Recognizing Crucial Aquatic Factors Influencing Greenhouse Gas Emissions in the Eutrophication Zone of Taihu Lake, China
Abstract
:1. Introduction
2. Methods
2.1. Data Sources
2.2. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; John, B. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Panel, A.C.S. What We Know: The Reality, Risks and Response to Climate Change; American Association for the Advancement of Science: Washington, DC, USA, 2014. [Google Scholar]
- Pimm, S.L. Climate Disruption and Biodiversity. Cur. Biol. 2009, 19, R595–R601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abril, G.; Bouillon, S.; Darchambeau, F.; Teodoru, C.R.; Marwick, T.R.; Tamooh, F.; Ochieng Omengo, F.; Geeraert, N.; Deirmendjian, L.; Polsenaere, P. Technical Note: Large Overestimation of PCO2 Calculated from pH and Alkalinity in Acidic, Organic-Rich Freshwaters. Biogeoscience 2015, 12, 67–78. [Google Scholar] [CrossRef]
- Bastviken, D.; Cole, J.; Pace, M.; Tranvik, L. Methane Emissions from Lakes: Dependence of Lake Characteristics, Two Regional Assessments, and a Global Estimate. Glo. Biol. Cyc. 2004, 18, GB4009. [Google Scholar] [CrossRef]
- Meybeck, M. Riverine Transport of Atmospheric Carbon: Sources, Global Typology and Budget. Water Air Soil Pollut. 1993, 70, 443–463. [Google Scholar] [CrossRef]
- Bastviken, D.; Tranvik, L.J.; Downing, J.A.; Crill, P.M.; Enrich-Prast, A. Freshwater Methane Emissions Offset the Continental Carbon Sink. Science 2011, 331, 50. [Google Scholar] [CrossRef] [PubMed]
- Aufdenkampe, A.K.; Mayorga, E.; Raymond, P.A.; Melack, J.M.; Doney, S.C.; Alin, S.R.; Aalto, R.E.; Yoo, K. Riverine Coupling of Biogeochemical Cycles between Land, Oceans, and Atmosphere. Front. Ecol. Environ. 2011, 9, 53–60. [Google Scholar] [CrossRef]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B. Lakes and Reservoirs as Regulators of Carbon Cycling and Climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C. Global Carbon Dioxide Emissions from Inland Waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, J.T.; Alm, J.; Liikanen, A.; Juutinen, S.; Larmola, T.; Hammar, T.; Silvola, J.; Martikainen, P.J. Fluxes of Methane, Carbon Dioxide and Nitrous Oxide in Boreal Lakes and Potential Anthropogenic Effects on the Aquatic Greenhouse Gas Emissions. Chemosphere 2003, 52, 609–621. [Google Scholar] [CrossRef]
- Yang, L.; Lu, F.; Zhou, X.P.; Wang, X.K.; Duan, X.N.; Sun, B.F. Progress in the Studies on the Greenhouse Gas Emissions from Reservoirs. Acta Ecol. Sinic. 2014, 34, 204–212. [Google Scholar] [CrossRef]
- Yang, H.; Xie, P.; Ni, L.; Flower, R.J. Underestimation of CH4 Emission from Freshwater Lakes in China. Environ. Sci. Tech. 2011, 45, 4203–4204. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.X.; Phillip, W.F.; Hu, W.P.; Qin, B.Q. Divergence of Carbon Dioxide Fluxes in Different Trophic Areas of Taihu Lake, China. J. Environ. Sci. 2003, 15, 433–442. [Google Scholar]
- Zheng, X.L.; Wen, S.L.; Li, X.; Gong, W.Q.; Liu, D.H.; Zhong, J.C. Characteristics of N2O Release and Influencing Factors in Grass-Type and Algae-Type Zones of Taihu Lake During Summer. Environ. Sci. 2018, 39, 2306–2315. [Google Scholar]
- Zheng, X.L.; Liu, M.; Wen, S.L.; De Hong, L.; Zhong, J.C. Characteristics of N2O Formation and Emission in Algae and Grasstype Zones in Lake Taihu in Winter. Chin. Environ. Sci. 2018, 38, 683–693. [Google Scholar]
- Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, C.N. Nitrous Oxide Emission from Denitrification in Stream and River Networks. PNAS 2011, 108, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Herrman, K.S.; Bouchard, V.; Moore, R.H. Factors Affecting Denitrification in Agricultural Headwater Streams in Northeast Ohio, USA. Hydrobiologia 2008, 598, 305–314. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, Y.; Kana, T.M.; Wu, Y.; Li, X.; Yan, X. Seasonal Variation and Controlling Factors of Anaerobic Ammonium Oxidation in Freshwater River Sediments in the Taihu Lake Region of China. Chemosphere 2013, 93, 2124–2131. [Google Scholar] [CrossRef]
- Lia, S.; Bush, R.T.; Santos, I.R.; Zhang, Q.; Song, K.; Mao, R.; Wen, Z.; Lu, X.X. Large Greenhouse Gases Emissions from China's Lakes and Reservoirs. Water Res. 2018, 147, 13–24. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Yuan, X.; Chen, H.; Peng, C.; Yue, J.; Zhang, Q.; Diao, Y.; Liu, S. Greenhouse Gases Concentrations and Fluxes from Subtropical Small Reservoirs in Relation with Watershed Urbanization. Atmos. Environ. 2017, 154, 225–235. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Chen, H.; Yuan, X.; Peng, C.; Yue, J.; Zhang, Q.; Zhou, L. Ch4 Concentrations and Fluxes in a Subtropical Metropolitan River Network: Watershed Urbanization Impacts and Environmental Controls. Sci. Total Environ. 2018, 622, 622–623. [Google Scholar] [CrossRef]
- Huang, W.; Bi, Y.; Hu, Z.; Zhu, K.; Zhao, W.; Yuan, X.; Huang, W.; Bi, Y.; Hu, Z.; Zhu, K. Spatio-Temporal Variations of GHG Emissions from Surface Water of Xiangxi River in Three Gorges Reservoir Region. China Ecol. Eng. 2015, 83, 28–32. [Google Scholar] [CrossRef]
- Schrier-Uijl, A.P.; Veraart, A.J.; Leffelaar, P.A.; Berendse, F.; Veenendaal, E.M. Release of CO2 and CH4 from Lakes and Drainage Ditches in Temperate Wetlands. Biogeochemistry 2011, 102, 265–279. [Google Scholar] [CrossRef]
- Zappa, C.J.; Raymond, P.A.; Terray, E.A.; McGillis, W.R. Variation in Surface Turbulence and the Gas Transfer Velocity over a Tidal Cycle in a Macro-Tidal Estuary. Estuaries 2003, 26, 1401–1415. [Google Scholar] [CrossRef]
- Audrey, C.; Del Giorgio, P.A. Patterns in CH4 and CO2 Concentrations across Boreal Rivers: Major Drivers and Implications for Fluvial Greenhouse Emissions under Climate Change Scenarios. Glob. Chang. Biol. 2014, 20, 1075–1088. [Google Scholar]
- Kling, G.W.; Kipphut, G.W.; Miller, M.C. The Flux of CO2 and CH4 from Lakes and Rivers in Arctic Alaska. Hydrobiologia 1992, 240, 23–36. [Google Scholar] [CrossRef]
- Xing, Y.P.; Xie, P.; Yang, H.; Ni, L.Y.; Wang, Y.S.; Rong, K.W. Methane and Carbon Dioxide Fluxes from a Shallow Hypereutrophic Subtropical Lake in China. Atmos. Environ. 2005, 39, 5532–5540. [Google Scholar] [CrossRef]
- Ma, R.H.; Yang, G.S.; Duan, H.T.; Jiang, J.H.; Wang, S.M.; Feng, X.Z.; Nong, L.A.; Kong, F.X.; Xue, B.; Wu, J.L. China's Lakes at Present: Number, Area and Spatial Distribution. Sci. China Earth Sci. 2011, 54, 283–289. [Google Scholar] [CrossRef]
- Rui, C.M.; Cruz, N.F.D.; Pires, J. Measuring the Sustainability of Urban Water Services. Environ. Sci. Policy 2015, 54, 142–151. [Google Scholar]
- Yang, L.; Lei, K.; Meng, W.; Fu, G.; Yan, W. Temporal and Spatial Changes in Nutrients and Chlorophyll-Α in a Shallow Lake, Lake Chaohu, China: An 11-Year Investigation. J. Environ. Sci. 2013, 25, 1117–1123. [Google Scholar] [CrossRef]
- Wang, Y.L.; Lin, H.Z.; Liang, W. Sensitivity Analysis of the Chaohu Lake Eutrophication Model with New Index Based on Morris Method. Water Sci. Tech. Water Suppl. 2018, 18, 1375–1387. [Google Scholar] [CrossRef]
- Li, S.; Guo, W.; Mitchell, B. Evaluation of Water Quality and Management of Hongze Lake and Gaoyou Lake Along the Grand Canal in Eastern China. Environ. Monitor Assess. 2011, 176, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.L.; Cheng, H.M.; Cheng, J.L. Estimation of the Nutrient and Chlorophyll a Reference Conditions in Taihu Lake Based on a New Method with Extreme-Markov Theory. Int. J. Environ. Res. 2018, 15, 2372. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.Q. Lake Taihu, China-Dynamics and Environmental Change; Springer: London, UK, 2008. [Google Scholar]
- Qin, B.Q.; Hu, C.H.H. Chinese Ecosystem Positioning Observation and Research Data Sets: Taihu Lake; Agriculture Press: Beijing, China, 2010. [Google Scholar]
- Speybroeck, N. Classification and Regression Trees. Int. J. Pub. Health 2012, 57, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Song, Q. Environmental and Ecological Statistics with R, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Huo, S.; Ma, C.; Xi, B.; He, Z.; Jing, S.; Wu, F. Nonparametric Approaches for Estimating Regional Lake Nutrient Thresholds. Ecol. Indic. 2015, 58, 225–234. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Miguel Forte, R. Mastering Predictive Analytics with R; Packt Publishing: Birmingham, UK, 2015. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Arnab, B.; Surinder, S.K.; Debasish, S.; Harmandeep, S.; Anu, K.; Sandeep, S. Potential Indicators of Soil Health Degradation in Different Land Use-Based Ecosystems in the Shiwaliks of Northwestern India. Sustainability 2019, 11, 3908. [Google Scholar] [Green Version]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Austria, Vienna, 2016. [Google Scholar]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis; The Primer: New York, NY, USA, 2008. [Google Scholar]
- Chen, H.; Mothapo, N.V.; Shi, W. Soil Moisture and pH Control Relative Contributions of Fungi and Bacteria to N2O Production. Micro Ecol. 2015, 69, 180–191. [Google Scholar] [CrossRef]
- Wei, X.H.; Bi, X.J.; Yin, Z.X.; Zhou, X.L.; Xu, C.L.; Wen, J.G. Effects of Temperature and Dissolved Oxygen on Nitrification and Denitrification in MBBR System. China Environ. Sci. 2019, 39, 612–618. [Google Scholar]
- Schulthess, R.V.; Kühni, M.; Gujer, W. Release of Nitric and Nitrous Oxides from Denitrifying Activated Sludge. Water Res. 1995, 29, 215–226. [Google Scholar] [CrossRef]
- Zhu, J.; He, Y.; Zhu, Y.; Huang, M.; Zhang, Y. Biogeochemical Sulfur Cycling Coupling with Dissimilatory Nitrate Reduction Processes in Freshwater Sediments. Environ. Rev. 2018, 26, 121–132. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Bernhardt, E.S. Biogeochemsitry: An Analysis of Global Change, 3rd ed.; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Raghoebarsing, A.A.; Arjan, P.; Pas-Schoonen, K.T.; van de Smolders, A.J.P.; Ettwig, K.F.; Rijpstra, W.I.C.; Stefan, S.; Damsté, J.S.S.; op den Camp, H.J.M.; Jetten, M.S.M. A Microbial Consortium Couples Anaerobic Methane Oxidation to Denitrification. Nature 2006, 440, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Blair, N.E.; Aller, R.C. Anaerobic Methane Oxidation on the Amazon Shelf. Geochim. Cosmochim. Acta 1995, 59, 3707–3715. [Google Scholar] [CrossRef]
- Wrage, N.; Velthof, G.L.; Beusichem, M.L.V.; Oenema, O. Role of Nitrifier Denitrification in the Production of Nitrous Oxide. Soil Biol. Biochem. 2001, 33, 1723–1732. [Google Scholar] [CrossRef]
- Li, C.S. Modeling Trace Gas Emissions from Agricultural Ecosystems. Nutr. Cycl. Agroecosys. 2000, 58, 259–276. [Google Scholar] [CrossRef]
- Avery, G.B.; Shannon, R.D.; White, J.R.; Martens, C.S.; Alperin, M.J. Controls on Methane Production in a Tidal Freshwater Estuary and a Peatland: Methane Production Via Acetate Fermentation and Co2 Reduction. Biogeochemsitry 2003, 62, 19–37. [Google Scholar] [CrossRef]
- Meirong, W.; Rui, Z.; Jun, Z.; Xinxin, X.; Xiaoyu, Y.; Zhiying, Y.; Mingmin, G.; Tao, Z. Effect of Temperature on Methanogens Metabolic Pathway and Structures Predominant Bacteria. J. Chem. Ind. Eng. 2014, 65, 1602–1606. [Google Scholar]
- Trumbore, S.E.; Chadwick, O.A.; Amundson, R. Rapid Exchange between Soil Carbon and Atmospheric Carbon Dioxide Driven by Temperature Change. Science 1996, 272, 393–396. [Google Scholar] [CrossRef]
- Zehnder, A.J.; Stumm, W. Biology of Anaerobic Microorganisms; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Yue, X.P.; Fu, M.H.; Li, Y.X.; Cao, J.Z. Effect of Influent Alkalinty on Anaerobic Sequencing Batch Reactor. J. Chem. Ind. Eng. 2008, 59, 1257–1263. [Google Scholar]
- González, J.S.; Rivera, A.; Borja, R.; Sánchez, E. Influence of Organic Volumetric Loading Rate, Nutrient Balance and Alkalinity: COD Ratio on the Anaerobic Sludge Granulation of an Uasb Reactor Treating Sugar Cane Molasses. Inter. Biodeter. Biodegrad. 1998, 41, 127–131. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Gauci, V.; Chapman, S.J. Simultaneous Inhibition of Ch 4 Efflux and Stimulation of Sulphate Reduction in Peat Subject to Simulated Acid Rain. Soil Biol. Biochem. 2006, 38, 3506–3510. [Google Scholar] [CrossRef]
- Dise, N.B.; Verry, E.S. Suppression of Peatland Methane Emission by Cumulative Sulfate Deposition in Simulated Acid Rain. Biogeochemsitry 2001, 53, 143–160. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Cheng, H.M.; Cheng, J.L. Identifying the Driving Factors of Black Bloom in Lake Bay through Bayesian Lasso. Int. J. Environ. Res. Pub. Health 2019, 16, 2492. [Google Scholar] [CrossRef] [PubMed]
Factors | Maximum Value | Mean Value | Minimum Value | Standard Deviation |
---|---|---|---|---|
CO2 (mmol/m2d) | 200.67 | 39.62 | −20.73 | 64.80 |
CH4 (mmol/m2d) | 2.17 | 0.54 | −0.18 | 0.81 |
N2O ((mmol/m2d) | 0.27 | 0.06 | −0.03 | 0.09 |
NO3--N (mg/L) | 2.046 | 1.093 | 0.049 | 0.596 |
NO2--N (mg/L) | 0.146 | 0.046 | 0.006 | 0.040 |
NH4+-N (mg/L) | 1.456 | 0.507 | 0.024 | 0.577 |
PO43- (mg/L) | 0.020 | 0.006 | 0.001 | 0.007 |
dTP* (mg/L) | 0.056 | 0.027 | 0.012 | 0.015 |
Chl-a*(mg/m3) | 39.26 | 16.19 | 2.46 | 11.67 |
WT*(℃) | 29.9 | 16.7 | 4.2 | 9.0 |
WD*(m) | 2.9 | 2.6 | 2.3 | 0.15 |
SD*(m) | 0.80 | 0.44 | 0.30 | 0.14 |
DO* (mg/L) | 12.43 | 8.98 | 6.42 | 1.99 |
SO42- (mg/L) | 103.60 | 75.99 | 51.60 | 15.26 |
Alk* (mmol/L) | 2.60 | 2.16 | 1.76 | 0.26 |
CODMn *(mg/L) | 5.94 | 4.88 | 4.10 | 0.60 |
pH | 8.49 | 8.18 | 8.03 | 0.13 |
Aquatic Factors | Index for CO2 | Index for CH4 | Index for N2O | CRI* |
---|---|---|---|---|
WT | 1 | 1 | 2 | 1 |
NO2--N | 10 | 5 | 1 | 2 |
SO42- | 2 | 2 | 4 | 3 |
DO | 4 | 3 | 3 | 4 |
Alk | 3 | 4 | 9 | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, L.; Cheng, J.; He, C.; Cheng, H. Recognizing Crucial Aquatic Factors Influencing Greenhouse Gas Emissions in the Eutrophication Zone of Taihu Lake, China. Sustainability 2019, 11, 5160. https://doi.org/10.3390/su11195160
Wang Y, Wang L, Cheng J, He C, Cheng H. Recognizing Crucial Aquatic Factors Influencing Greenhouse Gas Emissions in the Eutrophication Zone of Taihu Lake, China. Sustainability. 2019; 11(19):5160. https://doi.org/10.3390/su11195160
Chicago/Turabian StyleWang, Yulin, Liang Wang, Jilin Cheng, Chengda He, and Haomiao Cheng. 2019. "Recognizing Crucial Aquatic Factors Influencing Greenhouse Gas Emissions in the Eutrophication Zone of Taihu Lake, China" Sustainability 11, no. 19: 5160. https://doi.org/10.3390/su11195160
APA StyleWang, Y., Wang, L., Cheng, J., He, C., & Cheng, H. (2019). Recognizing Crucial Aquatic Factors Influencing Greenhouse Gas Emissions in the Eutrophication Zone of Taihu Lake, China. Sustainability, 11(19), 5160. https://doi.org/10.3390/su11195160