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Abstract: It is crucial to evaluate indoor personal thermal comfort for a comfortable and green
thermal environment. At present, the research on individual thermal comfort does not consider its
implementation mode. Moreover, the improvement of energy saving efficiency under the premise of
increasing human comfort is an urgent problem that needs to be solved. In this paper, we proposed
a Building Information Model (BIM) and Artificial Neural Network (ANN) based system to solve
this problem. The system consists of two parts including an ANN predictive model considering
the Predicted Mean Vote (PMV) index, the persons’ position, and an innovative plugin of BIM to
realize dynamic evaluation and energy efficient design. The ANN model has three layers, considering
three environment parameters (air temperature, air humidity, and wind speed around the person),
three human state parameters (human metabolism rate, clothing thermal resistance, and the body
position) and four body parameters (gender, age, height, and weight) as inputs. The plugin provides
two functions. One is to provide corresponding personal thermal comfort evaluation results with
dynamic changes of parameters returned by Wireless Sensor Networks (WSN). The other one is to
provide energy saving optimization suggestions for interior space design by simulating the energy
consumption index of different design schemes. In the data test, the Mean Squared Error (MSE) of
the established ANN model was about 0.39, while the MSE of traditional PMV model was about 2.1.
The system realized the integration of thermal information and a building model, thereby providing
guidance for the creation of a comfortable and green indoor environment.

Keywords: personal thermal comfort; artificial neural network; energy efficient design; BIM

1. Introduction

Thermal comfort is defined as a psychological state in which people express satisfaction towards
the thermal environment [1]. The creation of a comfortable indoor thermal environment is attracting
more attention because it is advantageous to the health of inhabitants and their working efficiency.
In addition, it can also help reduce the energy consumption of buildings. The construction industry
consumes nearly 40% of the world’s energy [2], and about 50% of consumption is caused by air
conditioning [3]. Adjusting the temperature of air conditioning based on individual thermal comfort
can maintain low energy consumption and retain comfort simultaneously [4]. In order to establish a
comfortable and green indoor thermal environment, it is necessary to evaluate the individual’s thermal
comfort correctly.
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1.1. Development of Personalized Thermal Comfort Models

The PMV model and the adaptive model are two main models of evaluating thermal comfort.
PMV has been established based on a large number of experiments conducted by Fanger [5] and
has become the reference to ISO7730 [6] and the American Society of Heating, Refrigerating and
Air Conditioning Engineers (ASHRAE55) [7]. Currently, the ASHRAE55 adaptive model built by
Dear and Brager [8] and the European Standards 15251 (EN15251) adaptive model built by Nicol and
Humphreys [9] are two main adaptive model standards.

Although it has been successfully applied to international standards, the prediction performance
of existing models still needs improvement regarding individual comfort [10,11]. This is because
both of the two main models are aggregation models that are mainly applied to predict the average
comfort level of large groups. Generally speaking, the thermal comfort level of different individuals
varies due to physiological diversity and subjective feelings. In addition, neither of the models can
be used to relearn [12] The models cannot be updated according to the comfort characteristics of
individual residents in a particular field [13]. As such, the establishment of an individual thermal
comfort evaluation system is essential to improve individual comfort and achieve personalized thermal
environment management.

Much research has tried to use machine learning to build individual thermal comfort models,
and the ANN model is a common one. Liu, et al. [14] established an ANN thermal comfort evaluation
model based on the backward propagation algorithm, only with four environment variables as the
input values. But the model ignores the differences of individual thermal sensation. Kim et al. [15]
used six kinds of machines, including ANN algorithm to establish personal thermal comfort evaluation
model, which considered environment data and the behavior of users of Personal Comfort System
(PCS) chair as input variables. In the study of Grabe, J. [16], four indoor environmental variables, three
variables of current climatic conditions, and two individual variables, building types, as well as body
variable, were taken into account in the ANN model built to predict thermal comfort. In a case study
based on adaptive database RP-884 [17], when adding the gender and age of the residents, or inputting
three variables of current climatic conditions, the predictive accuracy declines. However, the model is
superior to PMV in both quality and the information range of prediction, which proves that the ANN
has potential in evaluating individual thermal comfort [16].

1.2. The Gap of Present Research

Optimizing the input parameter settings of the ANN thermal comfort model by taking individual
differences into account to improve the accuracy of the model in predicting individual thermal comfort
is one of the current research gaps. In addition, the above research did not consider ways to realize the
real time evaluation of individual thermal comfort, but instead only focused on model optimization.

There are many parameters influencing individual thermal comfort, including environmental
parameters (air temperature, humidity, wind speed, average radiation temperature, etc. [18]) and human
parameters (metabolic rate, location, dressing, weight, age and health status of the individual) [19].
For example, the movement of people in a room affects their thermal comfort by influencing their
average radiation temperature. However, the average radiation temperature is often considered to be
nearly the same as the air temperature, thereby neglecting the influence created by the change of an
individual’s position. Nevertheless, models that directly consider the average radiation temperature
or other special parameters often require special instruments, which greatly weakens the practicability
and generalization of the model.

1.3. Research Contributions

BIM provides a platform for the application of the personal thermal comfort evaluation model.
It not only provides basic information about buildings such as the component location or material
properties, but also serves as a platform for integrating data that affects individual thermal comfort.
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In addition, WSN, composed of a large number of static or mobile sensors in a self organizing and
multi-hop manner, is a great tool for detecting environments and transmitting data in time. It can
effectively collect data within the device and is easily installed in existing devices.

This study has three parts of contributions. The first part is to optimize the evaluation model of
personal thermal comfort. Besides environment parameters and body parameters, the proposed ANN
thermal comfort evaluation model takes the change of human position into consideration, thereby
improving the accuracy of predicting thermal comfort.

The second part is to realize the dynamic evaluation of personal thermal comfort. After integrating
the building thermal information by using the WSN and BIM, the developed plugin could provide
corresponding personal thermal comfort evaluation results with dynamic changes of parameters
returned by WSN in the Revit platform. Through the plugin, the proposed ANN evaluation model can
be called in BIM software, achieving the storage of data involved personal thermal comfort storage at
the same time.

The third part is to provide suggestions on indoor furniture placement to reduce energy
consumption. In conclusion, this study optimizes the individual thermal comfort evaluation
model, and provides a new way to expand the application of BIM in the green management of
an indoor environment.

2. Literature Review

2.1. Personal Thermal Comfort Evaluation Model

More recent attention has focused on machine learning methods to predict personal thermal
comfort. Based on the backward propagation algorithm, Liu et al [14] has established an individual
neural network evaluation model for thermal comfort. Their model inputs are four environment
parameters, including average radiation temperature, air temperature, wind speed, and relative
humidity. The results of case study indicated that the evaluation results of the model accorded better
with the thermal sensation of subjects compared to PMV, showing that the model could correctly
appraise thermal comfort.

Lee et al. [20] used a Bayesian network method to learn individual occupant thermal preference.
There are six input variables in the model, including air temperature, air humidity, wind speed, average
radiation temperature, clothing thermal resistance, and the human body metabolism rate. By collecting
data in office buildings, this model could explain the thermal preferences of office staff.

Four environmental parameters (air temperature, average radiation temperature, wind speed,
and steam pressure), and two individual parameters (human metabolic rate and clothing insulation
index) were regarded as input variables in Grabe, J’s study [16]. Based on these variables, they built an
artificial neural network model for predicting thermal comfort. An example showed that the accuracy
of this model outperformed the traditional PMV model under different conditions.

In order to measure the thermal comfort of inhabitants in the built environment,
Chaudhuri et al. [21] developed a model, which used human skin temperature and its gradient
feature as input variables of the model. Then four kinds of model inputs were compared with a
Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifier. The results of the case
study showed that non-normalized skin temperature alone could only accurately estimate about 65%
of thermal states, and the predicted thermal state model based on normalized skin features accurately
predicted 87% of thermal states.

Kim et al. [15] established six models with six machine learning algorithms including artificial
neural network and compared their performances of predicting individual thermal comfort. In the
research, the behavior of Personal Comfort System (PCS) chair users and environmental data were
considered as input to predict personal thermal preferences. The results showed that various machine
learning languages had their own advantages and disadvantages [19].
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Although all the above studies have improved the accuracy of thermal comfort prediction models,
there are still challenges in practical application. The collection of model input data is a large application
barrier of modeling. At least one of the input parameters in the model needs to be collected by special
instruments, such as PCS chair and infrared thermal imager. In addition, considering the fact that
everyone has different sensitivity to thermal sensation, these thermal comfort models fail to provide
adjustment interfaces for setting personal preferences to meet the personalized needs.

2.2. BIM and Thermal Comfort

There are few studies using BIM to analyze the thermal performance of buildings, and less focus
on the evaluation of individual thermal comfort.

Mohamed et al. [22] combined WSN with BIM models to monitor the environment. The system
developed in their research can measure the temperature and humidity in the subway by installing
WSN, and connect the information with the BIM in a spatial way. A simple mathematical model is
combined with BIM software to predict the thermal comfort of passengers.

Natephra et al. [23] collected the value of temperature and relative humidity of the building during
different times through sensors, and acquired the images describing the temperature and relative
humidity. By inputting the collected data into the existing BIM, the 3D or 4D thermal information can
be visualized. This visualization helps to analyze elevation heat diffusion and the thermal comfort
index. The case study showed that the image from the thermal imager could be visualized in the
developed application to help users identify thermal performance defects.

Natephra et al. [24] used visual scripts to extract and map spatial temporal thermal data to BIM.
The developed system converts the collected thermal image into numerical surface temperature and
integrates the collected environmental data in BIM. By calculating thermal comfort variables such
as Mean Radiation Temperature (MRT), it can then evaluate the thermal comfort level of different
positions in the building. The practicability of this method in analyzing thermal performance and
evaluating thermal comfort was verified in a case study.

The research above focuses on the analysis of building thermal performance. The evaluation of
individual thermal comfort in buildings is solely based on the PMV or adaptive model mentioned
above, which is mostly appropriate for the thermal comfort of groups. Also, the parameter regulation
are simplified in the calculation of thermal comfort in BIM.

3. Research Methods

3.1. The Improved PMV Thermal Comfort Evaluation Model

According to previous works, many factors such as physical factors, physiological factors,
and psychological factors affect individual thermal comfort. However, it is difficult to take all these
factors into account when evaluating individual thermal comfort.

In the 1960s, Fanger [5] proposed the thermal comfort evaluation equation with factors affecting
the feeling of human thermal comfort in consideration. The equation comprehensively considered a
variety of factors. The PMV index represents most people’s feelings about hot or cold temperatures in
the same environment. The PMV calculation formula is as follows.

PMV =
(
0.028 + 0.3033e−0.036M)H (1)

H = M−W − 3.05× 10−3[5733− 6.99(M−W) − P0]

−0.42(M−W − 58.15) − 1.7× 10−5M(5867− P0)

−0.0014M(34− ta) − fclhc(tcl − ta)

−3.96× 10−8 fcl[(tcl + 273)4
− (tr + 273)4]

(2)

hc = 2.38(tcl − ta), 2.38(tcl − ta) > 12.1
√

V
hc = 12.1

√
V, 2.38(tcl − ta) < 12.1

√
V

(3)
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tcl = 35.7− 0.028(M−W) − 0.155Icl{3.96× 10−8

× fcl[(tcl + 273)4
− (tr + 273)4] + fcl × hc(tcl − ta)}

(4)

P0 = φ× exp[16.6536− 4030.183/(ta + 235)] (5)

In the PMV model, the evaluation index contains two human factors (the type of activity and the
clothing type), and four environmental factors (air temperature, air humidity, air velocity and average
radiation temperature) [25–28].

In the calculation of human thermal comfort, the average radiation temperature is often replaced
by air temperature, which undoubtedly affects the calculation accuracy. The calculation formula shows
that the average radiation temperature is relevant to the angle coefficient between the individual and the
walls of the room. The angle coefficient varies with the change of the human body position. In addition,
the calculation of angle coefficient involves complex integral formulas. At present, it is commonly
calculated by referring to tables and graphs, with difficulty and low accuracy. Therefore, in ISO
and other regulations, the average radiation temperature is approximately taken as air temperature,
neglecting the influence of the human body position on thermal comfort.

In this paper, when considering the influence of human position changes on thermal comfort,
the distance between the person and a fixed device can represent the changing process to some extent.
Therefore, this paper intends to add the distance between the three dimensional human position and
refrigeration (heat) equipment into the evaluation model of individual thermal comfort, as shown in
Formula (6).

C = f(Icl, M, ta, v,φ, d, . . .) (6)

where d means the distance between the position of the human three dimensional space and the
refrigeration (heat) equipment.

3.2. Construction of Artificial Neural Network Thermal Comfort Evaluation Model

There are many parameters affecting individual thermal comfort, but the specific mechanism of
their actions on thermal comfort is still unknown. The process of solving individual thermal comfort
with several factors can be understood as a “black box” mapping from the input to output, which is
very suitable for ANN. This paper aims at building an individual thermal comfort evaluation model
based on a Back Propagation (BP) artificial neural network.

In addition to the location parameters, air humidity and air velocity can be simply obtained by
using sensors. They are two input parameters of the neural network model because of the low price
and feasibility. Meanwhile, the activity type and clothing type of the person are also considered in
this model.

Moreover, studies have shown that women prefer warmer environments than men [29,30].
And there are significant differences in thermal sensation preferences between the young and the old,
as well as between persons with different figures [29–31]. Therefore, age, gender, height, and weight
are also considered in this model.

To sum up, this paper selects air temperature, air humidity, air speed, distance between people
and equipment, human activity type, clothing type, gender, age, weight, and height as the inputs of
the thermal comfort ANN model, as shown in formula 7. So there are ten neurons in the input layer
and only one neuron in the output layer. With the entering of someone’s index value into the network
via the input layer, the network operates with the trained weight, and the output layer outputs the
value of the person’s thermal comfort.

C = f(Icl, M, ta, v,φ, d, A, G, H′, W′) (7)
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There is no definite evaluation method for hidden layer nodes at present. The reasonable value
range can be calculated according to the empirical Formula (8).

k =
√

m + n + a, a ∈ [1, 10] (8)

Where k refers to the nodes number in the hidden layer, n represents the nodes number in the
input layer, and m represents the nodes number in the output layer. The nodes number in the hidden
layer should be determined according to the formula above and simulation results. Since n is 10 and m
is 1 in the sample studied in this paper, the value range of nodes number in the hidden layer can be
achieved, which is [5,13]. In addition, based on the Kolmogorov’s theorem, a formula considering the
number of hidden layer nodes can be further established, which is shown in Formula (9).

k = 2 n + 1 (9)

Where n is the number of input layer nodes.When n is 10, k is calculated to be 21. Finally,
through comparing the experiments results at different values of n from 5 to 22, and comprehensive
consideration of learning time, times and error effect, the number of hidden layer nodes can be
achieved, which is 13. The tansig is set as the transferring function. Since the output is one dimensional,
the second layer is a single neuron and the transferring function is linear. Therefore, the traingda
function is selected as the training function. The function transferring the input into the output is
purelin, and the training algorithm adopts the gradient descent algorithm.purelin and.tansig are neural
transfer function. Transfer functions calculate a layer’s output from its net input. traingda is a network
training function that updates weight and bias values according to gradient descent with adaptive
learning rate

Based on the discussion above, the individual thermal evaluation model is established based on
the artificial neural net, as is shown in Figure 1.Sustainability 2019, 11, x FOR PEER REVIEW 7 of 29 
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3.3. Model Training

3.3.1. Individual Thermal Comfort Experiment

To verify the framework proposed above, a further experiment case is prepared. The case is a
research room of a university in Shanghai, covering an area of about 23 square meters, with three walls
and one glass curtain wall. There is no sunlight in the room during the entire day, and an indoor air
conditioner is utilized to adjust the temperature and the ventilation. During the experiment, the indoor
thermal environment parameters, such as air temperature and wind speed, were changed by opening
and closing doors or windows, and other ventilation methods.

The experiment was conducted from July to August in 2018, with 30 participants from a university
in Shanghai, and the male and female ratio of the experiment was 1:1. In order to test the human
thermal sensation, sensors were installed in the room in advance to collect the data.

When the system reached a stable state, the trial participants in a stable state were invited to
enter the room. One hour after entering the laboratory, the trial participants were asked to fill in the
first questionnaire about thermal comfort. After that, the indoor environment was changed by means
of equipment adjustment, door and window positions being changed, etc., and data collection was
conducted every minute by sensors.

There are a wind speed sensor and a humidity and temperature sensor used in this experiment.
The wind speed sensor’s measurement range is from 0 to 10m/s with an accuracy of ± (0.01 m/s + 3%).
The precision of the instrument fully meets the experimental requirements. The accuracy of the relative
humidity sensor is 1% and that of the temperature sensor is 0.1 ◦C. The sensors were placed at the
working height of indoor personnel, about 1.0 m beyond the ground. In addition, the sensors were
put in the center of the room so the distance between sensors and each side of the walls was equal.
The measured parameters here were taken as the average temperature of the room. The sensor was set
to record the current parameters per minute.

The questionnaire for thermal comfort mainly included two parts. One part was about the basic
information of trial participants, including height, age, and other physical conditions. The second part
was about the parameters of thermal comfort mode, including clothing type, activity type, and thermal
comfort feeling. Thermal comfort perception was mainly evaluated by the seven level scale of thermal
comfort research proposed by Professor Finger, as is shown in Table 1.

Table 1. Thermal sensation scale of PMV value.

PMV Value −3 −2 −1 0 1 2 3

Thermal sensation cold cool slightly cool neutral slightly warm warm hot

3.3.2. The Results of Data Collection

Two human parameters can be obtained by checking an empirical table. The metabolic rate of
the human body is related to its activity state, while the thermal resistance value of clothing varies
according to seasons and thickness of clothing. In general, these two human factors were estimated by
looking up relevant experience tables. And relative empirical tables have been developed according to
both the ASHRAE standard and ISO standard, as shown in Table 2; Table 3.
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Table 2. Comparison table of human activity and metabolic rate.

Human Activity M

Lying 0.8
Seat and relaxed 1

Seat and working 1.2
Stand and relaxed 1.2

Driving car 1.4
Light activity while standing 1.6

Moderate activity while standing 2
Severe activity while standing 3

Table 3. Comparison table of human clothing and thermal resistance value.

Human Clothing Icl

Naked 0
Beach pants 0.1

Tropical clothing 0.3
The summer light 0.5

Thin clothes 0.8
Typical winter indoor suit 1

Thick traditional business suits 1.5

156 groups of data were collected for the experiment. The collected data were used for the
experiment simulation of this paper, among which 100 groups were used for model training and
56 groups were used for the model test. Part of the experimental data is shown in Table 4 (body
parameters are not shown in Tables 4–6).

Table 4. Some experimental data.

Date Time d ta ϕ v M Icl
Thermal
Comfort

20180915 10:00 1.3 29.9 77 0 Seat and relaxed The summer light 0
20180915 10:15 1.3 29.6 77 0 Seat and relaxed The summer light 0
20180915 17:00 1.3 29.9 71 0.5 Seat and relaxed Thin clothes 0
20180915 18:15 1.3 30.1 72 0.71 Seat and relaxed Thin clothes 0
20180915 15:15 1.2 30.1 71 0.85 Seat and working Tropical clothing 1
20180915 16:30 1.2 29.9 71 0.69 Seat and working Tropical clothing 2
20180915 16:45 1.2 29.9 71 0.86 Seat and working Tropical clothing 0
20180915 15:15 1.4 30.1 71 0.85 Seat and relaxed Thin clothes 0
20180916 17:15 1.3 30.3 69 0.76 Seat and working Tropical clothing 1
20180916 16:00 1.1 30.1 77 0.85 Lying Thin clothes 0
20180916 16:15 1.1 28.5 61 0.61 Stand and relaxed Thin clothes 1
20180916 16:30 1.7 29.2 63 0.45 Stand and relaxed Thin clothes 0
20180916 16:45 1.1 29.6 66 0.34 Lying Thin clothes 0
20180916 17:00 1.1 30.1 68 0.47 Lying Thin clothes −1

20180922 14:45 1.3 27 55 0 Seat and working Typical winter
indoor suit 1

20180922 15:00 1.3 28 55 0 Seat and working Typical winter
indoor suit 1

20180922 14:00 0.6 23.1 55 1.25 Seat and relaxed Thin clothes −1
20180922 14:15 0.6 22.6 55 1.2 Seat and relaxed Thin clothes −1
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Table 5. Partial test results of artificial neural network.

d ta ϕ v M Icl Investigated Value Predicted Value S1

1.3 22.5 55 0 1.2 0.8 1.00 0.75 0.25
1.3 27.3 55 0 1.2 0.8 1.00 0.75 0.25
1.3 27.3 55 0 1.2 0.8 1.00 0.67 0.33
1.3 27.3 56 0 1.2 0.8 1.00 0.67 0.33
1.3 27.3 56 0 1.2 0.8 0.00 −0.11 0.11
1.4 17.6 70 0.03 1.2 1 0.00 −0.09 0.09
1.4 17.6 71 0.03 1.2 1 0.00 −0.08 0.08
1.4 17.6 72 0.03 1.2 1 0.00 −0.11 0.11
1.4 17.6 70 0.03 1.2 1 0.00 −0.06 0.06
1.4 17.6 74 0.03 1.2 1 −1.00 −1.08 0.08
1.3 10.5 46 0.06 1.2 1 −2.00 −2.20 0.20
1.3 10.5 45 1.2 1.2 1 −2.00 −2.12 0.12
1.3 11.6 46 1.2 1.2 1 −2.00 −2.04 0.04
1.3 10.9 47 1.2 1.2 1 −2.00 −2.22 0.22
1.3 11.5 45 1.2 1.2 1 −1.00 −0.94 0.06
1.3 13.6 50 0.04 1.2 1 −1.00 −0.94 0.06
1.3 13.1 50 0.04 1.2 1 −1.00 −1.05 0.05
1.2 13.9 52 0.06 1.2 1 −1.00 −0.96 0.04

Table 6. Partial calculation results of PMV model.

ta ϕ V M Icl Investigated Value Predicted Value S2

22.5 55 1.2 0.8 1.00 1.00 0.70 0.30
27.3 55 1.2 0.8 1.00 1.00 0.70 0.30
27.3 55 1.2 0.8 1.00 1.00 0.71 0.29
27.3 56 1.2 0.8 1.00 1.00 0.71 0.29
27.3 56 1.2 0.8 0.00 0.00 −1.89 1.89
17.6 70 1.2 1 0.00 0.00 −1.88 1.88
17.6 71 1.2 1 0.00 0.00 −1.88 1.88
17.6 72 1.2 1 0.00 0.00 −1.89 1.89
17.6 70 1.2 1 0.00 0.00 −1.87 1.87
17.6 74 1.2 1 −1.00 −1.00 −3.91 2.91
10.5 46 1.2 1 −2.00 −2.00 −4.65 2.65
10.5 45 1.2 1 −2.00 −2.00 −4.32 2.32
11.6 46 1.2 1 −2.00 −2.00 −4.52 2.52
10.9 47 1.2 1 −2.00 −2.00 −4.35 2.35
11.5 45 1.2 1 −1.00 −1.00 −3.07 2.07
13.6 50 1.2 1 −1.00 −1.00 −3.20 2.20
13.1 50 1.2 1 −1.00 −1.00 −2.98 1.98
13.9 52 1.2 1 −1.00 −1.00 −2.83 1.83

3.3.3. Model Training

Due to the physical units of each index being quite different from each other, in order to avoid a
great gap between the values of each index, the min-max method is adopted to process the sample
data by using dimensionless normalization.

Afterward, the processed data was trained in MATLAB [32] through the network writing training
and the test program. During the adjustment process, the number of hidden layer neurons, training
times, and the network parameters were finally determined. The training results are shown in Figure 2.
After 100 sets of data were looped 10 times, the BP network was successfully trained using only 1 s.
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3.4. Analysis of the Effect of Model Prediction

The trained artificial neural network was used to calculate the corresponding thermal comfort of
the remaining 50 groups of data, and the results are shown in Table 5.

The investigated value was obtained from the questionnaire survey above. Predicted value in the
table means the value calculated by the trained artificial neural network using parameters in front
columns. S1 is the result of subtracting predicted value from investigated value. Figure 4 shows the
predicted results of ANN. X axis means the serial number of test data, and Y axis means the value
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of thermal comfort. The mean error between model output value and survey value is 0.39. We also
calculate the same data using the MPV calculation model, and the results are shown in Table 6.Sustainability 2019, 11, x FOR PEER REVIEW 13 of 29 
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Figure 4. Predicted results of ANN.

Similar to S1, S2 is also the result of the investigated value minus the predicted value. The data in
Table 6 shows that the mean error between the output value of PMV model and the survey value is 2.1.
The comparison between the two tables shows that 92.9% of the predicted value of neural network
model is more accurate than that calculated by PMV. Among 56 groups of data, only 4 groups of
calculated values of PMV model were closer to the experimental ones. Therefore, the trained neural
network model is more accurate than MPV when used to predict individual thermal comfort.

4. The Plugin Development in Revit

4.1. Function 1: Evaluation of Personal Thermal Comfort

There is an interface for application development in the Revit software [33], where NET related
language programming [34] can be realized to access the model’s graphic and parameter data,
modifying elements and so on [35].

4.1.1. The Framework of Evaluation of Personal Thermal Comfort

Secondary development of Revit is utilized for data integration of building thermal environment
and building information based on component ID. The developed plugin uses the artificial neural
network model to realize an individual thermal comfort evaluation. At the same time, the data about
individual thermal comfort levels is stored and provided in a digital format to support further research.
The framework of the secondary development plugin is shown in Figure 5.
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In the data integration stage, on one hand, a new sensor family can be built in Revit to show the
spatial distribution of the sensor, with which the real location of the sensor will be matched with its
position in the BIM through the component ID. And the environment data collected by th sensor is
imported into the BIM to correlate with its corresponding measure position. The principle of sensor
data matching is shown in Figure 6. On the other hand, body parameters are transferred by user ID,
and the data set of the body parameter is stored in Excel in advance, which is correlated one by one
with a unique user ID.
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The closer the installation position of the sensor is to the human body, the greater the influence
of the measured data on the surrounding environment of the human body will be. Based on such
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principle, the indoor environment parameters around the user can be calculated by using the spatial
position of the sensor and the detected environment data as follows.

For example, it is assumed that the number of indoor temperature sensors is n, and the formula
for calculating the average air temperature around the human body is shown in Formulas (10)–(12).

ta =
n∑

i=1

ai × ti (10)

ai = (1/si)/S (11)

S =
n∑

i=1

1
si

(12)

where ti represents the temperature measured by the sensor i. ai represents the weight of the measured
temperature of each sensors and can be calculated by Formula (12). Si represents the distance between
sensor i and the human body, which can be obtained by the three-dimensional coordinates of the two
in the BIM through the distance formula. The humidity and wind speed around the person can be
calculated using the same principle.

In the stage of model analysis and calculation of thermal comfort, it is assumed that the number
of heating or cooling devices in the room is m, and d mentioned in Formula (7) can be calculated by
Formula (13).

d =

m∑
i=1

di

m
(13)

where di is the distance between heating (cooling) devices i and the human

4.1.2. Implementation of BIM&WSN Based Plugin

BIM was used as a data platform to integrate the real time environmental data collected and
transferred by WSN, location data in Revit and other data about human body. Among them, user ID
can achieve the association between the human body parameters and the data set. The artificial neural
network model established above was used to evaluate individual thermal comfort by using the plugin
in BIM.

The entire plugin was implemented using C# language, Excel interface, MATLAB neural network
tool and Revit secondary development interface. The data flow is shown in Figure 7.Sustainability 2019, 11, x FOR PEER REVIEW 16 of 29 
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Sensor data are transferred to the corresponding software through WSN and can be exported
using Microsoft Excel. Through the OLEDB [36] tools of C#, a way to read and write data, and API,
the measured data of sensor can be extracted to Revit. After locating the position of sensors in the Revit
model based on its ID, the environment parameters around an individual can be calculated through
the above mentioned Formulas (7)–(9).

In addition, the person state data including the clothing type and activity type are input as
parameters through the window in Revit. Entering the user ID at the same time, the body parameters
in the data set can be imported into Revit together by using the associated ID.

The content of the window is designed using the C# language, including setting the parameters of
the corresponding relationship between clothing type and clothing thermal resistance, the activity type
and human metabolism. The Revit model can be used to determine the distance between the position
of human body and the device. The neural network model written in MATLAB is stored in the form of
dll. The thermal comfort can be judged by calling the neural network model built in MATLAB and
calculating thermal comfort in Revit.

The plugin is realized by C# language and the interface formed in Revit is shown below.
It consists of two parts. The first is user registration, shown as Figure 8. The user needs to input

four parameters information, including height, age, gender, weight. After that, the user will receive a
unique ID. This ID is one to one correspondence with individual parameters, and all the data will be
stored in the person parameter data set.Sustainability 2019, 11, x FOR PEER REVIEW 17 of 29 
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The second part is called “Thermal comfort” and is located in the Revit additional module external
tool (Figure 9). We first click on this plugin to calculate the thermal comfort of the human body.
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After that, the interface will pop up a parameter setting box, as shown in Figure 10. In the box,
the appropriate type of human activity and clothing can be selected in a drop down box.
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After adding in the settings above, the plugin will now provide a small icon for positioning.
The small icon is used to select the position of the individual at this time. Click this chair if the person
sits in the chair near the desk. (Figure 11).
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The plugin calculates thermal comfort automatically according to the input of human state
parameters, body parameters, and calculated environment parameters, and the calculation results are
displayed in Figure 12. In terms of thermal sensation scale of PMV, the results shown in Figure 12
indicate that individual thermal comfort is moderate at this time. The current indoor thermal
environment is comfortable, and there’s no need to change the environmental parameters.

Sustainability 2019, 11, x FOR PEER REVIEW 19 of 29 

Figure 11. Determination of the human body’s position. 

The plugin calculates thermal comfort automatically according to the input of human state 
parameters, body parameters, and calculated environment parameters, and the calculation results 
are displayed in Figure 12. In terms of thermal sensation scale of PMV, the results shown in Figure 
12 indicate that individual thermal comfort is moderate at this time. The current indoor thermal 
environment is comfortable, and there’s no need to change the environmental parameters. 

 
Figure 12. Calculation results of thermal comfort. 

In addition, the plugin will automatically store related parameters and calculation results of 
thermal comfort in the selected Excel file. During application of the plugin, relevant data is 
automatically stored and an Excel file is finally exported, as shown in Table 7. 

Table 7. Data storage table. 

Data Time User ID d ta φ v M Icl 
Thermal 
Comfort 

20180915 10:00 10000 1.3 29.9 77 0 Seat and relaxed Sleep dress 0 

20180915 10:15 10001 1.3 29.6 77 0 Seat and relaxed Sleep dress 0 

20180915 17:00 10002 1.3 29.9 71 0.5 Seat and relaxed T shirts, long pants 0 

20180915 18:15 10003 1.3 30.1 72 0.71 Seat and relaxed T shirts, long pants 0 

20180915 15:15 10004 1.2 30.1 71 0.85 Seat and working T shirts,Beach pants 1 

20180915 16:30 10005 1.2 29.9 71 0.69 Seat and working T shirts,Beach pants 2 

20180915 16:45 10006 1.2 29.9 71 0.86 Seat and working T shirts,Beach pants 0 

20180915 15:15 10007 1.4 30.1 71 0.85 Seat and relaxed T shirts, long pants 0 

20180916 17:15 10008 1.3 30.3 69 0.76 Seat and working The summer light 1 

20180916 17:30 10009 1.3 30.3 70 0.43 Seat and working The summer light 1 

20180916 17:15 10010 1.3 30.3 69 0.76 Seat and working T shirts,Beach pants 1 

20180916 16:00 10011 1.1 30.1 77 0.85 Seat and relaxed T shirts, long pants 0 

20180916 16:15 10012 1.1 28.5 61 0.61 stand and relaxed T shirts, long pants 1 

20180916 16:30 10013 1.7 29.2 63 0.45 stand and relaxed T shirts, long pants 0 

20180916 16:45 10014 1.1 29.6 66 0.34 Lying T shirts, long pants 0 

20180916 17:00 10015 1.1 30.1 68 0.47 Lying T shirts, long pants 1 

20180916 17:15 10016 1.1 30.3 69 0.76 Lying T shirts, long pants 0 

20180916 17:30 10017 1.1 30.3 70 0.43 Lying T shirts, long pants 0 

20180922 14:45 10018 1.3 27 55 0 Seat and working Typical winter indoor suit 1 

Figure 12. Calculation results of thermal comfort.

In addition, the plugin will automatically store related parameters and calculation results of
thermal comfort in the selected Excel file. During application of the plugin, relevant data is automatically
stored and an Excel file is finally exported, as shown in Table 7.
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Table 7. Data storage table.

Data Time User ID d ta ϕ v M Icl Thermal
Comfort

20180915 10:00 10000 1.3 29.9 77 0 Seat and relaxed Sleep dress 0
20180915 10:15 10001 1.3 29.6 77 0 Seat and relaxed Sleep dress 0
20180915 17:00 10002 1.3 29.9 71 0.5 Seat and relaxed T shirts, long pants 0
20180915 18:15 10003 1.3 30.1 72 0.71 Seat and relaxed T shirts, long pants 0
20180915 15:15 10004 1.2 30.1 71 0.85 Seat and working T shirts, Beach pants 1
20180915 16:30 10005 1.2 29.9 71 0.69 Seat and working T shirts, Beach pants 2
20180915 16:45 10006 1.2 29.9 71 0.86 Seat and working T shirts, Beach pants 0
20180915 15:15 10007 1.4 30.1 71 0.85 Seat and relaxed T shirts, long pants 0
20180916 17:15 10008 1.3 30.3 69 0.76 Seat and working The summer light 1
20180916 17:30 10009 1.3 30.3 70 0.43 Seat and working The summer light 1
20180916 17:15 10010 1.3 30.3 69 0.76 Seat and working T shirts, Beach pants 1
20180916 16:00 10011 1.1 30.1 77 0.85 Seat and relaxed T shirts, long pants 0
20180916 16:15 10012 1.1 28.5 61 0.61 stand and relaxed T shirts, long pants 1
20180916 16:30 10013 1.7 29.2 63 0.45 stand and relaxed T shirts, long pants 0
20180916 16:45 10014 1.1 29.6 66 0.34 Lying T shirts, long pants 0
20180916 17:00 10015 1.1 30.1 68 0.47 Lying T shirts, long pants 1
20180916 17:15 10016 1.1 30.3 69 0.76 Lying T shirts, long pants 0
20180916 17:30 10017 1.1 30.3 70 0.43 Lying T shirts, long pants 0
20180922 14:45 10018 1.3 27 55 0 Seat and working Typical winter indoor suit 1
20180922 15:00 10019 1.3 28 55 0 Seat and working Typical winter indoor suit 1
20180922 14:00 10020 0.6 23.1 55 1.25 Seat and relaxed T shirts, long pants 1
20180922 14:15 10021 0.6 22.6 55 1.2 Seat and relaxed T shirts, long pants 1

4.2. Function 2: Optimization of Interior Design

4.2.1. The Calculation of Energy Consumption Index

In the stage of personalized indoor design, most parameters affecting thermal comfort are basically
determined, except for the interior arrangement. The position and state of the person in the indoor
environment have been basically determined with the placement of furniture. For example, as shown
in Figure 13, most of the activity positions and states of individuals in this room can be determined.
Position 2 represents a sleeping state, and position 1 represents an eating state. The proportion of time
in each state can also be roughly judged.
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The larger the gap between the ideal comfort level and the original comfort level, the more energy
needed to change environmental parameters. In this paper, we propose an index C− to judge the
energy consumption of a different design scheme based on the latest year’s environmental data. C− is
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calculated as Formulas (14)–(16). Assuming that the number of positions of the human in the room is
m, and the proportion of time in each state is tj.

C j = f (Icl, M, Tt, vt,φt, dj, A, G, H, W′) (14)

where Cj represents the personal comfort when human is in the position j.dj is the distance between
heating (cooling) devices and the human’s position. And the temperature (Tt), wind speed (vt) and
humidity (φt) of each day are assumed to be the data of the local weather bureau where user lives. A,
G, H and W′ can be determined from Figure 8. Icl is confirmed from Table 8 according to the season of
the calculated day in the user’s city.

Cn =
m∑

i=1

C jt j (15)

where Cn represents the average personal comfort of a whole day, and tj is the proportion of time in
the position j.

C− =
365∑
n=1

|Cn −C′| (16)

where C’ represents the ideal comfort, the value of which is 0. C− is the sum of the difference between
the ideal comfort level and Cn of each day for the selected year.

Table 8. Comparison table of human clothing and season.

Human Clothing Icl Season

The summer light 0.5 Summer
Thin clothes 0.8 Spring\Autumn

A typical winter indoor suit 1 Winter

Based on the formula, we can calculate C− for different indoor design. Then, we can judge the
energy saving effect of the design scheme in terms of W. The greater C− is, the more energy will be
consumed to maintain the thermal comfort of user to some degree.

4.2.2. The Implementation of Function 2

BIM has been widely studied in building energy simulation [37–41]. The visualization feature of
BIM can provide clear display for people related project [42], and its parametric feature can quickly
simulate various schemes with facilitating operation [43]. For the experimental room mentioned in the
previous section, this paper applies function 2 of the plugin to optimize its interior design. The steps
are as follows.

Step 1: Complete the Creation of Indoor Model

Without changing the number and type of existing components in the room, the position of
movable components in the room is changed and a variety of layout schemes are proposed. Part of the
layout plan is shown in Figures 14–16.
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Step 2: Select the possible location and corresponding state of the user, and fill in the proportion
of the corresponding state in time.

According to different schemes, the position and the proportion of time in it are selected, as shown
in the Figures 17–19. As shown in the following figure, in design scheme 1, position 1 is the working
position and the working hours account for about 30%. Position 2 is the sleeping position and the
hours account for 70%. The time of other positions are too short and can be appropriately ignored.
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Step 3: Select the city where the user lives and import the environmental information of it.

Select the city where the occupant lives, which in this case is Shanghai, China, as shown in
Figure 20. The plugin will automatically fetch the temperature, humidity, and wind speed data of the
latest year from the environmental database.
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Step 4: Calculate the energy consumption index of this interior design scheme.

According to the calculation method mentioned in the previous section, the plugin will get the
energy consumption index corresponding to such a design.

Repeating the above steps, energy consumption indexes of different design schemes can be
obtained in Revit. The energy consumption index of scheme 1 is 353.09, while the energy consumption
index of scheme 2 is 300.09, as shown in Figure 21; Figure 22. So, when considering the energy
consumption of maintaining thermal comfort, the second scheme is better.
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5. Conclusions

The accurate evaluation of individual thermal comfort is helpful to improve indoor temperature
felt by people in different locations in a room. Two distinct part of research can be done to realize the
proposed evaluation process. One is to build an evaluation model for individual thermal comfort
based on an artificial neural network; the other is to use C# language to program the Revit secondary
development plugin. The conclusions are as follows: (1) When considering the influence of human
body position changes on thermal comfort, the artificial neural network model has a higher accuracy
than the traditional PMV model in predicting individual thermal comfort; (2) the first function of
the plugin in Revit realizes the integration of building heat information and BIM. It can provide
corresponding individual thermal comfort according to the changes of human position, environmental
parameters, and human parameters; (3) The second function can provide some feasible suggestions for
the furniture layout. Designs with low indexes can help users reduce energy consumption to some
degree. (4) The recorded varying data of relevant parameters of individual thermal comfort can be
recorded to provide a basis for future research.
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The deficiencies existing in the research process of this paper are as follows: (1) In the artificial
neural network model, only four parameters about personal differences are not taken into account,
without considering more parameters; (2) The accuracy of the model was only compared with that
of the traditional PMV model, instead of comparing with individual comfort evaluation model from
other researchers due to data limitations. (3) This paper failed to provide energy values to maintain the
ideal thermal comfort level provided by different schemes. Users are more likely to choose a greener
scheme if know the amount of electricity they need to consume or the cost they need to pay in a year.
(4) The data assumptions of function 2 do not quite match reality.

In the future, Revit could be used to store relevant data of individual thermal comfort in the
actual application process. Based on the thermal comfort database designed in this paper, a more
accurate calculation model of individual thermal comfort can be further developed by using data
analysis technology.
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Nomenclature

Symbols Meaning unit

C Personal thermal comfort none
M Human metabolic rate W/m2

H The heat produced by metabolism of skin unit area W/m2

W Mechanical work done by the human body
P0 The pressure of water vapor in the air around body Pa
ta The temperature of the air around the human body ◦C
tr The average radiant temperature of a wall in a room ◦C
fcl The ratio of surface area of a garment to that of a naked body (m2 ◦C)/W, 1clo = 0.155 (m2

·
◦C)/W

tcl Clothing surface temperature ◦C
hc Surface heat transfer coefficient (m2

·
◦C)/W

V The velocity of surrounding air of human body m/s
Icl Clothing thermal resistance (m2

·
◦C)/W

ϕ Relative humidity none
A The age of human year
G The gender of human none
H’ The height of human cm
W’ The weight of human kg

d
The distance between the position of the human three
dimensional space and the refrigeration (heat) equipment

m

S1
S1 is equal to investigated value minus predicted value
predicted by the ANN model.

none

S2
S2 is equal to investigated value minus predicted value
predicted by the PMV model.

none

C’ C’ represents the ideal comfort, the value of which is 0 none
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