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Abstract: The power grid is a critical component of city infrastructure. If it is damaged by an
earthquake, there can be a huge impact on the safety and well-being of society and individuals.
Identifying nodes in the grid that are highly vulnerable to earthquake damage is significant for
effective pre-earthquake damage prevention, emergency response, and post-earthquake relief. Three
indicators, the probability of node disconnection, the node hierarchical level, and the node critical
threshold, were chosen, and their combined ability to represent node vulnerability to damage from
an earthquake event was analyzed. A variable fuzzy clustering model was used to classify and order
the nodes in the grid. The 20-node power grid of a city was used as an example to show how highly
vulnerable nodes were identified, and how the reasons for the high vulnerability of these nodes
were drawn out of the analysis. Countermeasures were given to reduce network vulnerability. The
variable fuzzy clustering method used in this paper offers a new perspective on network vulnerability,
and it quantifies the vulnerability of grid nodes more comprehensively than existing methods of
assessing grid vulnerability. This research is significant as a baseline reference for future studies of
grid vulnerability.
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1. Introduction

The power grid is an important urban infrastructure that supports the regular operation of a
city and ensures the normal functioning of people’s daily lives. Urban development increases both
dependence on the power grid and the magnitude of loss and damage caused by large-scale failures.
Earthquakes pose the greatest threat of all natural disasters to a power grid and can entirely disrupt it.
The prevention of damage to the grid due to earthquakes can maintain the safety and sustainability of
modern society. Measures to deal with disasters can be divided into pre-disaster damage prevention
and preparation, and post-disaster rescue and repair. The academic community believes that the former
is superior to the latter and has proposed building a Culture of Prevention. Although post-disaster
rescue and repair is always necessary, it is not enough to respond to a disaster only after it happens
because the response is costly and its effects are temporary; pre-disaster damage prevention and
preparation can contribute to more lasting security. Vulnerability assessment is a major earthquake
damage prevention measure for power grids [1].

The concept of vulnerability was first used in international political economy to explain
dependency [2]. It was subsequently introduced into the natural sciences and engineering to describe
the state of a system and its components that were vulnerable to damage or exposure. Vulnerability
is universal. Almost all systems have some degree of vulnerability. The manner of conducting a
vulnerability analysis is a key issue when considering how to ensure stability in the operation of a
system. We investigated the vulnerability of power grid nodes to earthquake events by finding weak
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links in the power grid in order to reduce vulnerability by improving the seismic grade of power
facilities and reducing the risk of seismic damage to key nodes before an earthquake event. Our
research has further significance in guiding post-earthquake rescue and repair strategies.

There is no single agreed-on concept of power grid vulnerability and no perfect vulnerability
assessment method or widely accepted set of indicators. Vulnerability is influenced by internal
and external factors. The latter include natural disasters and damage caused by humans, and the
former include electrical component failures and convoluted power grid topology. When scholars
of different disciplines study the vulnerability of power grid nodes, they often analyze from their
own professional perspective, and the research focus varies. Some literature is concerned with the
response of mechanical properties of electric power facilities to seismic activity and the capacity of
the facilities to resist structural damage [3–5]. Some literature describes the functional modeling of
electrical substations as a method of studying how earthquakes damage these structures. The authors
found that component damage caused by the earthquake led to a short circuit, propagated inside the
substation and to surrounding substations, and could thus cause a system-wide failure [6,7]. Some
literature uses the graph theory to analyze the relationship between network topology and reliability
from the perspective of complex networks. This kind of research can be divided into a pure model and
an extended model according to different abstract forms of the power grid. The former abstracts the
power grid into a pure network, focusing on the influence of topological characteristics (such as degree,
proximity, betweenness, clustering coefficient, etc.) on the network, which has been applied in studying
the failure mechanisms of the U.S. power grid [8–10], the European power grid [11], and the Italian
power grid [12]. The latter pays more attention on the electrical performance of the grid, incorporating
the characteristics of electrical components, such as impedance, power, and component capacitance,
into the network model. Compared with the pure model, the extended model is more in line with the
physical characteristics of the grid [13–16], but because of its computational complexity, the extended
model is not practical for large networks and complex situations. Some literature has focused on the
performance of the power grid. Researchers have analyzed power flow and derived performance
indicators that can be used to judge the state of the power grid network [17–19]. The aforementioned
research examines vulnerability from different perspectives. However, the vulnerability of a power
grid is multi-faceted and complex, so it must be assessed comprehensively. We introduce the variable
fuzzy clustering algorithm, which we use to quantify the vulnerability of a power grid by analyzing
characteristics of the nodes.

We selected two types of indicators to measure the vulnerability of power grid nodes: Structural
vulnerability indicators and functional vulnerability indicators. The former are concerned with
vulnerability due to network topology, and the two indicators used are the hierarchical level of each
node and the critical threshold. The indicator of functional vulnerability is the service characteristic
indicator, also known as the probability of node disconnection. We justify the direction of our research
and the choice of indicators as follows.

(1) The common topological indicators used to quantify vulnerability are node degrees and
betweenness [20,21], but the research literature [22,23] shows that the conclusions obtained from the
use of the degree indicator are one-sided. In general, the greater the degree of a node, the greater its
vulnerability. However, some special nodes in the network, such as bridge nodes, although small in
degree, are very vulnerable. Use of the betweenness indicator requires a holistic understanding of the
network and its information, which is often difficult to obtain. Therefore, we use the critical threshold
and the hierarchical level indicators to measure the node vulnerability from a topological perspective.

(2) Under normal conditions, the performance of the power grid should be calculated from
the power flow in the network, from which the power distribution, voltage, and other performance
indicators can be obtained. However, if there is earthquake damage, the quantitative relationship
between the failure probability of high-voltage electrical equipment and the power flow loss is
extremely difficult to determine. To facilitate research, this calculation is generally replaced by network
connectivity analysis. Node disconnection probability is used instead of the power performance
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indicator. If the node is connected, the node power performance is considered to be normal. This
substitution is acceptably accurate for earthquake-related vulnerability analysis [24].

(3) The boundary between structural vulnerability indicators and functional vulnerability
indicators is not inflexible when indicators are selected. For example, the critical threshold indicator is
derived from the cascading failure model of complex networks. This model represents the process
of cascading failures caused by load redistribution and includes the functional influence of nodes.
Thus, the critical threshold represents a certain functional attribute [22,23]. Therefore, we combined
the critical threshold and node disconnection probability for a more comprehensive indicator instead
of undertaking power flow analysis of the grid to take into account the performance and topology of
the network.

In the past, the research on the power grid was conducted from different angles, and a single
index was selected to evaluate the vulnerability of the nodes. For example, the literature [25,26] uses
the probability of node failure under earthquakes; the literature [27,28] uses the node degree or the
power-based degree; the literature [8,12,29,30] uses the node betweenness or electrical betweenness;
the literature [31] uses the node electrical centrality. The above-mentioned indicators assuredly reflect
the degree of node vulnerability to some extent, but as vulnerability is a rather complex problem, a
single indicator fails to comprehensively measure the node vulnerability. The main contribution of
this paper is to use the idea of clustering and select relevant indicators from two aspects (internal
factors, i.e., the characteristics of the power grid; external factors, i.e. the impact of earthquake effects)
to comprehensively evaluate the vulnerability of power grid nodes.

The rest of this paper is organized as follows. In Section 2, the reasons for using a variable fuzzy
clustering model, and the advantages it offers, are presented. In Section 3, the specific calculations for
each of the three indicators are given. In Section 4, the algorithm flow of the variable fuzzy clustering
model is introduced. In Section 5, the grid of a particular city is used as an example to show how the
vulnerabilities of grid nodes are classified and sorted. In Section 6, through a discussion and analysis
of the results, the reasons for the high vulnerability of certain nodes are identified, and some targeted
measures are proposed to reduce the impact of vulnerabilities at such nodes. In the final section, the
research described in this paper is summarized, and the direction of future research is outlined.

2. Methodology

We pioneer the use of a clustering algorithm, which is a data mining technique, to classify
vulnerability. This methodology was inspired by the Walmart beer and diaper story. Walmart
executives found, by analyzing sales data, that two completely unrelated products, beer and diapers,
were often sold at the same time. Research showed that in a family with a newborn, the mother takes
care of the baby, and the father is responsible for the purchase of diapers. However, when the father
purchases diapers, he often also buys beer. The beer–diaper association is difficult to understand at
first sight, but it follows a pattern that can be identified through data mining and analysis.

In a power grid, a single indicator cannot accurately quantify the vulnerability of a node. Only
by considering a number of indicators can we comprehensively evaluate the vulnerability. Using a
clustering algorithm to find the vulnerability, using data that represents node characteristics, therefore
appears to be a fruitful approach. Early clustering algorithms, such as hierarchical clustering and
k-means clustering, strictly classify data objects into certain well-defined categories [32], but in many
problems that are encountered, the boundaries between categories are vague or ill-defined. This is the
case with power grid vulnerability. There is no clear boundary between high and low vulnerability, so
it may not be reasonable to use older clustering algorithms for classification. In the 1960s, when Zadeh
introduced the concept of a fuzzy set [33], fuzzy set theory was used in clustering problems in fuzzy
clustering analysis. In 1984, Bezdek developed the c-means fuzzy clustering algorithm (FCM) [34],
which is used extensively. We propose a variable fuzzy clustering model, which improves on FCM.

To study the vulnerability of the power grid to earthquake damage, it is necessary to classify the
nodes and to evaluate different types of vulnerability to develop targeted prevention measures. FCM
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can only categorize the sample nodes and does not quantify the characteristics of the categories. The
variable fuzzy clustering model we introduce in this paper can assess the vulnerability of each category
by improving the FCM algorithm.

3. Calculation of Node Vulnerability Indicators

3.1. Node Disconnection Probability

Analysis of power grid connectivity examines the probability of disconnection between a node
and the source node. A greater probability of failure indicates a higher vulnerability. The analysis
determines whether there is a path between the node and the source node. To calculate the probability
of a node being disconnected, the adjacency matrix of the network is first established, and the
disconnection probability is obtained using a Monte-Carlo simulation [35,36].

To analyze the reliability of network connectivity, the adjacency matrix A, which describes the
connections between nodes in the network, is determined by:

A = [ai j] ai j

{
1, if node i is connected to node j
0, if node i is not connected to node j

(1)

Figure 1 is a schematic of a small network, and its network adjacency matrix A is shown in
Equation (2).

A =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

 (2)
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After obtaining the adjacency matrix, we construct a judgment matrix that determines whether
nodes are connected:

M = I + A + A2 + A3 + · · ·+ An−1 (3)

where I is an identity matrix of order n; n is the number of network nodes. If an element in M is
nonzero, then mij > 0, and the nodes i and j are connected; if mij = 0, the nodes i and j are disconnected.

The steps for calculating the Monte-Carlo simulation are:

(1) The node failure probability pi of the node when there is an earthquake is required;
(2) The node generates a random number δi in [0, 1] that is then compared with the failure probability

pi of the node. If δi > pi, the node i operates normally; otherwise, node i fails and the edge (or link)
connected to i also fails. If i fails, the adjacency matrix A is modified so that the elements in row i
and column i become 0; that is, A[i,:] = 0, A[:,i] = 0;

(3) The modified adjacency matrix A is used to calculate the judgment matrix M. For all elements mij
in M, if mij > 0, the nodes i and j are connected; if mij = 0, the nodes i and j are disconnected;
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(4) The connectivity state after each simulation is included in the matrix T,

t(k+1)
i j = t(k)i j +

{
1 mi j ≥ 1
0 mi j= 0

; (4)

(5) Repeat steps 2–4. When the number of simulations k is large enough, Equation (5) can be used to
calculate the node disconnection probability,

pi j = 1−
ti j

k
. (5)

3.2. Hierarchical Level

The hierarchical level Gi indicates the ability of a node to influence the entire transmission network.
It is intuitive that when the source node is destroyed, the effect on the whole network is the greatest,
and the vulnerability is the highest. Therefore, nodes with different degrees of contact with the source
node should have different vulnerability indicator values. We set the hierarchical level of the source
node to 1, the hierarchical level of nodes directly connected to it was 2, and so on. The hierarchical
levels can be completely calibrated using a step-by-step search of the adjacency matrix A as follows.

(1) The source node is determined. In Figure 1, for example, node 1 is the source node. In the first
level search, the first row vector (0, 1, 1, 0), corresponding to node 1 in A, is searched, and elements
with value 1 are found at a12 and a13. This gives the hierarchical levels of nodes 2 and 3, G2 = G3 = 2.
The elements in the row vector and the column vector corresponding to node 1 are changed to 0, which
means that the connection between node 1 and the network is destroyed, and the first level search
ends (Figure 2).

( 1) ( )
1      1
0      =0   

ijk k
ij ij

ij

m
t t

m
+

≥= + 


; (4) 
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(2) The second level search starts at the nodes of the second hierarchical level. The row vectors (0, 0,
1, 1) and (0, 1, 0, 1), corresponding to nodes 2 and 3, are searched to find that a23 = 1, a24 = 1, a32 = 1 and
a34 = 1. Thus, the hierarchical level of node 4, G4 = 3, is known. When different hierarchical levels are
obtained for the same node, the higher-ranking level is chosen. For example, in the second search a23 = 1
and a32 = 1, which indicates that the hierarchical levels of nodes 2 and 3 are 3, but their hierarchical
level given by the first search is 2, so the hierarchical level of nodes 2 and 3 is taken to be 2. The
elements in the row vector and the column vector corresponding to nodes 2 and 3 are changed to 0,
which means that nodes 2 and 3 and the network are disconnected, and the second level search ends
(Figure 3).
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(2) When the initial node i fails, the load is redistributed to the adjacent nodes, as shown in
Figure 5. The distribution is governed by Equation (7).

Π j =

[
k j
∑

m∈Γ j
km

]α
∑

n∈Γi

[
kn

∑
f∈Γn k f

]α (7)
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(3) To determine whether node j will experience a cascading failure, the node capacity Cj is set to
TLj, where T is the load that will be borne at the node (T is a percentage value somewhere between the
initial load and the ultimate load capacity of the node). A greater value of T indicates that a greater
maximum load can be carried, but also that the initial investment cost was higher. To avoid cascading
failure, the sum of the initial load and the increased load at node j should be less than the ultimate load
that the node can carry:

C j = TL j > L j + ∆L ji (9)

Equation (8) is substituted into Equation (9) to give:

T > 1 +

(
ki
∑

m∈Γi
km

)α
∑

n∈Γi

(
kn

∑
f∈Γn k f

)α = TC (10)

where TC is the minimum value at which node j does not fail after node i fails. Equation (10) shows
that when i fails, the value of TC is independent of node j. Nodes adjacent to node i have the same TC
value because it depends only on the load on node i and its adjacent nodes. As TC increases, the value
of T for adjacent nodes will increase, and it becomes more likely that cascading failures will occur.
Conversely, the probability of cascading failure is reduced as TC decreases. We used TC as an indicator
of network vulnerability, which was the corresponding threshold after the failure of node i.
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4. Variable Fuzzy Clustering Model

4.1. Algorithm Flow of Variable Fuzzy Clustering Model

With a sample size of n, the number of selected metrics is m. The sample index data are listed in
matrix X:

X =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 (11)

where xij is the data of the ith indicator of sample j, and i = 1, 2, . . . , m; j = 1, 2, . . . , n.
The data are normalized because the dimensions of different indicators differ. The equation to

normalize indicators for which larger values indicate better performance is:

ri j =
xi j − xmin

xmax − xmin
(12)

The equation to normalize indicators for which smaller values indicate better performance is:

ri j =
xmax − xi j

xmax − xmin
(13)

After normalizing X using Equations (12) and (13), the normalized index matrix R is:

R ==


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rm1 rm2 · · · rmn

 (14)

where rij is the normalized index. The closer rij is to 1, the greater the vulnerability that is indexed. The
purpose of the normalization is to facilitate the sorting of the vulnerability of the cluster center in a
later stage (Section 4.2).

The n samples are divided into c clusters, and the c cluster centers can be represented by a matrix,
S = (sih)m×c, where sih is the normalized ith indicator of cluster center h and 0 ≤ sih ≤ 1, i = 1, 2, . . . , m;
h = 1, 2, . . . , c.

The membership matrix U = (uhj)c×n is formed, where uhj is the sample j belonging to the category

h. h = 1, 2, . . . , c; j = 1, 2, . . . , n, and the condition
c∑

h=1
uhj = 1, 0 ≤ uhj ≤ 1 must be satisfied.

The difference between the sample j and the cluster center h is represented by the distance dhj.

The weight vector w = (w1 w2 . . . wm) = (wi) is formed, satisfying the condition
m∑

i=1
wi = 1, 0 ≤ wi ≤ 1,

where wi represent the degree of influence of different indicators on clustering results. The equation
for dhj is:

dhj =

 m∑
i=1

[
ωi

∣∣∣ri j − sih
∣∣∣]p


1
p

(15)

where different p values represent different distance parameters. When p = 1, it is the Hamming
distance; when p is 2, it is the Euclidean distance.

To create the final membership matrix U∗ = (uhj) and the cluster center matrix S∗ = (sih), the
objective function is:

min

F(u, s, w) =
n∑

j=1

c∑
h=1

u2
hjd

α
hj

 (16)
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where α is a variable parameter. When α = 1, the function corresponds to the least absolute criterion;
when α = 2, the function corresponds to the least squares criterion. This model is a conditional
extremum problem, which is transformed into an unconditional extremum problem using a Lagrangian
multiplier. The final iterative equation is obtained by:

uhj = 1/
c∑

k=1

(
dhj/dkj

)α
, h = 1, 2, · · · , c; j = 1, 2, · · · , n (17)

sih =

n∑
j=1

u2
hjri j

n∑
j=1

u2
hj

, i = 1, 2, . . . , c (18)

Using Equations (17) and (18), the final membership matrix U∗ and the cluster center matrix S∗ are
found by looping iterations, where α, p and wi are the variable parameters. We used α = 2 and p = 2,
and equally weighted parameter combinations were used for clustering calculations.

4.2. Vulnerability Assessment and Level Characteristic Values

To quantify vulnerability, the vulnerability of c cluster centers in S∗ is first quantified. The
vulnerability of the cluster varies as the vulnerability of the cluster center. In Equations (17) and (18),
which normalize the sample data, the vulnerability increases as rij gets closer to 1. An ideal node
(1, 1, . . . 1︸   ︷︷   ︸

m

) is one for which all values are 1, which means that all indicators are most vulnerable, so the

ideal node has the greatest vulnerability. The vulnerability of the cluster center Sh is quantified based
on its distance from the ideal node, with a smaller distance representing a greater vulnerability.

The random number of the initial fuzzy clustering matrix (u(0)
hj ) takes different values for different

iterations, so the order of the cluster centers in S∗ can differ between iterations. To facilitate sorting,
cluster centers are ranked by vulnerability from large to small as 1, 2, . . . , c. The membership matrix
U∗ must be adjusted according to the order of cluster centers in S∗.

After the adjustments to S∗ and U∗, the nodes are classified. FCM clustering customarily uses the
maximum membership principle, but Chen and Guo [38] explicitly opposed this method, claiming
that the classification based on the maximum membership principle lost the global information of
membership degree. To give an extreme example: When the sample membership value is equal, the
maximum membership principle cannot determine which category the sample belongs to. Therefore,
Chen and Guo [38] used the level characteristic value to determine the category. The membership
distribution function of u0 for c categories is h ∼ uh(h = 1, 2, · · · , c), and the product of the grade
variable h and the degree of membership is summed to obtain the level characteristic value:

H(u0) =
c∑

h=1

uhh (19)

Using Formula (19) to determine the category of samples has a more explicit mathematical and
physical meaning: assuming that the unit mass objects are distributed along the horizontal axis, the
corresponding masses u1, u2, . . . , uc, are concentrated on c points 1, 2, . . . , c, on the horizontal axis. As
shown in Figure 6, H(u0) represents the centroid position of the object.
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(1) If the membership degree is concentrated at one level point a, there is

H(u0) = a,
{

uh = 1, h = a
uh = 0, h is a point other than a

(20)

When u0 is a member of point a, it has a physical meaning that the mass point of the object is at
point a.

(2) If the membership degree is evenly distributed at each level point, there is

H(u0) =
c∑

h=1

1
c

h =
1
c

c(c + 1)
2

=
c + 1

2
, uh =

1
c

, h = 1, 2, · · · c (21)

When u0 is a member of point (c + 1)/2, it has a physical meaning that the mass point of the object
is at the midpoint of the object.

After H(u0) is obtained, the grade of u0 can be determined by:

1.0 ≤ H(u0) ≤ 1.5, u0 is grade 1
h− 0.5 < H(u0) ≤ h + 0.5, u0 is grade h (h = 2, 3, · · · , c− 1)
c− 0.5 < H(u0) ≤ c, u0 is grade c

(22)

The level characteristic value given by Equation (19) reflects the global information contained in
the u0 membership degree and can determine more accurately which grade u0 is.

5. Node Vulnerability Analysis of a Power Grid in a Certain Region Under Earthquake Action

The partial grid of the San Francisco Bay area was selected as the research object in this paper. Due
to the limitation of the acquired data, this paper adopted the following principles for the simplification
of the power grid: (1) Only power plants and substations are reserved as nodes of the power grid,
and transmission lines with voltage above 110 kV are used as edges. (2) Power plants and substations
are regarded as indistinctive nodes; regardless of the influence of power flow direction and electrical
parameters in the transmission line, it is abstracted as an unweighted and undirected edge. (3) By
combining the transmission lines with the same pole, the self-loop and multiple edges in the topology
model of the power network are eliminated, and the corresponding diagram becomes a simple one.
According to the above principles, the grid in this area was simplified in Figure 7, which contains
20 nodes and 27 edges. Nodes 1 to 5 are power plants, and the rest are substations.



Sustainability 2019, 11, 5633 11 of 17

G

G

G

G

G

G

14 16

131
15

10

8

6

20 4

9

12
19

11

18
17 2

3

7

5

Legend

Power plant

Substation

500kV transmission line

230kV transmission line

115kV transmission line  
Figure 7. Power grid network in a city. 
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Figure 7. Power grid network in a city.

In this example, the design earthquake was the largest earthquake in the history of this area,
the Loma Prieta earthquake in 1989 (Ms = 7.0), with an epicenter 29 km north of Point 4, and the
disconnection probability Pi of each node was obtained. The hierarchical level Gi and the critical
threshold Ti of each node for cascading failures were obtained. The initial values of these three
indicators are listed in Table 1.

Table 1. Indicator data of nodes.

Node Pi Gi Ti Node Pi Gi Ti

1 0 1 1.198 11 0 3 1.248
2 0 1 1.333 12 0.967 5 1.285
3 0 1 1.27 13 0.446 2 1.381
4 0.706 1 1.306 14 0 3 1.255
5 0 1 1.253 15 0 3 1.255
6 0.265 2 1.324 16 0 2 1.396
7 0 2 1.319 17 0 2 1.33
8 0.79 3 1.385 18 0 2 1.333
9 0.967 4 1.269 19 0 2 1.27

10 0.975 3 1.273 20 0.859 2 1.258

The indicators were normalized to accommodate different dimensions. For the probability
of disconnection Pi and the critical threshold Ti, larger values indicate greater vulnerability, so
Equation (12) was used for normalization. For the hierarchical level Gi, smaller values indicate greater
vulnerability, so Equation (13) was used for normalization. Normalized data values are listed in Table 2.
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Table 2. Normalized indicator data of nodes.

Node Pi Gi Ti Node Pi Gi Ti

1 0 1 0.000 11 0 0.5 0.253
2 0 1 0.682 12 0.992 0 0.439
3 0 1 0.364 13 0.457 0.75 0.924
4 0.724 1 0.545 14 0 0.5 0.288
5 0 1 0.278 15 0 0.5 0.288
6 0.272 0.75 0.636 16 0 0.75 1.000
7 0 0.75 0.611 17 0 0.75 0.667
8 0.81 0.5 0.944 18 0 0.75 0.682
9 0.992 0.25 0.359 19 0 0.75 0.364

10 1 0.5 0.379 20 0.881 0.75 0.303

Node vulnerability in the power grid was divided into three categories, high, medium, and low;
that is, c = 3. The parameter values were α = 2, p = 2. Calculations were made according to the weight of
each indicator, w = (1/3 1/3 1/3). The cluster center matrix S∗ was obtained using Equations (17) and (18).

S∗ = (s1, s2, s3) =


0.0256 0.9137 0.1023
0.728 0.4058 0.7867

0.2969 0.4405 0.6959


The three cluster centers were s1 = (0.0256, 0.728, 0.2969)T, s2 = (0.9137, 0.4058, 0.4405)T,

s3 = (0.1023, 0.7867, 0.6959)T. At this point, it was necessary to determine the preferential order
of cluster centers. The ideal node with the greatest vulnerability (1, 1, 1) was used, and the distance
from the ideal node to the three cluster centers d and the degree of membership u were calculated using
Equations (15) and (17): d = (1.232, 0.8207, 0.9715), u = (0.206, 0.463, 0.331). Using d and u, it was found
that the distance between node s1 and node (1, 1, 1) was the greatest and its degree of membership was
the least, which indicated that node s1 represented the category with the least vulnerability. Node s2

was at the other extreme and represented the most vulnerable category. Node s3 was between the two.
Based on this result, the optimal cluster center order was adjusted to S∗ = (s2, s3, s1). The corresponding
membership matrix U∗ was also adjusted, and the final result is shown in Table 3.

Table 3. Adjusted membership matrix.

Node s1 s2 s3 Node s1 s2 s3

1 0.0830 0.2124 0.7046 11 0.0496 0.1509 0.7995
2 0.0348 0.7709 0.1943 12 0.8106 0.0948 0.0945
3 0.0430 0.3085 0.6486 13 0.1876 0.6246 0.1878
4 0.3815 0.3591 0.2594 14 0.0481 0.1609 0.7911
5 0.0445 0.2344 0.721 15 0.0481 0.1609 0.7911
6 0.0439 0.8094 0.1466 16 0.0637 0.7735 0.1628
7 0.0160 0.8267 0.1573 17 0.0114 0.9054 0.0832
8 0.5833 0.2630 0.1537 18 0.0109 0.9155 0.0737
9 0.9437 0.0278 0.0285 19 0.0055 0.0435 0.9509

10 0.9666 0.0168 0.0165 20 0.7170 0.1382 0.1448

According to the membership degree of 20 nodes in the three cluster centers in Table 3, the level
characteristic Equation (19) is applied to obtain the characteristic value Hi of vulnerability level for
20 nodes, which are listed in Table 4:
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Table 4. The characteristic value Hi of vulnerability level.

Node Hi Node Hi Node Hi Node Hi

1 2.6217 6 2.1027 11 2.7498 16 2.0991
2 2.1596 7 2.1413 12 1.2839 17 2.0718
3 2.6056 8 1.5703 13 2.0001 18 2.0628
4 1.8779 9 1.0849 14 2.7429 19 2.9454
5 2.6765 10 1.0499 15 2.7429 20 1.4277

The vulnerability of each node was ranked using Equation (20), giving the following results.
Nodes with high vulnerability were 9, 10, 12 and 20; nodes with medium vulnerability were 2, 4, 6, 7, 8,
13, 16, 17 and 18; and nodes with low vulnerability were 1, 3, 5, 11, 14, 15 and 19. The clustering results
are shown in Figure 8.
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6. Result and Discussion

A vulnerability assessment was briefly analyzed. We found that the four nodes with high
vulnerability were nodes with the highest probability of disconnection Pi, showing a large discrepancy
in node disconnection probability. Thus, the influence of this indicator on the results is significant. This
is consistent with the observed characteristic that the fuzzy clustering algorithm is sensitive to outliers
with large changes [32]. The seven points with low vulnerability had a probability of disconnection 0,
and the critical threshold of each node was also at a low level, which suggests that these nodes not only
have a low probability of failure but also have little impact on adjacent nodes after failures. Intuitively
they have low vulnerability, which matches everyday experience, showing that the variable fuzzy
clustering method can well determine the vulnerability of power grid nodes to earthquake events.
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Determining the vulnerability of power grid nodes is of great importance in determining what
measures to take to reduce the effects of earthquakes and what post-earthquake emergency responses
to initiate. For example, if a node loses its functionality due to structural damage, attention should
be paid to improving the seismic grade of the facility, and post-earthquake priority should be given
to inspecting and repairing nodes on the main trunk. For nodes with high vulnerability due to the
topology of the network, the power grid should be optimized, which may include redundant facilities
being added, power sources being better dispersed, and multi-loop power grids being created with
each loop having a different power source.

Clustering is a typical algorithm for unsupervised learning. It is intended to explore and discover
patterns in data samples and to find similar groups in them [39]. This model can be run without
any prior knowledge of the data, which makes it suitable for vulnerability analysis. Nowadays,
research on vulnerability is to establish a system performance model. By removing the nodes
to simulate the impact on system performance after the failure, this effect actually represents the
pattern of vulnerability generation. Therefore, the accuracy of the model becomes a key factor in
vulnerability analysis. However, due to the complex mechanism of vulnerability generation and even
the lack of an accurate definition to describe it, the accuracy of various system performance models is
currently under discussion. In the vulnerability analysis, the conclusions obtained by different system
performance models are quite different or even completely opposite. For example, in the literature on
the vulnerability of complex networks, the vast majority of research supports the view that nodes with
a large load have a great impact on the network. However, Wang and Rong [10] formed a different
conclusion after studying the failure mechanism of the power grid in the Western United States. They
found that if the parameters of the model meet certain conditions, attacking the node with a small
load is more likely to cause a large-scale collapse than if the load is large. Another example is the
use of pure models and extended models in the literature [14] to study the vulnerability of the power
system, and the conclusions obtained are also divergent. Therefore, the purpose of using the clustering
method in this paper is to break out of the limitation of system performance model and analyze the
vulnerability from a completely different perspective.

The method described in this paper is more comprehensive in analyzing the impact of earthquake
damage on the power grid than were previous studies, which have usually predicted the effects of
node failure on the power grid by removing a node from the grid to determine its vulnerability through
analysis of power flow and network topology. However, previous studies have assumed that each
node has an equal probability of being destroyed, which is contrary to real-world observation. Some
researchers have simulated the grid to quantify its vulnerability to earthquake damage by attaching a
probability to each node. However, the computation required for this sort of simulation is huge and
complex, and this approach has been unsuccessful so far [40,41]. We used the probability of a node
being disconnected due to earthquake activity as an indicator of vulnerability and included it in the
cluster analysis for a more realistic and reasonable consideration of the effect of an earthquake than the
previous study using the same probability assumption.

7. Conclusions

It is difficult to quantify the vulnerability of a power grid to earthquake damage because of its
complexity. Most previous studies have used a single indicator of grid vulnerability, which shows
that only one perspective of vulnerability is taken into account. The single-index approach fails to
represent the vulnerability of the grid comprehensively or accurately. We used three indicators of
the vulnerability of the grid to earthquake damage in this study, the probability of disconnection,
the hierarchical level, and the critical threshold of the power grid, together with the variable fuzzy
clustering model, to obtain a more comprehensive measure.

The use of the indicators and methods proposed in this paper can objectively and accurately
assess the vulnerability of grid nodes, but there are still some shortcomings in the research. First,
because there is no one agreed-upon precise definition of vulnerability, the choice of an appropriate set
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of indicators that accurately reflects vulnerability remains a problem that needs to be studied more
deeply than we were able to. In this paper, the pure model is used to calculate the critical threshold,
topological metrics identify a first level of vulnerability in the physical structure. However, the flow of
electric power in power grid follows Kirchoff’s laws, using only topology metrics, ignoring power
grid characteristics and technical constraints may lead to inaccurate results. Therefore, in our future
work, the influence of technical constraints (voltage, resistance, maximum power, etc.) should be taken
into account. Second, power grid performance is also an important indicator of vulnerability. We
used the probability of disconnection and the critical threshold as alternatives to functional indicators.
This choice is acceptable for analysis of vulnerability to earthquake damage, but functional indicators
are also likely to provide accurate measure of the vulnerability of the grid and must be considered in
future research. Third, the case power grid used in this paper is small in scale, which is inconsistent
with the characteristics of large-scale modern power grid. In future work, the methodology should be
tested in a larger-scale power grid. At last, with the development of power grid technology, smart grid
has become a new and vibrant research field. In smart grid, the network topology may be frequently
changed to optimize its behavior. How to evaluate the impact of structural changes on vulnerability is
also an important research field.
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Nomenclature:

A Adjacency matrix
M Judgment matrix that determines whether nodes are connected
Pi Disconnection probability of node i
Gi Hierarchical level of node i
Li Load of node i
ki Degree of node i
Ti Critical threshold of node i
m Number of indicators
n Number of samples
c Number of cluster centers
sih Normalized ith indicator of cluster center h
Sm×c Cluster center matrix
uhj Membership degree of the sample j belonging to the category h
Uc×n Membership matrix
dhj Distance between the sample j and the cluster center h
wi Indicator weight
H(u0) Level characteristic value of the sample u0
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