodology was applied and tested to simulate the wetland change from 1977 to 2030.
The structure of this manuscript is organized into several sections. The next section begins with
information about the study area and data, followed by a description of TVWSUE methodology and
its application and validation. The third section of this paper presents the results of the TVWSUE
execution and performance for the historical wetland shrinkage and urban expansion, as well as
future forecasts of shrinkage and expansion under scenario settings. The advantages, deficiencies,
and potential future applications of our TVWSUE methodology are discussed in the fourth section,
which is followed by a conclusion as the fifth section.

2. Materials and Methods

2.1. Study Area

The Tonghu Wetland is the largest inland wetland in the Pearl River Delta, the frontier of reform
and development, and one of the three most developed regions in China [40]. The study area lies
approximately within the latitude and longitude ranges of 22◦58′20” to 23◦4′43” N and 114◦7′10”
to 114◦18′30” E and has an area of 150.5 km2 (Figure 1). It belongs to the Pearl River Basin and
includes Tonghu Lake, with an area 6.9 km2, in the center. The Tonghu Wetland consists of plains and
depressions, with low elevations ranging from 2–198 m. The area is located within the south subtropical
monsoon climate zone, which has both abundant sunshine and rainfall. Calculated from the rasterized
precipitation and temperature data from 1990 to 2015 from the Resource and Environment Data Cloud
Platform (http://www.resdc.cn/), the mean annual precipitation is ca. 2000 mm and the mean annual
temperature is ca. 23 ◦C. According to the Genetic Soil Classification of China, three principal soil
types occur here: latosolic red soil, tidal sand soil, and paddy soil.

The administrative district of the Tonghu Wetland is located in Huizhou City, and the wetland is
near Shenzhen and Dongguang. A land reclamation project of converting natural wetlands into artificial
wetlands was implemented in 1966 [41]. Subsequently, since the Economic Reform and Liberalization
Policy began in 1978, the natural and artificial wetlands have gradually eroded [42]. With this
policy, China has become the world’s fastest-growing economy and has experienced unprecedented
urbanization [43]. Additionally, these three cities have experienced significant urbanization, which has

http://www.resdc.cn/
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encroached upon the huge wetlands for the purposes of urban use. Thus, it is advantageous to apply
the TVWSUE to the Tonghu Wetland.Sustainability 2019, 11, x FOR PEER REVIEW 4 of 24 
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2.2. Data Description and Processing

2.2.1. Classification System

Land uses, including the wetland and urban areas, were mapped by a classification system
constructed to execute the TVWSUE. The wetlands classification system used in this study was based
on the international system of the Ramsar Convention [44] and the wetlands classification criteria in
China [45,46], as well as regional wetland characteristics and the resolution of the available remote
sensing images. The wetlands were basically categorized as natural wetland and artificial wetland.
Natural wetland types included river, lake, and marsh, and artificial wetland types included paddy
field, pond, and channel. All types were considered together as the wetlands for model simulation.

Land-use maps were necessary for the urban growth simulation. To be consistent with the
constructed wetland classification system, the land-use classification system was altered based on
the widely used land-use classification system in China [47]. Seven land-use types were interpreted
for the land-use map, namely, paddy field, dryland, forest, grassland, water area, urban extent, and
unused land. A difference between the classifications was that farmland was divided into paddy field
and dryland in our classification, where paddy field was one kind of artificial wetland. Finally, water
area and urban extent were specially identified and subdivided. The wetlands included paddy field
and water area, which were also further subdivided according to the wetland classification system.
The urban extent included residential land, industrial and mining land, and road.

2.2.2. Data Sources and Processing

Extensive satellite sources and remote sensing images, such as System Pour l’Observation de
la Terre 5 (SPOT 5), Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Operational
Land Imager (OLI)/Thermal Infrared Sensor (TIRS), Moderate Resolution Imaging Spectroradiometer
(MODIS) [2,3,45,48,49], have provided the ability to detect wetland shrinkage and urban expansion.
The minimum detectable unit and spatial scale of wetland and urban extent and change were determined
mainly by the spatial resolution of the satellite images, for example, the spatial resolution of SPOT 5
images is 10 m, that of Landsat TM is 30 m, and that of MODIS is 250 m. The temporal detection scale
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is determined mainly by image availability, for example, MODIS is available after 2000. Meanwhile,
the series of Landsat MSS, TM, and ETM+ images have been used jointly to perform long-term change
detection for decades, starting from 1970s [3,25]. With the long-term data continuity and compatibility
of the Landsat program with its series of sensors (MSS, TM, ETM+, and OLI/TIRS) [50], Landsat MSS,
TM, and OLI images were selected for interpreting the land uses of this study. Considering the remote
sensing image availability, the five time nodes of 1977, 1986, 1993, 2006, and 2017 were selected for
visual interpretation of the land-use maps.

The TM, ETM+, and OLI/TIRS datasets have been shown to be compatible in combination [51].
Thus, the selected images for 1986, 1993, and 2006 were Landsat TM images, and the image for 2017
was a Landsat OLI image. The image for 1977 was from Landsat MSS, because there were only
Landsat MSS images in the 1970s. Although the lower spatial resolution and fewer spectral bands
available in Landsat MSS than in the other Landsat sensors cause biases, the interpretation accuracy
of MSS and the comparability between different sensors of the same Landsat program have been
shown to be valid in previous case studies [52–54]. The visible and near-infrared bands of MSS were
compounded to false-color images to interpret the land use visually [50]. All of the Landsat images were
provided by and downloaded from the Global Visualization Viewer (GloVis, http://glovis.usgs.gov/).
Detailed information of the Landsat images is shown in Table 1. Topographic maps were obtained from
the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
and were digitized and geometrically matched by us. The natural wetlands for 1977 from the remote
sensing interpretation were compared with those from the topographic maps, which had the same
scale as that for the year 1965. The spatial locations of natural wetlands from the topographic maps
and the remote sensing images were similar, but the boundaries of the two sources were not identical.
When comparing the area of natural wetlands in 1965 to that in other time nodes, it was noted that the
different data sources were skewed.

Table 1. Landsat image description.

Time Satellite Path Row Date

1977 Landsat Multispectral Scanner (MSS) 131 44 09/14/1977
1986 Landsat Thematic Mapper (TM) 122 44 11/03/1986
1993 Landsat Thematic Mapper (TM) 122 44 09/03/1993
2006 Landsat Thematic Mapper (TM) 122 44 09/23/2006
2017 Landsat Operational Land Imager (OLI) 122 44 10/23/2017

Preprocessing of the Landsat images included the application of geometric and atmospheric
corrections from the Environment for Visualizing Images (ENVI) software (2015 Exelis ITT Visual
Information Solutions). Thirty ground-control points taken from 1:50,000 topographic maps were
selected. According to the ENVI Programmer’s Guide, the quadratic polynomial model was used
for the geometric correction, which established the relationship between the position of the image
pixel and the geographic coordinates of ground control points. The cubic convolution resampling
technique was used to project the images according to the Universal Transverse Mercator (UTM)
system, WGS84. It produced a root-mean-square spatial positioning error of less than 0.5 pixels for
each image. Atmospheric corrections were performed using the FLAASH module.

To simulate the urban expansion, transportation network, slope, and hillshade datasets were
also collected. The transportation networks for 1986, 1993, 2006, and 2017 were provided by the
Transportation Department of Huizhou. The slope and hillshade data were calculated from the
elevation determination, with a spatial resolution of 30 m, provided from the Global Topography
Database of the Geospatial Data Cloud site (http://www.gscloud.cn/).

http://glovis.usgs.gov/
http://www.gscloud.cn/
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2.3. TVWSUE Methodology

Demands for economic development, population growth, and ecological protection prompt
the completion of different land uses, which significantly influence the planet’s land surface [55].
To model the two intersecting land-use dynamic processes of wetland and urban area, the TVWSUE was
developed with sequential operations by combining Geographic Information System (GIS) techniques,
an urban expansion simulation model, and statistical methods. The novelty of our methodology is its
time-varying and intersecting simulation ability, which allows it to couple wetland shrinkage with
urban expansion simultaneously. The methodology consisted of three modules (Figure 2). The first
module was the historical change detection module for mapping the temporal and spatial extents of
wetlands and urbanization. With the constructed wetland classification system and the multiple sources
of remote sensing images, the two datasets of historical wetland shrinkage and urban expansion
trajectories were detected by the spatial analysis techniques. The second module simulated the
temporal and spatial extent of urbanization. The SLEUTH model, a common model for simulating
urban growth [15,37], was applied in this module. The acronym SLEUTH is derived from the initials
of the six required input data, slope, land use, exclusion, urban extent, transportation, and hillshade.
The exclusion data indicate specified areas limited to urban development and excluded in the model
simulation. The derived historical data were used to calibrate the module and forecast urban sprawl.
The third module, the wetland shrinkage projection module, incorporated the urban expansion
result to forecast the distribution of wetlands dynamically. The time-varying explanatory variables,
including the temporal surface hydrology and urban expansion, were collected and calculated. On the
basis of multiple explanatory variables, the dynamic logistic regression model was constructed to
simulate wetland distribution probabilities. Under future scenario design, the intersection of urban
expansion and wetland shrinkage was investigated with different management strategies and priorities.
Our model is hypothesized to obtain a better approximation of the wetland shrinkage process and an
improved model fit.
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Figure 2. Conceptual framework of the time-varying wetland shrinkage and urban expansion (TVWSUE)
methodology for intersected processes of wetland shrinkage and urban expansion. SLEUTH, slope,
land use, exclusion, urban extent, transportation, and hillshade.

2.3.1. Historical Change Detection Module

The historical change detection module is the basic procedure of the TVWSUE. Two key historical
datasets—spatial distributions of wetland and urban extent—were extracted from a series of Landsat
images and topographic maps at five time nodes within the period of 1977–2017. On the basis of the
spatial overlying technique in ESRI ArcGIS 10.0, the historical change trajectories of natural wetland and
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new urban extent were detected and mapped for construction of the wetland change simulation model.
Also, the cross-tabulation analysis of wetlands changing to other land uses between two adjacent time
nodes was identified by the spatial overlaying technique. In particular, the transition from wetlands
to urban uses was examined to explore their intersecting relationship. The new extent of urban
expansion and its impact on wetland loss were quantified in our methodology. The spatial distribution
of natural wetlands reflected the physical geomorphology, influenced the surface hydrological link
and confluence area, and was further related to the distribution of wetlands [23]. Thus, the historical
change trajectories of natural wetland and urbanization were identified by the following expressions:

NWs = [NWt1, NWt2, . . . . . ., NWtn], (1)

NUs = [NUt1, NUt2, . . . . . ., NUtn], (2)

where the NWs and NUs denote the historical trajectories of natural wetland and new urban extent,
respectively; NWt1, NWt2, and NWn denote the natural wetland at the time nodes of t1, t2, and tn,
respectively; and NUt1, NUt2, and NUn denote the new urban extent at the different time modes. Five time
nodes were identified in this study, that is, t1 = 1977, t2 = 1986, t3 = 1993, t4 = 2006, and t5 = 2017.

On the basis of the interpretation marks from the field survey and their characteristics in the
false-color composite images, the polygons of seven land-use types in the five time nodes were drawn
manually by us in ESRI ArcGIS 10.0. In addition, the spatial distribution of natural wetlands in 1965
was mapped from topographic maps. The spatial distributions of natural wetland and urban extent at
the five time nodes were extracted from the topographic maps and remote sensing images. Then, NWs
and NUs were produced by the spatial overlaying technique, in which the spatial distributions of
urban extent at two adjacent time nodes were overlain and the new urban extent was highlighted
and identified. Particularly, Tonghu Lake was historically the largest natural wetland in the study
area, but its shape has been modified artificially since 1965. The Tonghu links the main rivers and
plays a key role in the regional surface hydrology. In the following analysis, the natural wetlands and
Tonghu are referred to as “NWT”. The first module of the TVWUSE mapped the land uses from the
remote sensing images, including the specified wetland and urban extents, for execution of the next
two modules according to the classification system.

2.3.2. Urban Expansion Forecast Module

The second module incorporated the SLEUTH model to simulate the urban expansion through
the sequence of data preparation, parameter calibration, and model prediction. The SLEUTH model
has been implemented successfully in previous studies [15,39,56,57] and was selected to model
urban expansion in our TVWSUE methodology. The SLEUTH model measures and simulates four
modes of growth behavior, spontaneous growth, new spreading-center growth, edge (organic) growth,
and road-influenced growth [37]. For calibration, the urban extents, land uses, and transport networks of
1986, 1993, 2006, and 2017, as well as the datasets of slope, exclusion, and hillshade, were used (Table 2).
Unlike previous studies, in which all lakes and rivers were assigned as exclusion areas [15,39,56,57],
only Tonghu Lake and the tributaries flowing into and out of the lake in 2017 were assigned as an
exclusion in this case. This was done because Tonghu Lake is the largest lake in Guangdong Province
and conversion of the lake or its tributaries to other uses is prohibited by the regional government [43].
The setting of this exclusion area was confirmed by the historical changes of these features, that is,
the area where Tonghu Lake and its tributaries were not occupied by other land uses. All of the input
data were resampled to the original spatial resolution of 30 m. Then, the urban extent for 2030 was
forecast by the calibrated model. Although the planned road network is important for successful
simulation using SLEUTH [58], the transportation network in the future scenario was not performed
in this study because the newest road near Tonghu Lake was built in 2015–2017 and no additional new
roads across the study area have been planned.
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Table 2. Input data for slope, land use, exclusion, urban extent, transportation, and hillshade (SLEUTH).

Input Layer Year Data Source

Slope Calculation from elevation
Land use 1986, 1993, 2006, 2017 Remote sensing interpretation
Exclusion Remote sensing interpretation and selection
Urban 1986, 1993, 2006, 2017 Remote sensing interpretation
Transportation 1986, 1993, 2006, 2017 Digitization from transportation department
Hillshade Calculation from elevation

To improve the simulation performance of urban growth, the calibration is the most important stage
for the SLEUTH model in the second module (Figure 2) This calibration procedure is done to choose
the best values for the five control parameters approximating urban growth, that is, dispersion, breed,
spread, slope resistance, and road gravity. On the basis of the input dataset, the control parameters
were calibrated by an iterative method, which has been done commonly for application of the SLEUTH
model in previous studies [56,57,59]. The detailed calibration information is briefly introduced below.
The three phases of coarse, fine, and final resolution (120 m, 60 m, and 30 m, respectively) were
carried out in the calibration. During the calibration process, urban growth was regenerated via
different combinations of control parameters using Monte Carlo iterations. The step sizes of the
control parameters at the coarse, fine, and final phases were 25, 5, and 1, respectively. A series of
performance indices was calculated to assess the fit of simulated urban extents and referenced historic
extents. Then, the Optimum SLEUTH Metric [60], a product of these performance indices, was used
to narrow the range of parameters through the sequential calibration phase (coarse, fine, and final).
Finally, the calibration parameters for simulating the urban growth of the study area were determined.

2.3.3. Wetland Shrinkage Projection Module

On the basis of the output of the first and second modules, the third module built a time-varying
logistic regression model to simulate the wetland distribution. Given the uncertainty and complexity of
the wetland dynamics process, the potential wetland change of a location was quantified by probability
rules rather than a mechanism model, as used in previous studies. With its ability to incorporate
explanatory variables and provide robust performance [23–25], the logistic regression model was
selected as the core of the third module to model the wetland distribution.

The logistic regression model explores the relationship between explanatory variables and binary
variables, in which the values of the input variable are 1 or 0, for example, the wetland exists or does
not exist, respectively. In our study, the selected explanatory variables of wetland change included
four categories (Table 3), that is, climate variable, topography factor, urban expansion influence,
and surface hydrology factor. Distances to the initial urban extent, new urban extent, and natural
wetland and Tonghu (NWT) indicated their influence, where a larger distance indicated a lower
influence. The topography factors were considered fixed variables, which were related to intrinsic and
historical hydrological characteristics of the study area. The factors of the climate variable, surface
hydrology, and urban expansion were time-varying variables, which were believed to improve the
model performance. With the small area of Tonghu Wetland and the abundant rainfall that occurs
there, the climate variables presented low spatial variabilities and did not influence the wetland change
(see the Results section). Future climate change scenarios were not used to simulate the wetland change
in our model.
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Table 3. Descriptions of the explanatory variables for predicting wetland change.

Category Explanatory Variable Source

Climate variable
x1: annual precipitation Resource and Environment Data Cloud Platform, Chinese Academy of Sciences (http://www.resdc.cn/)
x2: annual temperature

Topography factor x3: elevation
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global
Digital Elevation Model (GDEM) Database, Geospatial Data Cloud Site, Computer Network
Information Center, Chinese Academy of Sciences (http://www.gscloud.cn/)x4: slope

Urban expansion
influence

x5: distance to urban extent at
the initial time Visual interpretation from Landsat images and Euclidean distance calculation in ArcGIS 10.0
x7: distance to new urban
extent from initial to
particular time

Surface hydrology factor
x8: wetland extent at the
initial time Visual interpretation from Landsat images

x9: distance to natural
wetlands and Tonghu at
different periods

Digitization from the topography maps and visual interpretation from Landsat images; Euclidean
distance calculation

http://www.resdc.cn/
http://www.gscloud.cn/
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With the specific setting of our TVWSUE methodology, the time-varying variables were
distinguished in the dynamic logistic regression model as follows:

ln(
Pt

1− Pt
) =

n f∑
f=1

β f x f +

nv∑
v=1

βvxv(t) + β0 (3)

where Pt is the probability of wetland at the particular time node t; xf and xv are the fixed (topography
factor) and varying variables (climate variable, surface hydrology factor, and urban expansion influence),
respectively; nf and nv denote the number of fixed and time-varying variables, respectively; and βf and
βv refer to the regression coefficients of the fth and vth fixed and varying variables, respectively. Using the
historical change detection module and the urban expansion forecast module, the time-varying variables
were calculated and used to build the time-varying logistic equation to execute the wetland shrinkage
simulation module. The regression equations with time-varying variables to model the wetland
distributions at 1986, 1993, 2006, and 2017 were fit in the SPSS18.0 statistical package.

To model the intersecting processes of urban expansion and wetland shrinkage in the future,
the historical trend scenario of our TVWSUE methodology was forecast as the baseline, and a specific
wetland conservation strategy was interactively designed to predict the future wetlands according
to the result of the historical trend scenario. The tradeoff analysis between these processes can help
resolve the conflict between urban development and wetland conservation.

2.4. Methodology Application and Validation

For the historical change detection module, 753 ground-reference data points in 2017, including
253 points from the field validation investigations with Global Positioning System (GPS) in 2017 and
500 points from high-resolution images from Google Earth in 2017, were used to assess the classification
accuracy of the visually interpreted land-use map. Similarly, 500 points from high-resolution images
from Google Earth in 2006 were used to assess the classification accuracy of the visually interpreted
land-use map for 2006. Black-and-white aerial images were utilized to collect 500 reference points
for validating the land-use classification result at 1986. The confusion matrix between the reference
and interpreted results was used to calculate the overall accuracy and kappa coefficient (Table 4).
The overall accuracies and kappa coefficients for 1986, 2006, and 2017 were 92.56%, 92.76%, and 92.10%
and 0.918, 0.919, and 0.914, respectively, which validated the high accuracies of the land-use maps
for 2006 and 2017. Without ground-reference data and high-resolution remote sensing images for
the 1970s, 100 reference points were collected from the 1:50,000 topographic maps to validate the
accuracy of the result for 1977 from the Landsat MSS image. The topographic maps were produced
by aerial surveying and mapping in 1975, but only the boundary of natural wetlands was delineated.
Thus, only the accuracy of the interpreted natural wetland in the land-use map for 1977 was tested,
and the test resulted in an accuracy of 93.00%. Owing to the data availability, the accuracy of other
land-use types was not tested in this study. In addition, the accuracy of the land-use map at 1993 was
not assessed in this study because of the absence of available reference data. However, considering
the high accuracy and compatibility of image classification from a series of Landsat TM images in
previous studies [52,61], reliabilities similar to those for 1986 and the result for 2006 were assumed for
the land-use map for 1993, with the same Landsat TM images and the image interpretation executor.

Table 4. Accuracy test of land use classification.

Year
Accuracy Metric

Overall Accuracy Kappa Coefficient

1986 92.56% 0.918
2006 92.76% 0.919
2017 92.10% 0.914
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To assess the model performance in the urban expansion forecast module, the modified Lee and
Sallee metric was used to compare the spatial fit of the visually interpreted and simulated urban extents
from the SLEUTH model. The metric was a shape index for measuring spatial fitness, expressed by the
ratio of the intersection and union of the reference and simulation results. Values of the modified Lee
and Sallee metric higher than 0.6 were assumed to validate a good spatial fit for the two maps being
compared [56].

The relative operating characteristic (ROC) value [62] was used to validate the statistical fitness of
the logistic regression model in the wetland shrinkage projection module. The ROC value, ranging
between 0.5 and 1.0, enables the comparison of the real map with the probability map. A larger value
of ROC denotes a higher regression fitness; a value near 1.0 indicates a close fitness between the
explanatory variables and the response variables [23].

3. Results

3.1. Historical Wetland Shrinkage and Urban Expansion

The historical change detection module analyzed the spatial distribution of wetland and urban
extent in the Tonghu Wetland at 1977, 1986, 1993, 2006, and 2017 (Figures 3 and 4). The wetland
shrinkage and urban expansion intensified from 1977 to 2017. The wetland area decreased 43.47%
through the past four decades, with values of 115.34, 113.75, 104.36, 86.01, and 65.32 km2 at 1977, 1986,
1993, 2006, and 2017, respectively. In contrast, the areas of urban extent were 3.84, 5.09, 12.54, 20.33, and
33.60 km2, respectively. The wetland and urban areas showed different change trends, with increasing
rates of change in the last four decades, in which the proportion of wetland decreased from 72.16% to
43.87%, but the proportion of urban extent increased from 2.55% to 22.32%. Using the spatial overlay
technique and cross-tabulation analysis, the spatial distribution of wetland converting to other land
uses was identified and calculated. The conversion areas from wetland to urban extent for the periods
of 1977–1986, 1986–1993, 1993–2006, and 2006–2017 were 0.59, 4.96, 5.83, and 9.11 km2, respectively.
This indicated an increasing threat from urban expansion to wetland conservation.Sustainability 2019, 11, x FOR PEER REVIEW 11 of 24 
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The wetland area and urban extent presented a spatially intersecting shift in distribution. Except for
the low hills located mainly in the northern part, but partly in the southeastern part of the study
area, wetlands were widely distributed in the entire region in 1977. The ranges of wetland and urban
changes were limited for the period of 1977–1986. Then, urbanization expanded rapidly from the
southern and northeastern parts of the study area in 1986–1993. For the next period of 1993–2006,
urbanization increased continuously at the edge of the original urban areas and spread to new areas in
the northwest and southwest. From 2006 to 2017, new urban area expanded significantly, not only near
the original urban areas, but also around newly built roads. Meanwhile, larger areas of wetland loss
were distributed in the southern and eastern edges of the Tonghu Wetland. With continuous urban
growth all around the study area through the past few decades, the wetlands shrunk and became
concentrated in the surroundings of Tonghu Lake.

To quantify the impact of surface hydrology on the wetland distribution from the TVWSUE
methodology, the historical natural wetlands and Tonghu were mapped from 1965 to 2017 using the
topographic maps and remote sensing interpretation results (Figure 5). In particular, because a project
of agricultural reclamation from natural wetlands was launched in the study area in 1966, there was
large-scale natural wetlands loss from 1965 to 1977. The natural shape of Tonghu Lake in 1965 had
been transformed to a rectangular shape in 1977. The natural wetland area decreased significantly
from 20.55 km2 to 7.96 km2 from 1965 to 1977, and the total river length decreased significantly from
195.45 km to 112.11 km. Up to 2017, the area of natural wetlands had decreased to 4.10 km2, with a
change rate of more than 50%, and only the tributaries flowing into and out of Tonghu Lake were not
converted to other land-use types. Most of the natural wetlands were converted to artificial wetlands,
including ponds and paddy fields. Then, they were gradually converted to urbanization and other
non-wetland types. The dramatic loss of rivers and small lakes, and the change of shape of Tonghu
Lake, reflecting the extent of the human disturbance, influenced the regional surface hydrology and
wetland distribution.



Sustainability 2019, 11, 4953 13 of 24

Sustainability 2019, 11, x FOR PEER REVIEW 12 of 24 

Sustainability 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/sustainability 

Wetland. With continuous urban growth all around the study area through the past few decades, 
the wetlands shrunk and became concentrated in the surroundings of Tonghu Lake. 

To quantify the impact of surface hydrology on the wetland distribution from the TVWSUE 
methodology, the historical natural wetlands and Tonghu were mapped from 1965 to 2017 using 
the topographic maps and remote sensing interpretation results (Figure 5). In particular, because a 
project of agricultural reclamation from natural wetlands was launched in the study area in 1966, 
there was large-scale natural wetlands loss from 1965 to 1977. The natural shape of Tonghu Lake in 
1965 had been transformed to a rectangular shape in 1977. The natural wetland area decreased 
significantly from 20.55 km2 to 7.96 km2 from 1965 to 1977, and the total river length decreased 
significantly from 195.45 km to 112.11 km. Up to 2017, the area of natural wetlands had decreased 
to 4.10 km2, with a change rate of more than 50%, and only the tributaries flowing into and out of 
Tonghu Lake were not converted to other land-use types. Most of the natural wetlands were 
converted to artificial wetlands, including ponds and paddy fields. Then, they were gradually 
converted to urbanization and other non-wetland types. The dramatic loss of rivers and small lakes, 
and the change of shape of Tonghu Lake, reflecting the extent of the human disturbance, influenced 
the regional surface hydrology and wetland distribution. 

 

Figure 5. Spatial distribution of natural wetlands and Tonghu in 1965, 1977, 1986, 1993, 2006, and 
2017. 

Figure 5. Spatial distribution of natural wetlands and Tonghu in 1965, 1977, 1986, 1993, 2006, and 2017.

3.2. Relationship between Wetland Distribution and Explanatory Variables

The wetland shrinkage projection module of the TVWSUE methodology simulated the occurrence
probabilities of wetlands by logistic regression models at 1977, 1986, 1993, 2006, and 2017. Using the
forward stepwise strategy to select the coefficients of driving factors at the significance level of
0.05, the time-varying logistic regression models were constructed from Equation (3) (Table 5).
Several variables were excluded by the statistical test, mainly climatological and topographical factors.
This may be attributed to the similar spatial distribution of these variables within the small area of
Tonghu Wetland, which resulted in their low impact on the wetland distribution.

The time-varying logistic regression model and its parameters explored the relationship between
wetland distribution and explanatory variables (Table 5). A positive value of β means that an increase
in the particular explanatory variable increases the wetland probability. A negative value means that
the variable decreases the probability of wetland. Positive values of variables of influence of urban
expansion indicated that being far from the urban extent aided wetland conservation. Otherwise,
wetlands near the urban extent had high loss probabilities. This is consistent with the visual result
in the historical trajectories of wetland area and urban extent, in which large areas of lost wetland
were occupied by urban uses or were near the urban extent (Figures 3 and 4). In addition, the positive
coefficient of wetland extent at the original time confirmed its impact on the future wetland distribution.
The NWT was related to the regional surface hydrological linkage and confluence range, and further
influenced the water supply of wetland and its occurrence probability. Thus, the negative values
indicated that wetland loss occurred easily far from the NWT.
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Table 5. Estimates in logistic regression of explanatory variables for predicting wetlands.

1986 1993 2006 2017

β
Odds
Ratio β

Odds
Ratio β

Odds
Ratio β

Odds
Ratio

β0 −0.82 0.44 β0 −2.43 0.09 β0 −3.37 0.03 β0 −4.82 0.01
x1 (1977–1986) - - x1 (1986–1993) - - x1 (1993–2006) - - x1 (2006–2017) - -
x2 (1977–1986) - - x2 (1986–1993) - - x2 (1993–2006) - - x2 (2006–2017) - -

x3 - - x3 - - x3 - - x3 - -
x4 - - x4 - - x4 - - x4 - -

x5 (1977) 1.48 4.4 x5 (1986) 0.36 1.43 x5 (1993) 1.82 6.18 x5 (2006) 1.93 6.88
x6 (1977–1986) 0.35 1.41 x6 (1986–1993) 3.47 32.1 x6 (1993–2006) 3.79 44.39 x6 (2006–2017) 5.21 183.64

x7 (1977) 5.22 184.56 x7 (1986) 4.39 80.96 x7 (1993) 3.83 45.92 x7 (2006) 3.93 50.96
x8 (1965) −2.35 0.10 x8 (1965) −2.79 0.06 x8 (1965) −3.14 0.04 x8 (1965) −1.50 0.22
x8 (1977) −0.72 0.48 x8 (1977) −1.69 0.19 x8 (1977) −2.30 0.10 x8 (1977) −0.55 0.58

x8 (1986) - - x8 (1986) - - x8 (1986) - -
x9 (1993) −0.43 0.65 x8 (1993) −1.31 0.27

ROC 0.94 ROC 0.93 ROC 0.90 ROC 0.94

Note: (1) Explanatory variable was excluded in the logistic regression model at the significance level of 0.05; (2) x1: annual precipitation, x2: annual temperature, x3: elevation, x4: slope, x5:
distance to urban area, x6: distance to road, x7: distance to new urban area, x8: wetland extent, x9: distance to natural wetlands and Tonghu. Year in the parentheses means the varying
time used for predicting wetland at the different time nodes. ROC, relative operating characteristic.
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The odds ratio is a measure of the relative importance of the explanatory variables (Table 5).
For β > 0, a larger odds ratio indicates a larger importance of the particular explanatory variable;
for β < 0, a smaller value indicates a larger importance [63]. The increase in the odds ratio for the
new urban extent variable through the four periods, with values of 1.41, 32.10, 44.39, and 183.64
for the models for 1986, 1993, 2006, and 2017, respectively, indicates an enhancing importance of
urban expansion for wetland distribution. The relatively low odds ratio of urban extent at the initial
time indicated a relatively low importance compared with the impact of new urban expansion on
the wetland distribution. In contrast, the decrease in the odds ratio for the wetland extent variable
indicated its reduced importance. The odds ratios of wetland extent were the largest for the models
for 1986 and 1993, indicating a larger impact of surface hydrology for these periods. In particular,
the importance of NWT remained stable at the different periods, and the importance of NWT for 1965
was relatively large, reflecting the impact of the original natural surface hydrology and geomorphology
on the wetland distribution.

3.3. Performance of the TVWSUE Methodology

The urban expansion forecast module was executed to calibrate the five parameters of dispersion,
breed, spread, slope resistance, and road gravity, which were determined by the values of 24, 48,
79, 21, and 35, respectively. Comparing the visually interpreted and simulated urban extent in 2017,
the modified Lee and Sallee metrics had a value of 0.68. This validated the global spatial fitness of the
urban expansion simulation result, on which the forecast of future expansion of urbanization in this
study relied.

Statistical tests and visual comparisons were used to assess the performance of the wetland
modeling. Time-varying logistic regression models were constructed in the TVWSUE methodology to
predict wetland probabilities. The ROCs of the logistic regression models for 1986, 1993, 2006, and
2017 were 0.94, 0.93, 0.90, and 0.94, respectively (Table 5). The values of the ROCs, which were close
to 1, confirmed the high fitness and robustness of our regression models. Meanwhile, the spatial
distribution probabilities of wetlands from the regression models were mapped and compared with
the visually interpreted results as a reference (Figure 6). The simulated probabilities ranged from 0 to 1,
with a higher value indicating a higher likelihood of wetlands. Then, the probabilities were reclassified
into five levels: very low (0–0.2), low (0.2–0.4), medium (0.4–0.6), high (0.6–0.8), and very high (0.8–1.0).
On the basis of the visual assessment, most of the actually preserved wetlands were located in the
areas with very high occurrence probability (Figure 6). Additionally, the occurrence probabilities of
preserved wetlands and those of lost wetlands were compared. The average probabilities of preserved
wetlands for 1986, 1993, 2006, and 2017 were 0.95, 0.90, 0.84, and 0.80, respectively. In contrast, the mean
values of lost wetlands at the four time nodes were 0.85, 0.62, 0.56, and 0.47, respectively. The high
spatial fitness of the statistical test and the visual comparison between our simulated probabilities
and the referenced maps validated the effectiveness of our methodology. Except for the wetlands at
1986, which were characterized by limited wetland loss and complex driving factors, the majority of
wetlands exhibited high probability values.
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The higher predicted risks of wetland loss, with low probabilities, were mainly located in or near
the urban areas, particularly the new urban sprawl areas, validating the impact of urban expansion
(Figure 6). To evaluate the reliability of the wetland probabilities, numbers for the five probability
levels of wetlands at the initial time and the actual lost wetlands from the initial time to next time were
determined. The proportion of lost wetland area to the entire area of wetlands at the different levels
was calculated to evaluate the correlation between the simulated wetland probabilities and actual
wetland loss (Table 6). More than 75% of the wetlands with probabilities of 0–0.2 exhibited actual loss
in the periods of 1986–1993, 1993–2006, and 2006–2017, and nearly 70% with probabilities of 0.2–0.4
had actual loss at these periods. The area proportion with probabilities of 0.4–0.6 ranged from 40% to
50% at the four periods, denoting a relatively medium risk of wetland loss. Additionally, only nearly
20% and less than 10% of those areas with probabilities of 0.6–0.8 and 0.8–1.0 had actual loss during
these periods. It is evident that a lower predicted probability of wetland indicates a higher risk for
wetland to be actually lost under urban expansion. This result demonstrated that the probabilities
of wetland occurrence calculated by our TVWSUE methodology could effectively predict the spatial
distribution of future wetlands and the potential loss.

To examine the impact of the time-varying variables, ROCs of logistic regression models for
predicting wetlands were compared between the model with the complete variables, the model without
the variable of natural wetland and Tonghu, the model without the variable of new urban extent,
and the model without both of the above time-varying variables (Figure 7). The highest ROC values in
our TVWSUE methodology were achieved for the model with the complete variables, which validated
the necessity and effectiveness of including time-varying variables. A larger decrease in ROC for the
model without the variable of new urban extent implied that this variable played a greater key role in
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improving model fitness than the variable of natural wetland and Tonghu. Because of the increase of
the importance of the urban expansion on wetland shrinkage with increasing time (Table 5), the new
urban extent variable was more important for realizing higher explanatory power in the regression
model for 2017 than in that for 2006. Thus, the ROC of models with the new urban extent variable
increased from 2006 to 2017. In contrast, the ROC of models without the variable decreased between
these two time nodes. In particular, the average probability of actual lost wetlands at 2006–2017 for
the complete logistic regression model was 0.43, which is much lower than the 0.64 for the regression
model without the new urban extent variable. The absence of new urban expansion in the model
significantly weakened its ability to forecast potential wetland loss.

Table 6. Actual percentages of wetland loss for various predicted probabilities of wetlands from 1977
to 2017.

Area Proportion (%)

Wetland Losses at
1977–1986 to

Wetlands in 1977

Wetland Losses at
1986–1993 to

Wetlands in 1986

Wetland Losses at
1993–2006 to

Wetlands in 1993

Wetland Losses at
2006–2017 to

Wetlands in 2006

Wetland
probability

0–0.2 21.35 73.81 73.50 74.08
0.2–0.4 23.93 65.89 64.59 67.72
0.4–0.6 41.08 50.79 57.50
0.6–0.8 26.10 27.89 22.27
0.8–1.0 1.31 6.26 7.18 5.99
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3.4. Modeling of Wetland Shrinkage and Urban Expansion at Year 2030

Under the historical trend scenario, the urban extent of the Tonghu Wetland in 2030 was simulated
by the urban expansion forecast module (Figure 8a). The urban area is forecast to increase from
33.60 km2 in 2017 to 47.69 km2 in 2030. With the high value of the spread parameter, the urban extent
would grow outward from the existing and consolidated urban areas. In addition, a relatively high
breed parameter simulated several new detached urban settlements, and the value of road gravity,
ranking third among the five parameters, indicated a medium impact of the transportation network on
the urban expansion, particularly, the newly built road west of Tonghu Lake. Thus, the urban extent of
the Tonghu Wetland showed continuing growth, with most of the new urban areas around the urban
extent in 2017 and larger expansion areas located south and northeast of the study area.
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Figure 8. Scenario maps by the TVWSUE methodology at year 2030 for (a) urban extent under the
historical trend scenario, (b) wetland under the historical trend scenario, (c) urban extent under the
wetland conservation scenario, and (d) wetland under the wetland conservation scenario.

With the historical trend scenario of urban growth from 2017 to 2030, using the parameters of
the logistic regression model for 2017 (Table 5), the data of the time-varying explanatory variables,
including the urban and wetland extent at 2017 and the new urban extent from 2017 to 2030,
were updated. Then, the spatial distribution of wetland probabilities at 2030 was simulated by the
TVWSUE methodology under the historical trend scenario (Figure 8b). The average value of wetland
probabilities in the entire study area decreased continuously from 0.44 at 2017 to 0.34 at 2030, indicating
an increasing threat of urban growth and a decreasing probability for wetland conservation in the future.
In particular, the future probabilities of preserved wetlands from 2017 were identified at five levels,
and the area proportions of very low (0–0.2), low (0.2–0.4), medium (0.4–0.6), high (0.6–0.8), and very
high (0.8–1.0) probability were 2.36%, 6.14%, 19.57%, 20.83%, and 51.10%, respectively. The urban
expansion extent from 2017 to 2030 directly occupied 7.61 km2 of the wetlands in 2017, which accounted
for 11.65% of the total wetland area for 2017. Except for the direct conversion, the urban growth
threatened the wetlands around the urban extent by the neighbor effect with enhanced anthropogenic
disturbance intensity. Water drainage for domestic consumption, decreases in hydrological linkages
between wetlands, biological invasions that modify or destroy wetlands, and living and industrial
pollutants to wetlands, which tend to aggregate around urban centers, can easily cause wetland
degradation and further loss [64,65]. There is still 3.06 km2 of areas with wetland probabilities <0.4,
meaning a high loss likelihood from 2017 to 2030, and 8.17 km2 of areas with wetland probabilities of
0.4–0.6, denoting a medium loss likelihood. With the spatial analysis techniques, an area of 19.14 km2

of wetlands, accounting for 29.30% of the total wetland area for 2017, is under risk of loss and calls for
specific conservation measures.
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To protect the wetlands, a purposeful urban development and wetland protection strategy was
designed based on the historical trend scenario. Areas converted from wetland areas to urban areas
for 2017–2030 were labeled as excluded regions in the urban expansion forecast, and the spatial
distribution of wetland probabilities for 2030 was simulated. This scenario was labeled as the “wetland
conservation scenario”. Under this scenario, the area of urbanization was 40.07 km2, showing an
increase of 6.47 km2 from 2017 to 2030 (Figure 8c), half of the value obtained under the historical trend
scenario. With the diminished scope of urban growth, the average value of wetland probabilities under
this scenario was 0.39 (Figure 8d), which is higher than the value of 0.34 under the historical trend
scenario. Compared with the historical trend scenario, the area proportions of preserved wetlands
from 2017 at the probabilities of 0–0.2, 0.2–0.4, and 0.4–0.6 decreased, with values of 1.08%, 2.16%,
and 9.88%, respectively, and the area proportions at the probabilities of 0.6–0.8 and 0.8–1.0 increased,
with values of 21.01% and 65.87%, respectively. In total, the area of wetlands under the risk of loss was
8.46 km2, which was no more than half the value under the historical scenario. Thus, the spatially
specific protection strategy not only prevented urban expansion from occupying wetlands, but also
relieved the neighbor-effect pressure on the wetlands. These two different scenario simulations of
wetland shrinkage and urban expansion support purposeful decision-making pertaining to the tradeoff

between urban growth and wetland conservation.

4. Discussion

Previous studies realized the impact of each dynamic, but studied them almost
separately [3,27,28,59,66]. There is a limitation to the insights obtainable regarding the intersection
of urban and wetland dynamics. The novelty of this study was the development of the TVWSUE
methodology of coupling the urban expansion and wetland shrinkage processes to obtain a better
approximation of wetland dynamics. Time-varying explanatory variables, including surface hydrology
and urban expansion, were quantified in the model to help improve the dynamic model performance
and realize future forecasting ability. Time series of the natural wetlands and Tonghu detected the
influence of the original surface hydraulic linkages and geomorphology characteristics on the wetland
distribution [23], which were identified by the historical change detection module of the TVWSUE
methodology. Unlike the static models of previous studies, which assumed a constant influence
of human activity [26–29], our time-varying regression model dynamically simulated wetland loss
under the impact of urban expansion. Thus, the TVWSUE performed much better in its forecasting
ability of wetland loss, showing good spatial consistency between simulated wetland probabilities
and actual wetland loss (Figure 6 and Table 6). The ROC value of the TVWSUE with the time-varying
variable of new urban extent was higher than that of previous models without this factor (Figure 7).
Moreover, the improvement in the TVWSUE in simulating future wetland loss compared with
previous static models provided more reliable information to support spatially specific wetland
conservation planning.

The logistic regression model revealed the contribution importance of each explanatory variable,
which indicated an increasing impact of urban expansion on the wetland distribution from 1977 to
2017 (Table 5). The human population continued to aggregate in urban centers, and urban expansion
presented an inevitable increased impact on wetland loss [67], which was confirmed by the simultaneous
shift between urban expansion and wetland shrinkage in the Tonghu Wetland (Figures 3 and 4). With the
intense human disturbance and neighbor effect of urbanization, wetlands near urban areas were also
predicted to have low wetland probabilities, and these areas suffered considerable losses according
to the historical changes in wetlands (Figure 6). Thus, the time-varying strategy of simultaneously
simulating urban expansion and wetland shrinkage in the TVWSUE improved the model fit.

Some limitations of the TVWSUE methodology require attention. First, visually interpreting
remote sensing images was time-consuming, and there were still some local interpretation errors in
this study. Second, the model did not perform well in some areas, where significant actual wetland loss
occurred despite relatively high predicted probability. The wetland change was driven by multiple
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factors that were not quantified fully in this study. In particular, complex and spatially heterogenetic
human disturbances were denoted by the proximity of urban extent, which has been validated as a good
proxy of human activity and successfully applied in different field studies [68–70]. Third, future climate
change was not included in our model, in which climate variables have a non-significant impact on
the wetlands in Tonghu Wetland, because of the abundant rainfall as well as the spatial homogeneity
within a small area.

According to these limitations, the following improvements were suggested to be explored in a
future study. A first idea is to apply multiple sources of remote sensing images [71] and cost-effective
and high-accuracy mapping techniques [72]. For example, the Google Earth Engine [73] provided a
big data cloud computing platform for remote sensing interpretation for data preparation and model
execution of TVWSUE. The second improvement is to characterize the detailed human activities near
the urban centers, which helps to increase the explanatory ability and predictive power of the TVWSUE
methodology. Aside from the direct conversion from wetland to urban use, these neighbor effects of
human activities played an important role in wetland shrinkage. Multiple types of data and techniques
could be tested, for example, mobile phone trajectory technology [74] and street view map mining
techniques [75]. The third idea is to couple different climate change scenarios [76,77] with the TVWSUE
methodology. Our model is flexible in incorporating multiple explanatory variables to predict wetland
probability. In addition, the combined effect of climate change and urban expansion on wetland change
could be investigated.

The resulting maps in this study provided interesting tools for displaying the spatial differences of
the future wetland occurrence probabilities and loss risks among different scenario designs (Figure 8)
to support decision-making. Wetlands with low probabilities in the future scenario were made the
focus of wetland conservation planning. Next, the scenario simulation presented the different scopes
and intensities of future conflicts between urban growth and wetland protection under different
management priorities and strategies (Figure 8). Under the scenario settings, the intersecting processes
of urban and wetland dynamics were simulated to investigate the effects of purposeful wetland
conservation policy. The exclusion method was used to place constraints on urban growth [78] and
to design management scenarios, providing information useful for specific wetland conservation
strategies [79]. The spatial range of the excluded layer and the weighting values placed on the suitability
of cells for urban growth [78,80] can be designed to alter the urban growth pattern and examine its
influence on wetland distribution. With scenario design and its interactive procedure, the TVWSUE
methodology provides support for the tradeoff decision-making between urban development and
wetland conservation.

5. Conclusions

Modeling wetland distribution and forecasting potential loss of wetlands can be useful for
exploring the driving mechanisms of wetland shrinkage and examining the effects of different
priorities and policies of urban development and wetland conservation to support tradeoff

decision-making. The TVWSUE methodology, consisting of three modules, was developed in
this study, which dynamically predicted wetland distribution probabilities intersecting with urban
expansion by a time-varying logistic regression model. The historical change detection module
revealed the intensifying conflict between wetland and urban areas from 1977 to 2017, with the
proportion of wetland area decreasing from 72.16% to 43.87% and the proportion of urban extent
increasing from 2.55% to 22.32%. Most of the wetland loss was located in or near the areas of
urbanization. Urban areas expanded from the edge of the study area, while wetlands shrunk and
were concentrated in the areas surrounding Tonghu Lake. Within the time-varying regression model,
the odds ratio of the new urban extent variable increased from 1.41 in 1986 to 183.64 in 2017, indicating
the increased importance of urban expansion. The modified Lee and Sallee metric of 0.68 and the ROCs
greater than 0.9 for the logistic regression models validated the simulation fitness of the urban and
wetland extents, respectively. Moreover, the visual consistency between our simulated and referenced
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wetland maps further demonstrated the effectiveness of TVWSUE. Compared with traditional methods,
the incorporation of time-varying variables helped improve the model performance, with higher ROC
and better ability to predict potential wetland loss. In particular, lower simulated probabilities on the
wetlands were proven to indicate a higher risk of actual loss. Historical trend and wetland conservation
scenarios forecasted different wetland distribution probabilities under different urban growth patterns
for 2030. The historical trend scenario predicted that nearly 30% of the wetlands would be under the
risk of loss in the future. With the specific exclusion strategy of urban development, areas of wetland
loss risk were decreased by more than 50% in the wetland conservation scenario. The scenario designs
and the interactive procedures of the methodology were able to provide information on the intersecting
processes of future urban expansion and wetland shrinkage useful for informing a spatially specific
wetland conservation strategy. Our results validated the effectiveness of the TVWSUE methodology
and the significance of tradeoff decision-making between urban development and wetland conservation.
The aforementioned limitations and improvements of the TVWSUE methodology were suggested for
testing in future studies.
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