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Abstract: It is of great significance to investigate the determinants of urban form for shaping
sustainable urban form. Previous studies generally assumed the determinants of urban form did
not vary across spatial units, without taking spatial heterogeneity into account. In order to advance
the theoretical understanding of the determinants of urban form, this study attempted to examine
the spatial heterogeneity in the determinants of urban form for 289 Chinese prefecture-level cities
using a geographically weighted regression (GWR) method. The results revealed the spatially
varying relationship between urban form and its underlying factors. Population growth was found
to promote urban expansion in most Chinese cities, and decrease urban compactness in part of
the Chinese cities. Cities with larger administrative areas were more likely to have dispersed
urban form. Industrialization was demonstrated to have no impact on urban expansion in cities
located in the eastern coastal region of China, which constitutes the country’s most developed
regions. Local financial revenue was found to accelerate urban expansion and increase urban shape
irregularity in many Chines cities. It was found that fixed investment exerted a bidirectional impact
on urban expansion. In addition, urban road networks and public transit were also identified as
the determinants of urban form for some cities, which supported the complex urban systems (CUS)
theory. The policy implications emerging from this study lies in shaping sustainable urban form for
China’s decision makers and urban planners.
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1. Introduction

Urban form is the spatial structure of urban area, which is believed to significantly affect the spatial
configuration of urban land use, transportation, and infrastructures [1]. Over the last few decades,
substantial progress has been made in studying urban form [2]. Characterizing and measuring urban
form constitutes an important task for policy analysts and urban planners, and there are many ways
to measure urban form [3]. Population density is widely used to reflect urban expansion, and is
believed to be the most intuitive indicator of urban form [4,5]. With the development of geographical
information system (GIS), urban form began to be popularly measured on the neighborhood scale.
For example, Song and Knaap measured the urban form of Portland by analyzing land use mixtures,
density, and accessibility [6]. Neighborhood-level metrics are based on a quite small scale and are,
thus, limited to individual cities. Remote sensing (RS) technologies and landscape metrics make
it possible to measure urban form from a macro perspective. For instance, total area, shape index,
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and aggregation index are usually applied to represent urban expansion, urban shape irregularity,
and urban compactness, respectively [7]. Different urban form is likely to result in diverse economic,
social, and ecological effects [8], due to which a range of previous studies have investigated the impacts
of urban form on a series of socioeconomic and environmental factors, such as carbon emissions [9],
air pollution [10–12], and urban–rural income [13].

More importantly, an increasing number of studies have turned their attention to the determinants
of urban form. Foremost, factors influencing urban expansion have been addressed from various
perspectives. A growing population, rising incomes, and falling commuting costs constitute three
powerful factors for urban expansion [14], moreover, property taxes [15] and price of rural land [16]
have also been believed to affect urban expansion. A case study of the Northern periphery of Mexico
Megacity identified six driving factors for urban expansion, including the population growth rate,
the share of immigrants, the welfare, scholar age, workers in second and third economic sector, and the
distances to roads [17]. Taking the City of Praia, Cape Verde as an example, Silva and Li explored the
driving forces of urban expansion, finding that population is not always the persistent driving factor
for urban expansion [18]. Studies on urban expansion in China mainly focused on the three major
urban agglomerations, namely, the Beijing–Tianjin–Hebei Region, the Yangtze River Delta, and the
Pearl River Delta, which constitute the most developed and urbanized regions in China. An empirical
investigation of Beijing, the capital of China, demonstrated that urban growth is jointly affected by
geographical, socioeconomic, and policy factors [19]. Chen et al. explored the determinants of urban
land expansion in Nanjing, one of the subcenters of the Yangtze River Delta, and highlighted the
impacts of the economy of scale, agglomeration, accessibility, and government policies on urban
expansion [20]. Based on an investigation of Taicang, another city in the Yangtze River Delta, Shu
et al. proposed a four-dimensional analytical framework of the determinants of urban expansion,
which consists of natural eco-environment, neighborhood, accessibility, and land control policies [21].
An investigation of Guangzhou, which is the center of the Pearl River Delta, indicated that population,
GDP, resident income, and urban traffic constitute the dominating driving factors for the expansion
of built-up area [22]. In terms of Shenzhen, the subcenter of the Pearl River Delta, economic growth
was proved to exert a greater effect on urban expansion than population growth, and the secondary
and tertiary sectors were demonstrated to play a more important role than the primary sector in
urban expansion [23]. Socioeconomic factors, neighborhood conditions, and accessibility have been
shown to significantly affect urban expansion in Dongguan, an important industrial city in the Pearl
River Delta [24]. In addition to urban expansion, other urban form metrics, such as shape index
and fragmentation index, are also believed to be influenced by some anthropogenic factors, such as
socioeconomic factors [25], proximity factors [26–28], neighborhood conditions [29], road network [30],
and policy factors [31].

Despite many previous studies devoted to investigating the determinants of urban form,
the majority of them focused on single cities. The determinants of urban form are poorly understood
at the national level, which is not convenient for global comparison. Determinants of urban form,
we argued, are likely to differ across cities. That is to say, spatial heterogeneity may exist in the
determinants of urban form. Therefore, the contribution of this study is to verify the possible spatial
heterogeneity in the determinants of urban form, and thus advance the theoretical understanding of
the determinants of urban form. Based on land use data interpreted from Landsat TM and Landsat
ETM scenes for the year 2015, three landscape metrics, namely, total area (TA), landscape shape
index (LSI), and landscape division index (DIVISION), were used to measure urban form for 289
Chinese prefecture-level cities from the perspective of size, shape complexity, and compactness,
respectively. Furthermore, nine influencing factors, which were expected to affect urban form, were
selected as explanatory variables. The geographically weighted regression (GWR) modeling technique
enabled us to examine spatial variations of the influences of the nine potential determinants on
the three urban form variables. The remainder of this paper is organized as follows. Section 2
focuses on data and methods, including the indicators measuring urban form, the influencing factors,
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and the geographically weighted regression (GWR) modeling technique. Section 3 presents the results,
including the spatial differences of urban form and the GWR modeling results. Section 4 provides the
discussion about the results. Section 5 provides the conclusions and sets out several policy implications
drawn from this study.

2. Data and Methods

2.1. Indicators Measuring Urban Form

Remote sensing (RS) and geographic information systems (GIS) technology make it feasible to
efficiently collect accurate land use data. In this study, urban form was evaluated on the basis of urban
built-up area boundaries of China’s 289 prefecture-level cities in 2015, which were extracted from
Landsat TM and Landsat ETM scenes with a spatial resolution of 30 m × 30 m (http://www.igsnrr.ac.
cn). The detailed procedures of RS imagery processing and urban built-up area boundary extractions
can be found in relevant literature [32]. Figure 1 shows China’s land use pattern in 2015, which was
interpreted from the abovementioned RS image data.
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Landscape metrics have been widely used to quantify urban morphology [33], which mainly
mirror three aspects of urban form, i.e., size, shape complexity, and compactness [34,35]. Total area
(TA) is the total area of urban land, which characterizes the size of urban built-up area and constitutes
the foundation of computing other landscape metrics. Therefore, TA is believed to reflect the extent of
urban expansion. Landscape shape index (LSI) is able to evaluate the overall geometric complexity
of urban built-up area, which measures the perimeter-to-area ratio. The greater the value of LSI,
the more irregular the shape of urban built-up area. That is to say, LSI equals 1 when the urban
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built-up area is a single square, and LSI increases as the shape of urban built-up area becomes more
intricate. Landscape division index (DIVISION) is the possibility that two randomly selected pixels are
not located in the same urban land patch, which measures the compactness of urban built-up area.
DIVISION equals 0 when the urban built-up area is an unbroken patch, while DIVISION reaches its
maximum when the urban built-up area is maximally fragmentized. In other words, the smaller the
value of DIVISION, the more compact the urban built-up area. Therefore, TA, LSI, and DIVISION were
employed to measure urban expansion, urban shape irregularity, and urban compactness for China’s
289 prefecture-level cities in this study, respectively. The detailed description of the three landscape
metrics is shown in Table 1.

Table 1. Detailed description of the three landscape metrics.

Landscape Metrics Equation Description

Total landscape area
(TA)

TA =
n
∑

j=1
aj

aj represents the area of patch j, n refers to the
number of patches.

Landscape shape index
(LSI)

LSI = 0.25E∗√
TA

E* represents total length of edge in landscape,
TA refers to the total area of urban land.

Landscape division index
(DIVISION)

DIVISION = 1−
m
∑

i=1

n
∑

j=1

(
aij
TA

)2 aij represents the area of patch ij, TA refers to
the total area of urban land.

2.2. Influencing Factors

This study developed an analytical framework of determinants for urban form, which
incorporated nine influencing factors. Since population (POP) constitutes the foundation of
urbanization, POP was expected to significantly influence urban form. In China, a prefecture-level
city is a core-periphery system, which consists of urban built-up area and surrounding rural area.
Therefore, the administrative area (AREA) is likely to affect urban form. Per capita gross domestic
product (GDP) and industrialization level (IND) reflect the economic development level, which are
closely connected with urbanization. Thus, both GDP and IND were selected as independent variables.
One of the most significant factors driving China’s rapid urbanization is Chinese local governments’
overdependence on benefits from leasing land, which is familiar as “local land finance”. Chinese local
governments utilize local financial revenue, a high percentage of which is from “local land finance”,
to promote urban development through fixed investment. Therefore, per capita local financial revenue
(FIN) and per capita fixed investment (INV) were expected to exert significant impacts on urban form.
Urban infrastructures, especially transportation infrastructures, are believed to have significant effects
on urban land use form, because of which several urban infrastructure factors were also analyzed,
including per capita urban road area (ROAD), number of public transport vehicles per 10000 person
(BUS), and green coverage ratio (GREEN). All the determinants data were collected from China city
statistical yearbook 2016. Table 2 reviews the details of the nine influencing factors used in this study.

Table 2. Descriptive statistics of the variables analyzed in this study.

Variable Name Abbreviation Unit Mean Median Maximum Minimum Std. Dev.

Total area TA ha 22,767 13,391 175,075 1391 24,835
Landscape shape index LSI - 12.70 11.85 33.80 3.59 4.83

Landscape division index DIVISION - 0.77 0.82 0.96 0.09 0.17
Population POP 104 persons 446.71 378.75 3371.84 20.25 318.75

Administrative area AREA km2 16,563 12,236 252,777 1,201 21,735
Per capita gross domestic product GDP yuan 51,049 43,853 207,163 10,987 29,487

Industrialization level IND % 46.64 48.03 71.45 15.17 9.56
Per capita local financial revenue FIN yuan 5270 3097 76,815 741 7006

Per capita fixed investment INV yuan 42,795 36,527 173,987 6799 26,634
Per capita urban road area ROAD m2 13.27 11.70 105.02 1.24 9.49

Number of public transport
vehicles per 10,000 persons BUS unit 8.85 6.94 89.34 1.04 7.78

Green coverage ratio GREEN % 38.82 40.32 61.58 2.71 7.24



Sustainability 2019, 11, 479 5 of 16

Figure 2 shows the box charts of the nine selected influencing factors, that is, POP, AREA, GDP,
IND, FIN, INV, ROAD, BUS, and GREEN, with scatter plot and distribution overlay, wherein the top
and bottom of each box represents the 75th and 25th centiles, respectively. The population of most
Chinese cities was less than 10 million, while only a few cities had a population more than 10 million,
including China’s four municipalities and some other cities located in China’s populous provinces.
Most Chinese cities had an administrative area less than 100,000 km2, with the exception of two cities
(Hulunbeir and Jiuquan), both of which are located in West China. GDP per capita of most Chinese
cities was less than 150 thousand yuan, while the outliers are Erdos, Dongying, and Shenzhen, which
either were abundant in mineral resources or had good locational conditions. The distribution of
industrialization level was dispersed, with the maximum of 71.45% and the minimum of 15.17%,
indicating the considerable regional differences of China’s industrialization. Local financial revenue
per capita was found to highly concentrate below 10 thousand yuan, and the most prominent outlier is
Shenzhen, China’s first special economic zone, whose local financial revenue per capita was more than
75 thousand yuan. Erdos had the greatest per capita fixed investment as well as the greatest per capita
urban road area, which was famous for its real estate bubble. BUS was demonstrated to be mainly
concentrated below 25, while the number of public transport vehicles per 10,000 persons of Shenzhen
was the largest (89). Green coverage ratio was distributed between 2.71% (Longnan, located in arid
West China) and 61.58% (Beijing, the capital of China).
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2.3. Geographically Weighted Regression (GWR) Modeling

Multivariate linear regression analysis includes two major types of regression technique. One type
is global linear regression approach, such as ordinary least squares (OLS) method, which reflects the
overall situation of statistical correlations between dependent variables and several explanatory
variables by just one equation. Another type is local linear regression method, such as geographically
weighted regression (GWR), which has evident superiority compared with the orthodox global
regression. Under the global regression framework, regression coefficients are regarded as constants
without regional disparity, which obscures the potential relationship among important local variations.
However, GWR takes spatial heterogeneity into consideration, and generates differentiated estimations
of regression parameters across spatial locations. The equation of GWR model can be expressed
as follows:

yi = β0(ui, vi) +
n

∑
j=1

β j(ui, vi)xij + εi, (1)

where yi is the dependent variable; i represents regions of the study area; (ui, vi) denotes the location
of ith observed region; β j(ui, vi) indicates the jth regression parameter at the location of observation i ,
which is a function of the geographical position; xij is the independent variable; εi is the random error
of ith region.

It is local methods, rather than maximum likelihood method that is used to estimate the
parameters of the GWR model [36]. The estimated coefficient can be calculated using Equation (2).

β̂(ui, vi) = (XTW(ui, vi)X)
−1(

XTW(ui, vi)Y
)

, (2)

where β̂ is the estimated parameter; X indicates a matrix of independent variable; XT is the transposed
form of matrix X ; Y indicates a matrix of dependent variable; W(ui, vi) is a diagonal matrix with
elements wij, which represents the spatial weights of chosen regions.

Assuming socioeconomic phenomena in different spatial units have heterogeneous differences
may be more in line with the realities [37]. According to Tobler’s first law of geography, everything is
related to everything else, but near things are more related to each other [38], which means that the
parameter estimation of a certain spatial unit is affected by the parameter estimation of other spatial
units, and this impact decreases with distance. A spatial weight matrix W(ui, vi) was thus introduced
to represent the relative significance among regions, as follows:

W(ui ,vi)
=


wi1 0 L 0
0 wi2 0 0
...

... · · ·
...

0 0 · · · win

. (3)

One of the crucial steps in the GWR modeling process is the choice of wij, which is determined
by bandwidth, namely, the distance attenuation function. The optimal number of neighboring
geographical units were determined based on the Akaike information criterion (AIC) in this study,
which is frequently used in previous studies [39]. The regression parameters can be gained after
calculating the spatial weight matrix wij. For this study, a bi-square weighting function, which has
higher efficiency than Gaussian function [40], was utilized to calculate the weight between cities,
and the equation is as follows:

Wij = [1− (
dij

qij
)

2

]

2

I(di − qi), (4)

where qi is the distance between the qth neighbor and the regression region; I(di − qi) is
a condition function.
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3. Results

3.1. Spatial Differences of Urban Form

Figure 3 demonstrates the spatial distribution of the three urban form variables of 289 Chinese
prefecture-level cities in 2015. TA was found to gradually decrease from the eastern coastal region to
Central China, then to West China. Cities located in China’s three major urban agglomerations, i.e.,
Beijing–Tianjin–Hebei Region, Yangtze River Delta, and Pearl River Delta, had larger TA than other
cities. China’s three major urban agglomerations are the country’s fastest-urbanizing region, due to
which cities in these regions have larger urban built-up areas. In addition, several cities in Central China
and West China standout in TA, including Zhengzhou, Wuhan, Chengdu, Chongqing, and Xian, each of
which is either municipality or provincial capital. LSI was found to be larger in the coastal region
and the Yangtze River basin, where high-density hydrographic nets exist, indicating that the urban
growth of cities in these regions was restricted by natural factors and the geometric shapes of urban
built-up areas of these cities were more irregular. The spatial distribution of DIVISION was relatively
even, without showing evident cluster. However, it is worth mentioning that the DIVISION values of
some cities are quite small, such as Tongling, Urumchi, Haikou, Yinchuan, Taiyuan, and Shenzhen,
indicating these cities were likely to have a relatively more compact urban form.
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3.2. The Determinants of Urban Form

A variance inflation factor (VIF) test was first run in order to avoid possible multicollinearity
among the nine explanatory variables. As shown in Table 3, the VIFs of the nine variables were all
found to be less than 10, and the tolerances were all found to be greater than 0.1, indicating that the
nine independent variables were not collinear. Therefore, the GWR model was able to be utilized to
examine the correlations between urban form and each of the explanatory variables.

Table 3. Collinearity inspection of the nine explanatory variables.

VIF Tolerance

POP 1.167 0.857
AREA 1.384 0.722
GDP 6.034 0.166
IND 1.457 0.686
FIN 6.158 0.162
INV 3.977 0.251

ROAD 1.945 0.514
BUS 2.045 0.489

GREEN 1.281 0.781

Figure 4a–c show the spatial distribution of local R2 derived from the GWR models. As indicated
in Figure 4a, local R2 of the TA model in all the cities were greater than 0.82, suggesting that the nine
influencing factors explained more than 82% of urban expansion. Figure 4b displays the geographic
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variation of local R2 of the LSI model, which was greater than 0.5 in almost all the cities. Figure 4c
presents the spatial distribution of local R2 of the DIVISION model, which ranges from 0.38 to 0.98.Sustainability 2018, 10, x FOR PEER REVIEW  8 of 16 
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In order to test the statistical significance and the direction of the regression coefficients for the
independent variables, pseudo t-tests were performed. Table 4 reviews the results of the pseudo
t-tests, which summarizes the significant correlations between the nine influencing factors and the
three urban form indicators derived from the GWR models. It was found that the significance and
direction of the correlations between the explanatory variables and dependent variables varied across
cities. Moreover, the significant correlations between GDP/INV and TA, and between BUS and
TA/DIVISION, were positive for some cities, but were negative for the others. However, no significant
correlation between GDP and DIVISION was detected in all the cities.

Table 4. Summary of the significant1 correlations between the nine influencing factors and the three
urban form indicators derived from the geographically weighted regression (GWR) models.

Explanatory Variable TA LSI DIVISION

POP 99.3%2 94.8% 41.9%
(+) (+) (+)

AREA 55.7% 43.9% 99.3%
- (+) (+)

GDP 44.6% 26.0% 0
(+: 88.4%, −: 11.6%) - -

IND 48.1% 1.7% 46.0%
- (+) (+)

FIN 49.1% 61.9% 2.1%
(+) (+) -

INV 30.8% 8.3% 3.5%
(+: 92.1%, −: 7.9%) (+) -

ROAD 68.2% 51.9% 23.2%
(+) (+) (+)

BUS 11.4% 21.5% 26.6%
(+:54.5%, −: 45.5%) - (+:1.3%, −: 98.7%)

GREEN 38.4% 1.7% 1.0%
(+) (+) (+)

1 Sig. (P < 0.05). 2 The percentage of cities where the correlation between the determinants and urban form
is significant.

3.2.1. The Determinants of Urban Expansion

Figure 5 displays the spatial distribution of the regression coefficients for the nine influencing
factors derived from the GWR models, with TA being the dependent variable. As indicated in Figure 5a,
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the coefficient of POP decreased from the center of middle and lower Yangtze River basin, indicating
the positive correlation between POP and TA was larger in middle and lower Yangtze River basin,
which is the most populous region in China. The correlation between AREA and TA was not significant
in the northwest, southwest, and northeast of China, where the administrative area of a prefecture-level
city is quite large. GDP was found to have a positive relationship with TA in some cities, while was
found to have a negative relationship with TA in some other cities. There was no correlation between
IND and TA in the eastern coastal region of China, which is the country’s most developed region.
FIN was found to positively correlate with TA in nearly half of the 289 Chines cities. INV was found
to have a positive relationship with TA in Central China and West China, which are China’s less
developed regions. There was a positive correlation between ROAD and TA in most cities. BUS was
found to have a negative relationship with TA in some developed cities, but have a positive relationship
with TA in some developing cities.
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3.2.2. The Determinants of Urban Shape Irregularity

Figure 6 shows the spatial distribution of the regression coefficients for the nine influencing
factors derived from the GWR models, with LSI being the dependent variable. POP was found to have
a positive relationship with LSI in most cities. AREA was positively associated with LSI in the Yangtze
River basin, the North China Plain, and the Guanzhong Plain, all of which are China’s populous
regions. GDP was found to have a negative relationship with LSI in some cities located in northern
China. There was no significant correlation between IND and LSI in most cities. FIN was found to
have a positive relationship with LSI in more than half of the 289 Chinese cities. A positive correlation
between INV and LSI was detected in a few cities. There was a positive relationship between ROAD
and LSI in cities situated in East China and Central China, and the extent of the correlation decreased
from east to west. BUS was found to have a negative relationship with LSI in cities located in the
eastern coastal region of China, which is the most developed region in China. The correlation between
GREEN and LSI was not significant in the majority of the 289 cities.
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3.2.3. The Determinants of Urban Compactness

Figure 7 shows the spatial distribution of the regression coefficients for the nine influencing factors
derived from the GWR models, with DIVISION being the dependent variable. POP was found to
have a positive relationship with DIVISION in 42% of the 289 cities. Moreover, the magnitude of the
positive correlation between POP and DIVISION decreased from northwest to southeast. AREA was
positively correlated with DIVISION in almost all the Chinese cities. No significant correlation between
GDP and DIVISION was detected in all the Chinese cities, due to which GDP was not revealed to be
a determinant of urban compactness. IND was found to have a positive relationship with DIVISION in
46% of the Chinese cities. A positive correlation between ROAD and DIVISION was detected in cities
located in the coastal developed regions. By contrast, BUS was found to have a negative relationship
with DIVISION in some northern cities. As indicated in Figure 7e,f,i, DIVISION was found to have
a significant relationship with FIN, INV, and GREEN in only a few cities.
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4. Discussion

Previous studies generally assumed that the determinants of urban form did not vary across
spatial units, while this study addressed the spatial heterogeneity in the determinants of urban form.
Our results suggested that evident spatial heterogeneity existed in the determinants of urban form of
Chinese cities. For most Chinese cities, population growth was demonstrated to bring about urban
expansion, which is consistent with both our expectation and common sense. With the improvement of
agricultural productivity, labor force is driven from agriculture to manufacturing and service industry,
and increasing rural residents migrate to urban areas, which generates considerable demand for
housing and infrastructure and, thus, causes urban expansion [41]. However, the magnitude of the
effects of population growth on urban expansion differed across cities. Previous studies generally
identified population growth as a negative factor for compact urban development [42], while this
hypothesis was not proven in all Chinese cities, indicating that an increased population does not
necessarily lead to a less compact urban form. Larger administrative area, we argued, resulted in lower
urban compactness in most Chinese cities, a possible explanation for which is that prefecture-level cities
with larger administrative areas have more sufficient land resources and are more likely to scatter [43].
A positive correlation between GDP per capita and TA was only found in part of the Chinese cities,
which indicated that economic development may be achieved without urban expansion. Moreover,
the association between industrialization level and TA was detected in Central China and West China,
where the industrialization level was relatively low. However, there was no correlation between
industrialization level and TA in China’s eastern coastal region, where the industrialization level was
relatively high. This finding seemed to verify the environmental Kuznets curve (EKC) hypothesis,
namely, the impact of industrialization on urban expansion first increased and then decreased [44].
The positive correlation between per capita local financial revenue and TA/LSI in many Chines cities
revealed the important role local government played in promoting urban expansion and the formation
of less regular-shaped urban forms. A positive correlation between per capita fixed investment and
TA was identified in less developed cities located in Central China and West China, rather than more
developed cites located in East China, demonstrating that fixed investment constituted an important
driving force of urban expansion in less developed cities, where fixed investment was mainly made in
new area development. Nevertheless, fixed investment may exert inhibitory effects on urban expansion,
since fixed investment can be made in urban redevelopment rather than new area development [45].
Both urban road networks and the development of public transit, we argued, were the significant
determinants of urban form in some Chinese cities, which provided evidence for the complex urban
systems (CUS) theory. Unlike “distance to central business district (CBD)” model, CUS theory identifies
connectivity of an urban system network, rather than proximity to CBD, as the key factor generating the
clustering of people and businesses. That is to say, firms and residences tend to aggregate in the most
well-connected nodes of urban system networks, proximity to which constitutes the strongest source
of production externality [46]. By affecting connectivity of an urban system network, the development
of urban road networks and public transit can thus exert effects on urban form and structure. Typically,
the development of urban road networks and public transit is able to promote the formation of
subcenters, such as “edge cities”, shaping decentralized urban form.

The dataset and the methodology of this study have two possible limitations. On the one hand,
what this study used was cross-sectional data, which contains relatively few observations and does not
have the ability to detect unobserved heterogeneity [47]. Compared with cross-sectional data and time
series data, panel data has evident advantages [48]. Firstly, panel datasets can improve the estimation
efficiency by reducing the effects of multicollinearity and increasing the degrees of freedom [49].
Secondly, panel datasets are able to control unobserved heterogeneity [50] and, thus, can verify and
calculate some indicators that cannot be recognized in pure time series and cross-sectional data
models [51]. In order to better address the determinants of urban form, panel data, which can deal
with observations from multiple individuals over multiple periods [52], is expected to be used in
future studies. On the other hand, it needs to be admitted that urban form consists of multiple aspects
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and is not limited to urban expansion, urban shape irregularity, and urban compactness. Moreover,
landscape metric is not the only measurement to quantify urban form. With the aim of more fully
identifying the determinants of urban form, some other methods and indicators are thus expected to
be employed in future studies.

5. Conclusion and Policy Implications

Land use change, which constitutes a significant consequence of urbanization, leads to changing
urban form. An increasing number of studies devoted to investigating the determinants of urban
form, while the majority of them overlooked the possible spatial heterogeneity existing in the
determinants of urban form. In order to advance the theoretical understanding of the determinants of
urban form, this study attempted to examine the spatial heterogeneity in the determinants of urban
form for 289 Chinese prefecture-level cities. Three landscape metrics, i.e., TA, LSI, and DIVISION,
were used to measure urban form from the perspective of size, shape irregularity, and compactness,
respectively, based on remote sensing land use data. Furthermore, nine influencing factors, which have
potential impacts on urban form, were selected as independent variables. In order to address spatial
heterogeneity, GWR modeling technique was utilized to examine the correlations between the nine
influencing factors and the three urban form variables.

The results of this study demonstrated that the relationships between the urban form indicators
and the influencing factors are spatially nonstationary, indicated by clear spatial patterns of parameter
estimates obtained from GWR models. In other words, evident spatial heterogeneity existed in
the determinants of urban form of Chinese cities. Population growth was found to promote
urban expansion in most Chinese cities, since increasing urban residents need more housing and
infrastructure. However, the magnitude of the impacts of population growth on urban expansion
varied across cities. Population growth was only identified as a negative factor for urban compactness
in part of Chinese cities, suggesting population growth does not necessarily result in less compact
urban form. It was also found that cities with larger administrative areas were more likely to disperse
due to more sufficient land resources. GDP per capita was found to exert a positive effect on urban
expansion in not all Chinese cities, indicating that economic development did not have to be achieved
at the cost of urban sprawl. In addition, industrialization was demonstrated to have no impact on
urban expansion in cities located in the eastern coastal region of China, which were the country’s
more developed regions. Per capita local financial revenue was found to be associated with TA and
LSI in many Chines cities, revealing the important role China’s local government played in affecting
urban form. Fixed investment had a bidirectional impact on urban expansion, and the direction of the
impact depended on whether new area development or urban redevelopment was given priority to.
The development of urban road networks and public transit affected connectivity of urban system
network and thus constituted one of the key determinants of urban form, which supported the
CUS theory.

The policy implications emerging from this study lies in shaping sustainable urban form for
China’s decision makers and urban planners. On the basis of the above findings, it was suggested
that locality-oriented policies should be formulated to control urban expansion and shape regular and
compact urban form. First of all, moderate urbanization should be advocated to prevent urban from
sprawling and facilitate compact urban development. Moreover, policy instrument, such as urban
growth boundaries [53], should be adopted in more and more cites. Last but not the least, for cities
where public transit was conducive to shaping sustainable urban form, the development of public
transit should be given priority.
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