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Abstract: The construction industry is one of the main contributors to the production of large
volumes of greenhouse gases, since it consumes a large quantity of energy and construction materials.
The purpose of this research is to assess the environmental impacts and economic efficiency of
the voided slab system compared to the ordinary reinforced concrete slab. A life cycle assessment
(LCA) and the total cost of construction were calculated to evaluate the performance of both slab
systems. Additionally, the total costs of construction for both cases were determined based on the
unit price of the building materials. The results of this study indicate that manufacturing building
materials contributes most to the total GHG emissions where concrete is responsible for nearly 1/2
of all emissions. Additionally, forms are the second largest contributor of the total GHG emissions
and account for nearly 40% and 15% of emissions for the ordinary reinforced concrete slab and the
voided slab system, respectively. This study verified that the voided slab system indicated better
environmental performance than the ordinary reinforced concrete slab. The total GHG emissions
of the ordinary reinforced concrete slab were 256,599 and 13,989 kg-CO;-eq, for concrete and forms,
respectively. Additionally, the total GHG emissions of the voided slab system were 224,945 and
12,211 kg-CO,-eq. The reduction of GHG emissions from Case 1 for aboveground floors and Case 2 for
underground parking was 12.3% and 12.7% over the ordinary reinforced concrete slab, respectively.
The economic efficiency of the ordinary reinforced concrete slab and the voided slab system were
assessed by comparison of the total costs of construction. This showed a total cost reduction of 12.3%
and 11.2% for the case of applying the voided slab system to the aboveground floors and underground
parking, respectively. Thus, replacing the ordinary reinforced concrete slab by the voided slab system
in the aboveground floors and the underground would make it possible to decrease not only the
emissions of GHG, but also the cost of construction.

Keywords: greenhouse gases; construction cost; reinforced concrete slab; voided slab system;
commercial building; life cycle assessment; value engineering

1. Introduction

According to the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report,
human factors have been one of the crucial contributors to global warming since the mid-20th
century when it was first observed [1]. In the IPCC report, human activities generate large amounts of
greenhouse gases, such as carbon dioxide, methane, and nitrous oxide [1]. Recently, increasing attention
has been focused on alleviating the manmade emissions of greenhouse gases (GHG). For example,
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the Kyoto Protocol stipulated that the industrialised countries and the member states of the European
community would lessen greenhouse gas emissions by 18% from the 1990s levels by 2020 [2]. Similarly,
the Chinese Government has committed to reducing greenhouse gas emissions per gross domestic
product (GDP) up to 45% by 2020 [3]. In a similar vein, the South Korean Government set a target
value of reducing the emissions of domestic GHG by up to 37%, compared to the business as usual
(BAU) levels by 2020 [4]. Moreover, various industrial sectors in South Korea have made efforts to
achieve the goal of sustainable development at the national level.

The construction industry is one of the main sources of a large volume of GHG emissions, since it
consumes a large quantity of energy and building materials [5-8]. The IPCC report pointed out that
this industry not only consumes approximately 40% of global energy, but also emits up to 30% of total
global GHG emissions [1]. Furthermore, when the operation and maintenance phase is taken into
consideration, the proportion of global energy consumption and GHG emissions from the construction
sector is increased [9-13]. The operation and maintenance of the products of the construction industry
are quite a lot longer than those of other products or services, because the life span of buildings or
structures is more than 40 years [13,14]. Due to this reason, studies regarding energy consumption
and the reduction of GHG emissions in this stage have been dominant for many years, compared to
other phases of the life cycle of buildings [13-15]. While various approaches have been investigated
to mitigate the GHG emissions of buildings during the operation and maintenance stage, a growing
number of studies in recent years have focused on the GHG emissions in other stages of the life cycle.

Reducing GHG emissions before the operation and maintenance stage has been achieved in
various ways, such as the use of low environmental impact materials, the application of high-strength
building materials, the use of recycled material or by-products, and design optimisation and process
improvement during the manufacturing stage. The majority of studies have maintained that building
materials are the main contributor to GHG emissions and that the reduction of building material in the
construction stage would be an effective approach to minimise the volume of GHG emissions [16-21].
For example, Gonzalez and Navarro [21] pointed out that the application of low environmental
impact building materials would reduce the emissions of GHG at the construction site by up to
28%. Several studies maintained that replacing the typical building materials by high-strength ones
would be beneficial to mitigating GHG emissions [11,22-26]. Since reinforced concrete structures and
buildings are the most popular materials adopted in the construction industry, numerous studies have
concentrated on mitigating the emissions of GHG through the adoption of high-strength materials.
Concrete and rebars, which are the main components of reinforced concrete, are the topics mainly
dealt with for the strengthening of building materials [25-27]. Pacheco-Torres et al. [27] indicated that
architects and designers should pay more attention to selecting environmentally friendly building
materials in the design stage to minimise the GHG emissions of entire construction projects. In addition
to minimising the amount of building materials, various researchers have also argued for the utilisation
of recycled materials. Cho and Chae [11] recommended the utilisation of recycled material and
by-products, such as blast furnace slag and silica fume, as building materials during the construction
stage. Likewise, design optimisation, such as replacing the structural systems, is one of the beneficial
approaches during the early execution of construction projects [8,286-32].

Minimising the quantities of building materials and the optimal design of a building or facility
might be one effective method to lower GHG emissions during the construction stage. The voided slab
system or hollow core slab system is a newly developed slab system that is considered an alternative
to lower the impact of greenhouse gases. This would make it possible to enhance the structural
performance by reduced self-weight and increased stiffness (see Figure 1). The middle section of the
voided slab, where the structural performance is relatively less important than the other parts, is filled
with lightweight void formers. In this way, the amount of building materials would be reduced,
compared to the ordinary reinforced concrete slab. Additionally, it has been considered that the
voided slab system is environmentally friendly compared to the ordinary reinforced concrete slab
system, as the hollow parts of the slab would make it possible to reduce the amount of materials.
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However, research on the assessment of the environmental impacts of the voided slab system is
relatively scant, whilst studies have been carried out on the topics of the reliability of the structural
performance (i.e., shear and flexural capacities of the voided slab system), optimal void ratio for the
best structural capacity, and shapes of void formers, since it works as a structural member of the entire
building [33-38].

Lightweight void formers
for hollow parts

I-shaped concrete slab

Figure 1. Conceptual diagram of the voided slab system.

While the cost of change in the early design stage is relatively lower than in the later phases,
the impacts of design change are greater than in the latter stages [39-43]. In some cases, materials or
methods that are superior for the environmental performance are more expensive than the conventional
practices in the construction industry. As growing interest is shown in sustainable and environmentally
friendly development in this industry, it is difficult to replace existing materials, even though they have
low environmental impact. Hence, it is necessary to determine the cost of construction when replacing
conventional building materials. However, assessment of the environmental and economic influences
has been performed individually in various studies, rather than through joint analysis. In order to
fill these gaps of knowledge, the environmental and economic impacts need to be investigated at the
same time.

The purpose of this study is to assess the environmental impacts and the economic efficiency of
the voided slab system compared to the ordinary reinforced concrete slab. The life cycle assessment
(LCA) and the total cost of construction were calculated to evaluate the performance of both slab
systems. In this study, process-based life-cycle assessment was applied to calculate the emissions of
GHGs from the ordinary reinforced concrete slab and the voided slab system. Additionally, the total
construction costs for both cases were determined based on the unit price of the building materials.
An evaluation was conducted to compare the ordinary reinforced concrete slab and the voided slab
system, in the two case studies. A comparison was also carried out for the following three stages:
manufacture of the building materials, transportation of the building materials to the construction site,
and the use of construction equipment on site. Figure 2 indicates the overall procedure of this research.
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Figure 2. The overall process of the research.
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2. Research Method

2.1. Life Cycle Assessment (LCA)

There are many approaches to assess the environmental performance of a variety of products,
processes, and services. Life cycle assessment (LCA) is recognised as one of the methods to support
environmental improvements and management. In order to evaluate the GHG emissions of different slab
systems, the LCA technique in accordance with ISO 14040 [44] was adopted. The LCA method followed
three steps: definition of goal and scope, life cycle inventory analysis, and assessment and interpretation
of impacts (see Figure 3). There are two methods to determine the LCA of a product or service, namely
the process-based method and the input-output analysis method. In the process-based approach,
the system boundary is established to calculate the GHG emissions of a target product or service.
The input-output analysis uses the input-output matrix representing all the interactions amongst
interconnected industrial sectors in a comprehensive manner. In this research, the process-based
approach was adopted to analyse the GHG emissions of structural systems for slab. The system
boundary was determined from the manufacturing of building materials to the construction stage,
which was from cradle to pre-operation.

Goal and scope ‘ \
definition

[

Inventory analysis Interpretation

[

Impact assessment J
\ ST

Figure 3. Phases of a life cycle assessment [44].

2.1.1. Definition of Goal and Scope

Defining the goal and scope of the studied target is the first stage of the LCA. The goal of the
present study is to evaluate the emissions of GHG (in kg-COz'eq/mz) and the total construction cost
($/m?) of the ordinary reinforced concrete slab and the voided slab system. Once this information
has been determined, the GHGs emissions and the total construction costs of the ordinary reinforced
concrete slab and the voided slab system were compared.

The life cycle of buildings is normally composed of five phases, which are the manufacture of
building materials, transportation of the building materials to the construction site, construction and
installation, operation and maintenance, and demolition and recycling. The scope of this research
was limited to the stages from the manufacture of the building materials to the construction and
installation (i.e., cradle to pre-operation). This covered the GHG with the manufacture of the building
materials, transportation of the building materials from the manufacturers to the construction site,
and the consumption of fuels and usage of the electricity on site by the construction machinery and
equipment. In this study, the building materials were divided into permanent and temporary materials.
The permanent materials were concrete and rebars for the ordinary reinforced concrete slab, while the
voided slab system additionally included void formers and steel decking. In addition, the forms
were considered as temporary materials during the evaluation of the GHGs emissions from both
slab systems.

According to the definition of GHGs in the Kyoto Protocol to the UN Framework Convention on
Climate Change [2], carbon dioxide (CO,), methane (CHy), nitrous oxide (N,O), hydrofluorocarbon
(HFCs), perfluorocarbons (PFCs), and sulphur hexafluoride (SF¢) are defined as six type of the GHGs.
Several studies regarding the GHGs in construction projects have claimed that the emissions of HFCs,
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PFCs, and SFg are relatively rare compared to those of CO,, CHy, and N,O. In this study, the definition
of the GHGs is only limited to CO,, CHy4, and N,O, which commonly occur from buildings and
construction projects [3,6,9,43].

2.1.2. Life Cycle Inventory (LCI)

The life cycle inventory (LCI) of this study is adopted from the South Korean National Life Cycle
Inventory Database [45]. The materials used for both the ordinary reinforced concrete slab and the
voided slab system were divided into permanent materials and temporary materials. The permanent
materials for the ordinary reinforced concrete were ready-mixed concrete and reinforcing bars, and the
temporary material was forms. The voided slab system comprised the same material properties as the
ordinary reinforced concrete slab. However, the voided slab system included two more permanent
materials, which were the steel decking and the void formers. The national life cycle inventory database
in South Korea (KLCI DB) was used for the GHG emission factors for building materials in this study.
Table 1 summarises the inventory of items associated with the functional unit.

Table 1. Life cycle inventory database.

Material Unit GHG Emission Factors (kg-CO;-eq/unit) Resource
Ready-mixed concrete m?3 429 x 102
Rebars kg 3.48 x 101
Forms m? 1.49 x 102

National LCI DB [45]

Void formers
(Expanded polystyrene)

Steel decking m? 3.90 x 101

kg 1.91 x 101

2.1.3. Assessment of the Life Cycle Impact

The quantification and assessment method adopted in this study was process-based analysis.
This method investigates the energy consumption and the GHG emissions from production to
demolition of a product. This is a bottom-up approach that complies with ISO 14044 [46] and ISO
21930 [47] to assess the environmental impacts of products or services based on the production
processes. In this study, a process-based analysis was adopted to evaluate and compare the GHG
emissions from the ordinary reinforced concrete slab with those from the voided slab system during
the construction phase. Processes in the construction of buildings are comprised of the production of
building materials, which includes the process of raw materials and manufacturing of the building
materials; transportation of building materials to the construction site; and construction and installation.

The emissions of GHGs from each stage were determined using Equations (1)—(5) to evaluate the
life cycle impacts of both slab systems. Equation (1) was used to determine the emissions of GHG
that occurred from building materials before transporting them to the construction site. The elements
for computing the GHG emissions from this stage are the amount of each building material (in kg for
rebars and void formers, m3 for ready-mixed concrete, and m? for forms and steel decking), and the
GHG emission factors (in kg-CO,-eq/unit) for the building materials.

Ey = ZM,- X f, 1)

where E; is the total emissions of the GHG of building materials (in kg-CO,-eq); M; represents the
amount of building material i (in m? for ready-mixed concrete, kg for reinforcing bars and expanded
polystyrene for void formers, and m? for forms and steel decking); and f; is the GHG emission factors
for material i.
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Equation (2) is used to calculate the GHG emissions from transporting building materials to
the construction site. In order to calculate the GHG emissions from the transportation of building
materials, the amount of building materials and the fuel consumption were considered:

EZ = Z(FC XNt) Xftmns/ (2)

where E, represents the total GHG emissions from the transportation of building materials to the
construction site (in kg-CO;-eq); F. is the amount of fuel consumed in the transportation stage (in L);
Ny is the number of vehicles for materials transportation; and fi4ys is the carbon dioxide emissions
factors for transportation method (e.g., concrete mixer truck, 4.5 ton lorry, and 11.5 ton lorry).

The fuel consumption of each transportation method (F.) was determined based on the distance
between the manufacturers’ location and the construction site, and the fuel efficiency of the transportation
method (see Equation (3)).

Fe = Dy /FEy, ®)

where D, represents the distance between the manufacturer and the construction site (in km) and FE,,
is the fuel efficiency of the transportation method (in km/L).

Likewise, the number of vehicles needed to transport building materials from the manufacturing
location to the construction site (N;) was calculated considering the amount of building materials and
the capacity of each construction method, as indicated in Equation (4):

Nt == Mm /Ccap/ (4)

where M, is the amount of construction materials (in m® for ready-mixed concrete, and kg for rebars,
steel decking and forms); and C is the capacity of each transportation method. Table 2 summarises
the distance of the manufacturer’s location to the construction site and the types of transportation
method in this study.

Table 2. Transportation distance and types of building materials.

Materials Distance (unit: km)  Type of Transportation
Ready mixed concrete 25 6 m3 concrete mixer
Rebars 380 11.5 ton lorry
Steel decking 110 4.5 ton lorry
Void formers 40 4.5 ton lorry
Forms 30 4.5 ton lorry

The amount of GHG emissions from the construction equipment usage on site was determined by
the amount of fuel consumed by the construction equipment. Equation (5) was used to calculate the
GHG emissions from the fuel combustion of construction equipment:

E3=ZF]‘Xf]', (5)

where Ej is the total GHG emissions from the fuel consumption of construction equipment (in kg-CO,-eq);
F; is the amount of fuel j consumed by the construction equipment and machinery (in L); and f; is the
GHG emission factors for fuel j consumed by the construction equipment (in kg-CO,-eq/L). In this study,
only diesel was considered to determine the total GHG emissions from the construction equipment,
since the construction equipment in this study consumed only diesel fuel.

2.2. The Cost of Construction

With regard to calculating the total cost of construction in the ordinary reinforced concrete slab and
the voided slab system, the database of Korea Price Information was applied to determine the unit price
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of building materials [48]. The building materials used in both slab systems were ready-mixed concrete,
reinforcing bars, forms, steel decking, and void formers. The price evaluation includes the production
of corresponding building materials, transportation of building materials from manufacturers to the
construction site, and construction and installation of the materials. Table 3 shows the lists of the unit
price for all the building materials used in this study. Additionally, the unit price of each material was
converted from South Korean Won to US dollars. The conversion rate of one US dollar (USD) was
calculated at the rate of 1178 South Korean Won (KRW).

The construction cost of the both slab systems was computed based on the exact amount of
materials from the bill of quantities. The amount of each material for a square meter of each ready-mixed
concrete, reinforcing bars, forms, steel decking, and void formers was calculated by structural analysis.
Equation (6) was used to calculate the cost of producing the building materials for the ordinary
reinforced concrete slab and the voided slab system:

Cost ($/m?) =Y " QixP;, ©

where Q; represents the amount of building materials used for each square meter and P; indicates the
unit cost of the building materials for each square meter.

Table 3. Unit price of the building materials [48].

Unit Price
Materials Unit
Korean Won (KRW)  US Dollar (USD)

Ready mixed concrete m> 56,000 47.54
Rebars kg 780 0.66

Forms m? 40,850 34.68

Void formers kg 16,000 13.58
Steel decking m? 27,000 22.92

2.3. Description of the Cases

In this study, two cases were evaluated for the GHG emissions and the total cost of construction
from the ordinary reinforced concrete slab and the voided slab system. Figure 2 describes the overall
research process of this study. The evaluated cases of this study are two commercial buildings located
in Seoul, South Korea. Case 1 started construction of the building in 2012 and was completed in
2014; while the construction of Case 2 started in 2015 and finished in 2016. As indicated in Table 4,
the buildings’ structural systems complied with building code requirements for structural concrete
(ACI 318-05) [49] and minimum design loads and associated criteria for buildings and other structures
(ASCE/SEI 7-10) [50]. Table 4 shows that the overall structural attributes of both cases were similar,
but the service load for Case 2 was 50% higher than for Case 1. Since the voided slab system for Case 2
was applied to underground parking and the weight of vehicles was heavier than other items in the
building, the service loads for Case 2 were assumed to be slightly higher than for Case 1. In both cases,
the structural systems for the slabs were initially designed in the early design stage to be ordinary
reinforced concrete slab.

The voided slab system was proposed to replace the ordinary reinforced concrete slab not only to
reduce the construction cost, but also to enhance the structural stability and the workability during the
construction phase. As shown in Figure 4, construction workers would install the void formers with
ease of assembly during the construction phase. The method of anchoring the void formers in this
system is to insert the anchoring device into the slots and rotate them by 90° for firm fixing between
the lower T-shaped steel decking and the void formers. Due to this ease of work, even novice workers
would be able to assemble the void formers with a high degree of accuracy and enhanced workability
with reduced work time. Moreover, the lower T-shaped steel decking would work not only to serve as
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the lower forms for moulding slabs, but also to provide additional structural strength to complement
the tensile strength.

Table 4. The structural attributes of the cases.

Compressive _
Strength of Concrete fek = 24 MPa
Tensile Strength of _
Reinforcing Bars fy =400 MPa
Permanent Load 7.94 kN/m?2
Service Load Case 1 4.00 kKN/m?
ervice Loa Case 2 6.00 kN/m?2

Building code requirement for reinforced concrete (ACI 318-05) [49]

Design Guidance e Minimum design loads and associated criteria for buildings and other structures
(ASCE/SEI 7-10) [50]

Upper tie bar
Upper tie main reinforcement
Upper distributing bar
(HD10€300) J Void former material

o e e &
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T -1 TR, P TA % [R[

Lower distributing bar ) T-shape deck plate
(HD10@1100) (t=0.8mm)
Lower main reinforcement

Lower tie bar

(a) Cross-sectional view (b) Anchoring mechanism
Figure 4. Illustrations of the voided slab system.

3. Results and Discussions

3.1. The Emissions of Greenhouse Gases

The amount of building materials for the ordinary reinforced concrete slab and the voided slab
system were taken off. Then the results of the unit price of each material were separately obtained and
analysed. Once the amount of building materials had been calculated, the emissions of GHGs, as well
as the costs from the two cases, were determined by applying the indicated equations in the previous
section. Table 5 shows the total GHG emissions of the ordinary reinforced concrete slabs and the voided
slab systems (i.e., Cases 1 and 2). Within Case 1, the total GHG emissions for the ordinary reinforced
concrete slab and the voided slab systems are 256,599 and 224,945 kg-CO,-eq respectively. For Case 2,
the ordinary reinforced concrete slab and the voided slab system emit 13,989 and 12,211 kg-CO,-eq
of the total GHGs, respectively. Table 5 shows the GHG emissions per square meter that were also
calculated in order to compare Cases 1 and 2. For the ordinary reinforced concrete slab system,
the emissions of GHG per square meter show similar results, which are 193.82 and 198.24 kg-CO,-eq/m?
for Cases 1 and 2, respectively. Likewise, the GHG emissions of the voided slab systems indicate 169.91
and 173.04 kg-CO,-eq/m? for Cases 1 and 2, respectively. Based on the above results, the emissions of
GHGs per square meter from the ordinary reinforced concrete slab and the voided slab system for both
cases indicate approximately 196 and 171 kg-CO,-eq/m?, respectively. In this study, the voided slab
system emits roughly 13% less than the ordinary reinforced concrete slab, when the GHG emissions
per square meter are considered.
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Table 5. Total GHG emissions.
Case 1 Case 2
Ordinary Reinforced Voided Deck System 1 Ordinary Reinforced Voided Deck System 2
Concrete Slab 1 (VDS 1) Concrete Slab 2 (VDS 2)
(ORC1) (ORC2)
Contribution Contribution Contribution Contribution
GHG Proportion (%) GHG Proportion (%) GHG Proportion (%) GHG Proportion (%)
Eq 243,280 94.8 212,716 94.6 13,285 95.0 11,490 94.1
E; 12,123 47 11,032 49 641 4.6 650 53
E3 1196 0.5 1197 0.5 63 0.5 71 0.6
Total (kg-CO3-eq) 256,599 100 224,945 100 13,989 100 12,211 100
GHG emissions per square
meter (kg-CO3-eq/m?) 193.82 169.91 198.24 173.04
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In both cases, the major source of the GHG emissions is the manufacturing of the building
materials (E1), which accounts for approximately 95% (see Table 5). In Case 1, transportation of building
materials to the construction site (E;), which is the second largest source of the GHG emissions,
produces emissions of 12,123 and 11,032 kg-CO,-eq for the ordinary reinforced concrete slab and the
voided slab system, respectively. Case 2 indicates similar results, emitting 13,285 and 11,490 kg-CO,-eq
from the transport of the building materials (E;), respectively. The GHG emissions from the operation
of construction equipment and electricity usage on site accounts for less than 1% in all cases.

Table 6 indicates the reduction ratio of the GHG emissions of both Cases 1 and 2. A significant
reduction would be achieved from the manufacturing of the building materials in both cases.
The reduction ratio of each emissions source to the total GHG emission reduction due to the replacement
of the ordinary reinforced concrete slab by the voided slab system is indicated in columns 3 and 5
of Table 6. In Case 1, a reduction of 11.9% of GHG emissions is achieved due to the manufacturing
of building materials (E1); 0.5% of the reductions are due to the transportation of building materials
to the construction site (E;); and a negligible increase of 0.1% is from the operation of construction
machinery and electricity usage on site (E3). Case 2 shows similar results in the manufacturing of
the building materials (E;), the transportation of building materials to the construction site (E;),
and the operation of construction machinery and electricity usage (E3). A 12.8% reduction of the GHG
emissions is derived from the manufacture of the building materials (E1). Furthermore, the operation
of construction machinery and electricity usage on site (E3) increases 0.1%, the same as E3 in Case 1.
The transportation of building materials to the construction site (Ep) shows a 0.1% increase of the GHG
emissions from applying the voided slab systems. The reason for the slightly higher GHG emissions for
the transportation of building materials for the voided slab system is that more lorries were required to
convey void formers. Even though the weight of the void formers is lighter than those of other building
materials in this study, more lorries are required to convey them since the height of the void formers is
higher than other materials. Based on the results, it would make it possible for the voided slab system
to reduce GHG emissions by about 12.3 and 12.6% for Cases 1 and 2, respectively. As a result, replacing
the ordinary reinforced concrete slab by the voided slab system would be beneficial to mitigating GHG
emissions during the construction phase.

Table 6. Reduction ratio of the total GHG emissions.

Case 1 Case 2
oor Aoty gr Ao o
E1 -30,564 -11.9 -1795 -12.8
|2 -1091 -0.5 9 0.1
Es 1.3 0.1 8 0.1
Total reduction -31,655 -12.3 1778 -12.6
Reduction per m? 23.9 -12.3 252 -12.6

Table 5 shows that the manufacturing of the building materials stage is the main source of GHG
emissions, regardless of the structural system (i.e., ordinary reinforced concrete slab or the voided slab
system) and cases in this study. In all cases, the process of the building materials production accounts for
approximately 95% of the GHG emissions. These results are similar to previous studies, which maintain
that one of the major contributors to GHG or carbon dioxide emissions in the construction of buildings
is the manufacturing stage [3,6,13,27]. Moreover, this research confirmed that the voided slab system
provides a potential method to reduce GHG emissions from the materials production stage. When the
emissions of GHG from the materials production stage is evaluated, the impact of concrete is greater
than the other materials in both cases. Moreover, even though forms are temporary materials for the
construction of both slab systems, it is indicated that these account for the second largest source of
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GHG emissions in the materials production stage. In order to minimise the impacts of forms, it is
necessary to increase the ratio of reuse and recycling, or to adopt low embodied carbon materials.

In this study, concrete is the major contributor of the GHG emissions in both slab systems in all
cases. For the ordinary reinforced concrete slab, about 58% and 56% of the GHG emissions occur from
the concrete. Likewise, the concrete in the voided slab system accounts for approximately 71% and
66% of the GHGs, respectively. While both slab systems were applied to the above ground floors for
Case 1, Case 2 was installed for the underground floor slab. This locational attribute would result in
a slight increase of the total emissions of GHG in Case 2. In Case 2, which applied to the basement slab,
the permanent and service loads of the underground were designed higher, since it was designed as
a parking space. In general, the amount of building materials required would be more than for typical
floors and the service load factors would be higher than the above ground floor slabs (see Tables 6
and 7). Considering the locational characteristics of constructing the slabs, it seems that there is
a difference in the GHG emissions.

Table 7. GHG emissions of the building materials in Case 1.

Reduction
Material Member ORC1 vps1 (VDS1-ORC1)
GHGs % GHGs % kg-CO,-eq %

Slab 59,701 24.5 90,780 427 31,079 12.7

Concrete Beams and girders 79,594 32.7 59,968 28.2 -19,627 -8.1

Subtotal 139,295 57.2 150,748 70.9 11,452 4.7

Slab 3677 15 5526 2.6 1849 0.8

Rebars and steel materials Beams and girders 8142 34 5787 2.7 -2356 -1.0
Subtotal 11,819 49 11,313 53 -507 -0.2
Slab 49,542 20.4 0 0 —49,542 -20.4

Forms Beams and girders 42,624 17.5 26,021 12.2 —-16,603 —6.8
Subtotal 92,166 379 26,021 12.2 66,145 -27.2

Steel decking N.A. N.A. 16,790 79 16,790 6.9

Void formers N.A. N.A. 7844 3.7 7844 3.2
Total 243,280 100 212,716 100 30,565 -12.6

It is generally recognised that the voided slab system or hollow core slab has a reduction possibility
of GHG emissions, since its hollow section would cut down the amount of concrete in the slab
system [4,36,51]. However, the results of this study show that while there is a slight increase in concrete
from Cases 1 and 2, the amount of rebars and steel materials and a significant quantity of forms could
be reduced, due to the lower number of beams and girders in the voided slab system (see Tables 7
and 8). In the case of the voided slab system, the steel decking, which replaced the forms to mould the
bottom of the slab, was one of the main contributors to lowering the emissions of the GHGs. Moreover,
the steel decking applied to the voided slab system serves a dual purpose of forming the bottom
of the slab, as well as providing additional structural performance to complement the rebars and
steel materials in the ordinary reinforced concrete slabs. Thus, the voided slab system applied in this
study would be beneficial not only to alleviate the environmental burden from the use of less concrete,
but also to enhance the structural performance of a building for longer usage.
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Table 8. GHG emissions of the building materials in Case 2.

Reduction
Material Member ORC2 Vps2 (VDS 2 - ORC2)
GHGs % GHGs % kg-CO,-eq %
Slab 3257 24.5 4506 39.2 1249 9.4
Concrete Beams and girders 4173 314 3048 26.5 -1125 -85
Subtotal 7430 449 7554 65.7 124 0.9
Slab 195 1.5 279 24 184 14
Rebars and steel materials Beams and girders 432 3.3 303 2.6 -129 -1.0
Subtotal 627 4.8 582 5.0 —45 -0.3
Slab 2826 21.3 0 0 —2826 -21.3
Forms Beams and girders 2401 18.1 1745 15.2 —656 —-4.9
Subtotal 5227 39.2 1745 15.2 —3532 —26.6
Steel decking N.A. N.A. 1191 10.4 -1191 -9.0
Void formers N.A. N.A. 418 3.6 418 3.1
Total 13,284 100 11,490 100 -1794 -135

3.2. Costs

The results of the costs were obtained and analysed separately, based on the quantity take-off
data. Regarding the total cost, the voided slab system results in the reduction of total cost in Cases 1
and 2. For the ordinary reinforced concrete slab in both cases, the total cost of construction is USD
113,420 and 6526 for Cases 1 and 2, respectively (see Table 9). Likewise, it is indicated that the total cost
of construction for the voided slab system is USD 97,230 and 5792 for Cases 1 and 2, respectively. In all
cases, the cost of construction materials and transportation (C; + C;) are the main contributors to the
total cost of construction. The cost of operating construction machinery (C3) is 2.7% and 2.9% for the
ordinary reinforced concrete slab and the voided slab system in Case 1, respectively. In Case 2, the cost
of operating machinery accounts for 6.4% and 6.8% for the ordinary reinforced concrete slab and the
voided slab system, respectively (see Table 9). In this study, the cost of construction and installation
only deals with the direct costs, which includes materials, transportation, and the operation of the
construction machinery. However, if the overhead costs including costs for space and structures and
utilities were also considered, the total cost of construction and installation might be slightly increased.

Table 9. Total costs and ratio (unit: USD).

Type Case 1l Case 2
ORC1 VDS 1 ORC2 VDS 2
Phase Cost Y% Cost Yo Cost Y% Cost Yo
Cy 101,301 893 86,286  88.7 5606 85.9 4950 85.5
C 9117 8.0 7755 7.9 505 7.7 446 7.7
C 3002 2.7 3178 29 415 6.4 396 6.8
Total 113,420 100 97,230 100 6526 100 5792 100
Costs per square meter ($/m?) 86 73 93 82

In addition, the total cost per square meter ($/m?) is also considered in order to compare each slab
system in both cases. Table 9 shows that the total cost per square meter for the voided slab system is
lower than for the ordinary reinforced concrete slab. In both cases, the total cost per square meter of the
voided slab system is less than 14.3% and 11.2% for Cases 1 and 2, respectively, which is 13 and 11 $/m?
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(see Table 9). In this study, Cases 1 and 2 have been applied to different locations, namely aboveground
and underground of the building. For Case 1, the voided slab system was applied to the above ground
floors, which indicates the total cost of construction is lower than for Case 2 overall. On the other hand,
the total cost of construction underground is relatively higher than the aboveground construction,
as shown in Table 10. Based on the results of the total cost, it is expected that replacing the ordinary
reinforced concrete slab system by the voided slab system would be beneficial to the economic aspect,
regardless of the locations of the construction and installation.

In this study, a factor that has distinct influence on evaluating the cost of the ordinary reinforced
concrete slab and the voided slab system is the quantity of rebars and steel materials for the permanent
materials and forms for the temporary ones. In particular, reinforcement is a significant element for
reinforced concrete structures to overcome the disadvantage of tensile strength. This might explain
why the rebars and steel materials in the ordinary reinforced concrete slab and the voided slab system
account for a large proportion of the costs. Moreover, even though the unit price of a rebar is relatively
cheaper than that of the other building materials, it seems that the rebars and steel materials account
for a high percentage of the total cost, due to the nature of reinforced concrete structures. In some
cases, one of the alternative approaches to minimise the cost of rebars in South Korea is to use imported
materials, especially rebars from Chinese manufacturers. From an economic perspective, the unit price
of Chinese rebars is 680 South Korean Won per kilogram, which is equivalent to 0.57 US dollars per
kilogram [48]. This means that a cost reduction of approximately 13% could be achieved. However,
the GHG emissions of the imported rebars would be larger compared to that of the domestic ones,
since the distance and methods of transportation would be increased.

Once the parameters of the GHG emissions and the total cost had been analysed separately,
a joint analysis (kg-CO,-eq/$) was conducted of both the cost of square meter and the GHG emissions.
Column 4 and 7 in Table 11 indicate the average of GHG emissions per dollar for the ordinary reinforced
concrete slab and the voided slab system. The GHG emissions per dollar for the voided slab system
is 2.22, which is slightly higher than the ordinary reinforced concrete slab (see Figure 5). As for the
materials perspective, the voided slab system utilises additional building materials such as void
formers and steel decking compared to the ordinary reinforced concrete slab. This would cause the
slight increase of the total construction costs, and application of alternative building materials for void
formers would make it possible to lower the construction costs. Based on the GHG emissions per unit
cost in Table 11 and the total GHG emissions from Table 5, the estimation value of GHG emissions per
unit cost is indicated in Equations (7) and (8).

ORC = 2.195 kg CO, eq/$ @)

VDS = 2.123 kg CO, eq/$ ®)
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Table 10. Total costs and reduction of costs by structural members (unit: USD).

Case 1 Case 2 Reduction of Costs
Members ORC1 VDS 1 ORC2 VDS 2 Case 1 Case 2

Cost % Cost % Cost % Cost % Cost % Cost %

Slab 6909 6.8 10,506  12.1 377 6.7 522 105 3597 3.6 145 2.6
Ready-mixed concrete  Beam and girder 9212 9.1 6940 8.0 483 8.6 353 71 —2272 -22 -130 -23

Subtotal 16,121 159 17446 202 80 153 875 177 1325 14 15 0.3

Slab 7111 7.0 10,687 124 376 6.7 539 109 3567 3.5 163 29
Rebars Beam and girder 15,746 155 11,190 13.0 835 149 587 119 —4556 —45 —248 —44
Subtotal 22,857 226 21,877 254 1212 216 1126 227 -980 -1.0 -86 -15
Slab 33,501  33.1 0 0 1911  34.1 0 0 -33,501 =331 -1911 -341
Forms Beam and girder 28,822 285 17,595 204 1624 290 1180 238 11,227 -11.1  -444 -79
Subtotal 62,323 615 17595 204 3534 63.0 1180 23.8 44,728 442 -2354 420
Steel decking N.A. N.A. 11,630 135 N.A. NA. 85 167 11,630 11.5 825 14.7
Void formers N.A. N.A. 17737 206 N.A. NA. 945 191 17,737 17.5 945 16.9

Total 101,301 100 86,286 100 5606 100 4950 100 -15,015 -14.8 -656 -11.7
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Table 11. GHG emissions and total cost per square meter.

ORC1 ORC2 ORC,payg. VDS1 VDS 2 VDS ava.

GHG
194 1 1 17 17 171.
(kg-CO3-eq) 9 98 96 0 3 5
Cost
(USD: $) 86 93 89.5 73 82 77.5
GHG per unit cost
2.26 2.13 2.20 2.33 211 2.22
(kg-CO2-eq/$)

In Equations (7) and (8), 2.195 and 2.123 are the GHG emission conversion coefficient for the
ordinary reinforced concrete slab and the voided slab system. These equations would make it possible
to predict the total GHG emissions based on the total construction costs in the early design. These would
be a useful tool for estimating the GHG emissions for both slab systems utilising the cost of construction.

ore2: 198, 93

L]
8 vds2: 173, 82

orcl: 194, 86

cost ($/m?)
]

% vis1:170, 73

160 165 170 175 180 85 190 195 200 205 210
co? (kg CO2 eq/m?)

—8—0rcl ——or2 —#—vdsl vds2

Figure 5. Unit emissions and cost for Case 1 and 2.

Moreover, it would be possible to estimate the total cost and the GHG emissions of the voided slab
system by adopting the value of an ordinary reinforced concrete slab. That is, it would make it possible
for designers or architects to approximate either the GHG emissions or the total costs of the voided
slab system by using Equations (9) and (10). In Equation (9), 0.866 is the estimation coefficient for the
voided slab system, which would make it possible to calculate the construction cost per square meter
based on the unit construction cost ($/m?) of the ordinary reinforced concrete slab. Similarly, 0.878 in
Equation (10) is the GHG emission conversion coefficient for the voided slab system based on the
unit emission of GHG from the ordinary reinforced concrete slab. These proposed equations could be
useful tools for designers and contractors in a construction project to estimate and compare the GHG
emissions as well as the total construction costs during the early design stage. Moreover, they could be
used as practical decision-making tools which considers both economic and environmental aspects.

VDS st /mz = 0.866 ORC et /m2 )

VDSchc/m2 = 0.878 ORCapic /me2 (10)

If the proposed equations in this study were used during the design stage in building projects,
it would be possible to evaluate both the environmental and economic feasibility of the ordinary
reinforced concrete slab and the voided slab system at the same time. This is a useful tool for any
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building project with reinforced concrete slabs to expand the application of the voided slab system in
the early design stage. Although the proposed method in this study seems to have such usefulness, it is
necessary to carry out further studies to strengthen the suggested procedures. The method proposed
in this research was concluded based on two case studies. However, more cases should be investigated
in order to enhance the accuracy and applicability of the proposed equations. In this research, the total
GHG emissions and the total cost of the ordinary reinforced concrete slab and the voided slab system
were limited to the major building materials. However, it would be necessary to carry out further
research, which deals with all the building materials for both slab systems, in order to improve the
practical application of the proposed method.

4. Conclusions

The purpose of this study was to corroborate the environmental and economic performance of
the voided slab system compared to the ordinary reinforced concrete slab. The GHG emissions and
the total costs of construction for both slab systems were quantified in order to achieve the purpose.
The results of this study indicate that manufacturing building materials contributes most to the total
GHG emissions, where concrete accounts for nearly 1/2 of all emissions. Additionally, forms are the
second largest contributor of the total GHG emissions and account for nearly 40% and 15% of emissions
for the ordinary reinforced concrete slab and the voided slab system, respectively. The production of
building materials is an upstream process, which typically involves large energy consumption sectors.
Thus, it is considered that the selection of materials in building construction would be an effective
approach to alleviating the environmental impact.

In this study, it was verified that the voided slab system indicated better environmental performance
than the ordinary reinforced concrete slab. The total GHG emissions of the ordinary reinforced concrete
slab were 256,599 and 13,989 kg-CO,-eq, respectively. Additionally, 224,945 and 12,211 kg-CO;,-eq
of the GHGs were emitted from the voided slab system. For Cases 1 and 2, the reduction of GHG
emissions were 12.3% and 12.6% over the ordinary reinforced concrete slab, respectively. From Tables 7
and 8, the voided slab system would reduce the number of beams and girders, and this would make it
possible to reduce the quantity of reinforcing bars. Such reduction in beams and girders for the voided
slab system also influenced lowering of the form quantities, which was the second largest contributor
of GHG emissions.

Along with the environmental performance of the two slab systems, the economic efficiencies of
the ordinary reinforced concrete slab and the voided slab system were assessed by comparison of the
total costs of construction. While the construction costs per square meter for the ordinary reinforced
concrete was 86 and 93 $/m?, the voided slab system would cost 73 and 82 $/m2. These results indicate
that the total construction cost would be reduced by approximately 12% on average for both slab
systems. A total cost reduction of 12.3% and 11.2% applied for the case of applying the voided slab
system to the aboveground floors and underground parking, respectively. Thus, replacing the ordinary
reinforced concrete slab with the voided slab system in the aboveground floors and the underground
would make it possible to decrease not only the GHG emissions, but also the cost of construction.
Moreover, based on the research findings, it would be beneficial to adopt the voided slab system for
both environmental and economic benefits when the voided slab system is being considered during
the design stage of building projects.

A limitation of this research is that it only focused on the main building materials for both slab
systems. The investigated cases in this study were only one project each for the aboveground floors
and the underground floors. To verify the applicability and sustainability of the voided slab system in
practice, more studies that investigate more cases for multiple evaluation of the correlation between
the GHG emissions and the cost of construction are needed.

In addition, the system boundary of this study was limited to the materials production stage to the
construction stage. However, an assessment of GHG emissions during the operation and maintenance
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and demolition stages should be conducted in order to verify the environmental performance of the
entire life cycle of a building.

The results of this study show that the reduction ratio of the underground is relatively higher than
the aboveground floor case. This result could be verified by carrying out further studies. While the
applied life cycle inventory database of this study was the South Korean LCI DB, a foreign life cycle
inventory database is required to expand the application of the voided slab system to other countries.
Likewise, the foreign data for the unit price of building materials could be applied to calculate its
economic viability.
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