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Abstract: Public transport accessibility (PTA) is an essential index for evaluating the efficiency of urban
public transport resource and public service. Improving public transport accessibility is considered
as the most effective way of alleviating urban congestion and promoting urban sustainability. PTA
can be divided into three types, which are access to stations, accessibility of networks and access to
activities. This paper focuses on evaluating access to public transport service at stations, considering
walking time to stations and waiting time for services at stations. Numerous studies have been carried
out on evaluating the accessibility of public transport stations. When building accessibility evaluation
model, rare has seen different public transport modes as an integrated system. Hence the topological
structure and geometrical layout of the system are not considered. In this paper, factors like the
configuration of the public transport system and the surrounding environment of stations are included
for the evaluation. The centrality of station index (COS) is presented to describe the importance of
stations in the integrated public transport system. The COS index is an improved combination of the
gravity model and degree centrality index of the complex network. This index improves the degree
centrality index by replacing the number of nodes with weighted connections between stations. By
modeling public transport operation, configuration and surroundings of stations, a comprehensive
public transport service accessibility index (CPTAI) is formulated to quantify accessibility at the
community level. To compute this index, a network analysis model is firstly applied to find the
nearest station for each point of interest (POI) by using ArcGIS desktop 10.2, and the transport service
frequency at the nearest station is measured. Then Baidu Map API is employed to measure the
impedance indexes between stations in the integrated public transport network. Activities covered
by stations within a given distance are seen as the generation and attraction of trips in between the
stations. Then a weighted gravity model and COS is presented to calculate the integrated service
frequency (ISF) for each POI afterward. In the end, the index is converted to the community level,
which is CPTAI. The experiment is carried out in Wuhan metropolitan area, Hubei, China. Smart
card data (SCD) is utilized to evaluate CPTAI and examine the association between commuting trips
by public transport and accessibility level within Wuhan metropolitan area. Experimental results
show that CPTAI has a significant statistical association with trips by public transport.
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1. Introduction

The common use of public transport has great effects on energy conservation, the reduction of
air pollution and the mitigation of traffic congestion. The accessibility of transportation is generally
defined as the ease of access to activities by overcoming impedance between locations [1]. Studies
have shown that the promotion of public transport accessibility (PTA) could effectively boost transport
economy, enhance the protection of urban environment and facilitate the improvement of public
health [2–5]. A well-organized transport system should be capable of undertaking different modes
of traffic and promoting urban mobility to meet various traffic demands [6]. Hence, factors such
as access to transport stations, the mobility of transport routes, connectivity of different transport
modes and diversified traffic demand should be considered for building such transport systems [7–9].
Constructing efficient public transport systems with high accessibility is one of the main focuses for
urban planners and decision-makers throughout the world [10]. With the rapid urbanization process
in recent decades, a series of problems have become prominent because of the increasingly use of
private cars, such as traffic congestion and urban environmental pollution [11–13]. On the one hand,
increasing the accessibility of public transport can encourage the transition of private transport to
public transport, which hence helps to mitigate the problems mentioned above. On the other hand,
from the perspective of users, an active transport service can be defined as low cost of the whole
journey, low impedance to access public transits, less walking distance, or even good travel experience.
The cost of travel is normally measured in time, distance, or money [14–19].

Among the four essential functions of a city, traffic is the link of the other three, work, residence
and recreation, which builds a bridge for people’s demand and activities. People use transport facilities
to go to offices and factories for work, to their homes for sleep, to shopping centers for food and
clothing, to schools for education, to hospitals for nursing, to stadiums for sports and theaters for
recreation. Better accessibility of traffic facilities can benefit more people. Similarly, good traffic
accessibility ensures people’s access to public services. Thus, the level of PTA is adopted to evaluate
the social and economic equity by assessing the construction and distribution of public services. Poor
public transport accessibility may result in social exclusion with the increasing cost of living for the
inefficiency of public facilities. Studies show that access to public transport services has been the main
factor for suburban areas to access public services and jobs [17,19]. People living in urban periphery
and new city clusters face the challenge of easy access to work, education, shopping centers, cultural
and sports facilities and other activities [15,16,18,20,21].

Meanwhile, poor accessible facilities like parks, shopping centers and sports centers, are not able
to satisfy citizens’ needs and not attractive to citizens, which is a waste of public resource [22,23].
Besides accessibility, another concern is traffic congestion. Highly congested traffic and the inefficient
configuration of networks could lead to a poor experience. To tackle this problem, China has been
carrying out the policy of “Giving Priority to Public Transport” in recent years [24,25]. With the rapid
construction of public transport facilities, the evaluation of PTA based on the level of activities can
provide a comprehensive measure covering the majority of travel needs and potentials.

This paper presents a review of numerous studies carried out on the evaluation of PTA [10,26,27].
Different modes of transport are regarded as independent systems in the previous studies of multimodal
public transport accessibility. A weighted sum is then applied to measure the access level of PTA [7,10,28].
For daily trips usually involve more than one trip mode, and there are correlations between different
modes, public transport modes should be integrated. Studies have shown the configuration of public
transport networks is a success factor for public transport. Higher number of convenient transfer
points, more choice of routes, higher degree of overlap with activity centers lead to a great role for
public transport [29,30].

In this study, a new index is presented to measure multi-modal public transport service accessibility.
Public transport service frequencies, the configuration of transport networks in terms of topological
structure and geographical layout, and potential travel demands and attraction are taken into
consideration. This approach is applied in evaluating the accessibility level of public transport
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for communities in Wuhan metropolitan area, including public bus/tram and metro services. The
remainder of this paper is organized as follows. The following section introduces the related work on
the evaluation of public transport service accessibility (PTSA). Section 3 introduces the methodology
and the computation of the new index. Section 4 presents the results of the proposed approach in
Wuhan metropolitan area, compares the results of the new index with the existing approaches, and test
the effectiveness of the approach using smart card data. In Section 5, we draw conclusions, and outline
future research.

2. Related Work

PTA is an important research field for traffic policy making and urban planning. Public transport
service accessibility (PTSA) is different from PTA by considering transport service frequency at the
station, in addition to access time to the station. Poor PTSA to education, health, cultural facilities,
and the uneven distribution of public transport facilities may seriously affect people, especially for
the low-income group. Similarly, poor accessibility of public service may lead to a waste of public
resource by not attracting enough people. Accessibility can be measured by the distance to stations or
the distance of the whole journey from the origin to the destination [28]. Study shows that the measure
of PTA/PTSA can be categorized to the following four types. The first one is physical access to public
transport facilities/service. The second one is the access to specified social and economic activities.
The third type is based on personal needs. The fourth one is based on utility theory. While users are
considered as customers, and public traffic modes are their choice set [4,31]. Accordingly, the measure
of PTA/PTSA can be categorized into three types, which are the access to public transport stops/service,
the duration of the whole journey and the access to activities [32,33].

Most studies, which focus on physical access, take the access to public transport stations or
travel time into consideration [3,34]. Substantial researches have created indexes to measure the
quality of public transport service [10,18,19]. A part of them evaluates the quality of public transport
service in terms of accessibility, mobility and connectivity [9,32,35]. The most utilized approach for
evaluating accessibility is the index of public transport accessibility level (PTAL), which has been
well developed and widely used in the UK [6,19]. This approach has become essential for urban
and rural transport planning in the UK. The PTAL index considers walking time to access stations,
transport service frequency. Access to public transport stations of all point of interests (POIs) are
evaluated in this approach, and the results are categorized into six main levels. This approach measures
the accessibility level for each census collector district by considering transport service frequency
and walking distance to stations [7,19]. Public transport service accessibility index (PTAI) is derived
from PTAL by considering the factor of population density covered by service area of stations. The
population is assumed to be evenly distributed within the census area [10]. Another index is land
use and public transport accessibility level (LUPTAL), which is established based on both origin and
destination, and measures accessibility in terms of walking distance and travel time.

The indexes above have modeled different transport networks as independent ones, which should
be modeled as an integrated system. The integrated system is a complex network composed of a group
of nodes and routes. As well, degree centrality is a primary measure for evaluating the importance
of nodes in a network. Studies show that the higher the centrality of facilities, the more efficiency of
public transport networks [30]. The degree centrality of a public transport facility is the number of
connected facilities [36]. In the complex transport system, the number of traffic routes connected to the
station, population or activities covered by stations, or potential traffic flow between stations can be
factors for measuring connections between nodes [37,38]. According to Tobler’s first law of geography,
near things are more related to each other [39,40]. Connections should consider the effect of distance
attenuation. Hence the gravity model is integrated to optimize the connections. The gravity model is
a measure for the relationship between two nodes, which is positively correlated with links of two
nodes, and inversely correlated with impedance in terms of time, distance and other costs [41,42].
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Geographical indexes are the common measures for travel cost. Studies show that the topological
structure is also essential, especially in evaluating transport by rail. Stations with higher connectivity,
ranking the higher degree of centrality and integration are more attractive for public trips [29,43].
Space syntax theory is popular in evaluating the topological structure of a network. Li et al. (2014)
regard a transport line as a node to evaluate the access level of starting station and transfer station of
the metro line [44]. While Zhou et al. (2015) treat stations as nodes and the routes between stations as
routes [45]. The topological distance is presented to measure accessibility, while the distance between
adjacent stations or connected routes is one step. The average depth, connectivity, degree of integration
are the typical indexes utilized in previous methods [44,45]. While in reality, both topological and
geographical distances are factors which affect the choice of traffic modes. The defects of existing
measures are the separation of different public transport modes and the neglect of either topology or
geography [7,10,41,42]. In response, this approach is based on demands and activities, and focuses
on measuring access to different types of public transport stations in an integrated public transport
system, while considering walk time, service frequency and network configurations.

3. Methodology

This study constructs an index to assess public transport accessibility at the community level.
Community is the smallest administrative unit for urban management in China. Factors of transport
service frequencies and the centrality of stations in the integrated public transport system are calculated
to measure the CPTAI for each community. This study deals with transport service frequency in terms
of access time to public transport service. The higher service frequency at the station, the higher
accessibility levels for the POIs surrounding the station. COS is the weighted average of potential trips
from the station to the other stations. The denser POIs surrounding the station shows higher access to
activities and more potential trips of the station. While the less cost from the station to other stations
shows the easier access to the station. Less cost can be shorter distance, less travel time, more options
for travel and less depth, or a combination. Stations with higher centrality, namely higher connectivity,
more travel choices, shorter distance and depth, show higher attraction for traffic flow. In this section,
methods and the process for calculating the index are presented.

3.1. Framework

The CPTAI approach consists of two main procedures. The first step is to find the nearest stations
for each POI and calculate the service frequency of the specified station. The second step is to measure
the centrality of stations in the integrated public transport network. The COS index improves the
degree centrality index by replacing the number of nodes with weighted connections between stations.
The weighted connections are calculated using a gravity model, where connections are the number of
POIs covered by stations in a given walking distance, and impedance is an integration of topological
and geometrical factors. Connections stand for the traffic generation and attraction of both stations.
While cost is a comprehensive expression of average distance, travel time, depth, transfers and options
of travel from the station to the other stations. Then a weighted sum of the transport service frequency
and COS is calculated for each mode, namely the integrated service frequency (ISF) for each POI. In
the end, ISF for single POI is converted into community level, which is CPTAI. Figure 1 shows the
framework for calculating the CPATI.
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3.2. Service Frequency

Service frequency is derived from service access time (SAT). SAT is the sum of the following two
parts: (1) Walking time from each POI to the closest public transport stops, (2) waiting time at the station.

(1). Walking time to the nearest station (Walk_T)

The walking time is calculated from specified POI to the nearest public transport stop for all
modes by applying network analysis. Distance from POI to the station is converted to time assumed at
an average walk speed of 80 m/min. According to Guideline Standards for Public Facilities allocation
in Newly Built Areas of Wuhan (Trial), maximum walking time to bus/tram stations is 5 min while for
train stations is 15 min.

(2). Average waiting time (Wait_T)

The average waiting time (Wait_T) is the duration from arriving at the station to boarding. The
fixed schedules of public transportation operation time lead to service availability gap. In our study,
it is assumed that the average waiting time is half of the average traffic interval for all lines passing
through the station in an hour. For instance, two routes, namely line A and line B, are passing the
same Station s. The service interval of line A is10 min, and 15 min of line B. Thus, the frequency of
line A is 6 and 4 for line B per hour. For station s, the total service frequency is 10. Therefore, traffic
interval at station s is 6 min, and the average waiting time (Wait_T) at station s would be 3 min. Wait_T
is estimated as half of the average headway of all the bus lines, as shown in Equation (1).

Wait_Ts = 0.5×
(
60/

∑n

k=1
Fsk

)
k = 1, 2, 3 . . . n (1)

where Wait_Ts is the average waiting time (minutes) of the station s, Fsk is the service frequency of
the transport line k passing through station s, and n is the number of routes passing through station s.
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When more frequent routes pass through the station, the waiting time at the station for the service
is shorter. This indicates the activities around would take less waiting time for access the transport
service at the station.

(3). Service access time (SAT)

Service access time is the duration of walking from the activity site to getting on bus/metro. The
SAT of a selected POI to the nearest public transport station is calculated as the sum of the Walking time
to the closest station (Walk_T) and Average waiting time (Wait_T), shown in Equation (2).

SATis = Walk_Tis + Wait_Ts i = 1, 2, 3, . . . m (2)

where SATis is the service access time of POIi to the closet stop/station s as explained above, Walk_Tis
is the walking time from POIi to the closet stop/station s, Wait_Tis is the average waiting time in station
s, and m is the number of POIs.

(4). Service Frequency (SF)

The Service Frequency (SF) is derived from SAT. SF means the equivalent service times at the
stop/station available per hour for POIi. The higher service frequency, the more service is available for
the activity. SF is calculated as Equation (3).

SFis = 0.5× (60/SATis) i = 1, 2, 3, . . . m (3)

where SFis is the Service Frequency for POIi, SATis is the service access time of POIi, m is the number
of POIs.

3.3. Centrality of Station (COS)

It is assumed that the geographical distribution and topological level of station have significant
effect on the access level of station. To quantify the effect, we proposed the centrality of station, which
is an index to measure the importance of the station in integrated public transport network. The index
is a weight for the service frequency at station s for each POI. COS is derived from the degree centrality
index. The higher COS of the station has, the more important in transport network system the station
is. By using weighted potential trips instead of the number of nodes connected to the station, the
calculation of COS is as Equation (4).

COS(si) =
n∑

j=1

log
(
W_Conni j

)
/(n− 1) i , j (4)

where COS(si) is the centrality of station i, W_Conni j is potential traffic flow between station i and
station j, and n is the total of stations. When calculating ISF, COS is a weight for transport service
frequency. As the number of covered POIs is large, a log function is applied to normalize the weighted
connections after calculation.

The gravity model is introduced to calculate the connections between the station and the other
stations. The connections are the potential trips that may take place at the station. The model assumes
that the potential trips between two regions is in proportion to both the demands of the original region
and the attractions of the destination, while inversely proportional to the traffic impedance. The
calculation of weighted connections using the gravity model is as Equation (5).

W_Conni j = Trip_gen(si) ∗ Trip_attr
(
s j
)
/ f

(
Costi j

)
i , j (5)

where Trip_gen(si) is the trip generation of station i, Trip_attr
(
s j
)

is the trip attraction of station j,

f
(
Costi j

)
is the impedance of travel from station i to station j.
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3.3.1. Trip Generation and Attraction

The amount of activities covered is applied to differentiate the demand and attraction of stations
by considering activity distribution in walking distances. POIs are utilized to describe the distribution
of activities. POIs taken for urban functions are chosen for the calculation of trips in both bus/tram and
metro modes. Service area analysis model of GIS is applied to find the service area of stations, and
spatial overlap function is applied to count the number of POIs covered by walking catchments, giving
a walking time of 15 min for metro and 5 min for bus.

3.3.2. Impedance

The impedance is calculated from the perspective of both topological and geographic by applying
space syntax theory and network analysis model. As space syntax measures spatial relations in terms of
topological depths, which ignores the geographical distance [46,47], both topological and geographical
relationships are considered in this study [45]. Intermediate indexes such as average topological depth,
available travel plans, route distance, route time and transfer times from the station to all other stations
are calculated by utilizing Baidu Map API. Public transport networks are organized as an integrated
system, real-time congestion is included, and rules like shortest Euclidean distance/time/walking
distance or least transfer times can be set when processing Baidu Route Planning API. In this study, we
choose the shortest travel time as a rule for the model.

For calculating the impedance, a series of topological and geographical figures are put forward,
namely average topological depth, number of travel plans, transfers, average route distance, and
average route time.

(1). Average Topological Depth

Average topological depth refers to the average steps of the current station to all other stations.
This index describes the topological distance between stations and ignores geometric distance. If
the average topological depth is shorter, the topological location of the station is better in the public
transport system. This means the impedance from the station to the other stations will be smaller. By
the application of Baidu Route Planning API, topological distances from the station to all reachable
stations are measured, the distance for adjacent stations is counted as one step, and transfer is counted
as one step as well.

Dtis =
∑n

k=1
Dtsk/(n− 1) k , s, s = 1, 2, 3, . . . n (6)

where Dtis represents the average topological depth for the closest station s of POIi, Dtsk represents the
topological distance of the station s to any other station k, n is the number of stations.

(2). Number of Travel Plans

Connectivity is a typical morphologic index of space syntax, which stands for the number of
spaces connected to the specified one. In this study, the options of travel plans stand for the connectivity
of the station in the public transport network. A higher number means higher connectivity, which also
means higher spatial permeability.

(3). Average Route Distance

The average route distance means the average geographical distance from the station to all other
stations. Higher index shows the geographical advantage of the station in the public transport system.
The smaller the index is, the cost of activity from the station to other stations would be less. The index
is estimated by Baidu Route planning API, including the walking distance of transfer.

Dis =
∑m

k=1
Dsk/(m− 1) k , s, s = 1, 2, 3, . . . m, (7)

where Dis represents the average route distance from the closest stations of POIi to all other stations,
Dsk represents the route distance from station s to any other station k, and m is the number of stations.
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(4). Average Route Time

Similar to the index of average route distance, the average route time is also an index to measure
the geographical configuration of the station in the public transport network. For the significant speed
difference between travel modes, travel cost here is measured by equivalent time. The travel speed is
set as the real-time travel speed extracted from Baidu Map API, and the road congestion in the morning
rush hours is also included in the calculation.

Tis =
∑m

k=1
Tsk/(m− 1) k , s, s = 1, 2, 3, . . . m (8)

where Tis is the average route time from the closest station s of POIi, Tsk represents the route time from
station s to any other station k, and m is the number of stations.

(5). Cost

By applying stepwise regression analysis, indexes with high correlated coefficient are eliminated.
The indexes, finally chosen to calculate the impedance of travel, are normalized into a comprehensive
cost index for the calculation of weighted connections.

3.4. Comprehensive Public Transport Service Accessibility Index (CPTAI)

The Integrated Service Frequency is the equivalent transport service frequency weighted by COS
for each POI. The calculation of ISF is as shown in Equation (9). SFis _Bus and SFis _Metro consider the
transport operation of both public bus and metro modes, and COSis embodies not only the distribution
of activities but also the topology and geometry of the network. As people may choose either bus or
metro, both conditions are considered for the specified POI. We apply the same weight for both modes
of POIi.

ISFi = (COSis _Bus)×(SFis _Bus) + (COSim _Metro)×(SFim _Metro) (9)

where ISFi stands for the integrated service frequency for POIi, SFis _Bus denotes the equivalent
service frequency of bus station s for POIi, SFim _Metro denotes the equivalent service frequency of
metro station m for POIi, COSis _Bus represents the comprehensive topology weight of bus station
s for POIi, and COSim _Metro stands for the comprehensive topology weight of metro station m for
POIi.The ISFs calculated for POIs are converted into community level. Database converters of FME
are employed to assign the maximum ISF figure of the POI inside the community to the specified
community. Communities with no POI will be assigned the ISF of the nearest community within 15
min’ walking distance. Only when the surrounding communities are not accessible, the ISF for the
community is Zero.

For each community/enclave, we set rules shown in Equation (10).

CPTAIi =

{
max(ISFiu) Has POI in communityi
CPTAIi_near No POI in communityi

(10)

where CPTAIi is the public transport accessibility index of communityi, ISFiu is the maximum integrated
service frequency of POIu in communityi, CPTAIi_near is the index of neighborhood community within
a certain distance of communityi.

4. Study Area and Experimental Result

As the index is introduced to evaluate the development of regional public traffic integration.
A dataset of Wuhan metropolitan area is chosen to test the performance of the proposed index.
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4.1. Data and Study Area

Wuhan metropolitan area has been the centralized construction area according to the urban master
plan of Wuhan city. Within the 3261 km2, the dataset of public transport construction and operation,
socioeconomic facilities and the planning boundaries is introduced as follows.

(1) Two modes of public transport facilities including bus/tram and metro/light rail. Public
transport facilities include stations and routes of each mode. These datas are obtained from Baidu
Map open platform. By the end of 2015, 746 directed routes and 4459 stations of bus/tram, three routes
and 76 stations of metro/light rail are in operation in Wuhan metropolitan area. Figure 2 shows the
distribution of the routes and stations within this area. Bus/tram stations cluster in the central area
while dispersing in new city clusters.
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(2) Transport service frequency is scraped from websites and Apps like Tuba and Intelligent
public transport. We obtained timetables in morning rush hours from 7:00 to 9:00. The schedules for
365 routes out of the 378 undirected routes are collected.

(3) POIs are bought from the company of Siweituxin at the beginning of 2016. By data classification
and cleaning, we delete the non-functional POIs, remove redundant data, such as addresses, crossroads.
Finally, a dataset with 134.8 thousand POIs is obtained. These POIs are categorized into catering, public
service, jobs, residents, commercial, living service and leisure facilities. Table 1 shows the distribution
of different POI categories and the average distances of each category to bus and metro stations. Most
functions are within 5 mins’ walking distance to bus stations, while none of them are within 15 mins’
walking distance to metro stations. Figure 3 shows the spatial distribution of POIs. Highly dense POIs
cover the central area. While in the new city clusters, POIs exist mainly in town centers and distribute
along the main roads.

Table 1. Points of interest in Wuhan Metropolitan area.

Categories Number Percentage Average Distance to Closest
Bus/Tram Stations (m)

Average Distance to
Closest Metro Stations (m)

Catering 16,431 12.11% 295 3284
Public service 12,283 9.05% 377 3546
Infrastructures 2584 1.90% 534 23772

Jobs 20,505 15.11% 496 4565
Residents 7307 5.39% 334 3444

Commercial 49,720 36.65% 281 3903
Living service 20,867 15.38% 305 5455

Leisure 5981 4.41% 360 3623
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(4) The Administrative boundaries dataset includes community boundaries and the “1+6”
boundary within the metropolitan area. The “1+6” is respect to the one city center and six new city
clusters around the center. Community boundaries are obtained from digital Wuhan open platform,
and the latter is acquired from the urban master planning. With the rapid construction and renewal
of Wuhan metropolitan area, community boundaries are adjusted accordingly. For the investment
and resettlement policies, land of some communities is enclosed by the other communities. Enclaves
existing in some communities lead to the complexity of calculation, so we separate them from the main
community part. Then 1924 communities are separated into 2505 parts.

4.2. Results of PTAL, PTAI and CPTAI

Our proposed approach extends the commonly used indexes, including the index of PTAL which
is devised by Transport for London and is widely adopted. PTAL considers walking time, waiting time,
and service frequency in accessibility measurements. It calculates equivalent frequencies of all public
transport modes. Another index derived from PTAL is the PTAI, which takes public transport service
frequency and population density as important distribution indicators [10]. In this study, we choose
activities as the distribution factor when calculating PTAI and CPTAI. Both indexes are calculated by
summing up the accessibility indexes for different modes of public transport. The results are calculated
and categorized into six levels based on Quantile Method except for zero accessible communities.

Results for PTAL and PTAI are shown in Table 2. According to the table, 67.35% of the
community/enclaves or about 33.41% of activities have zero to moderate access to public transport
modes based on PTAL. While referring to PTAI, 60.56% of the community/enclaves or about 26.32%
activities have zero to moderate access to public transit. The results are quite similar. By considering
activity distribution, the index of PTAI obtains much better accessibility in communities with high
access and worse accessibility in communities with poor access than PTAL. The result shows that
POIs are more concentrated near stations at a highly accessible location, and dispersed at a poorly
accessible location.

Table 3 shows the results of CPTAI. According to the results, zero access is provided for 2685 POIs,
which is 1.99% of all POIs. Overall, near 13.7% of the POIs in half of communities/enclaves in the
metropolitan area have poor access levels of public transport service. 64.55% of POIs concentrated
in 31% of communities/enclaves have relatively good access to public transport services. Figures
in different CPTAI categories show high consistency with figures in PTAL and PTAI categories in
Table 2. While compared to PTAL, CPTAI shows quite consistent results. There are slightly more
communities with poor access from 46.26% to 48.78%, and a bit more communities with extreme high
access from 1.92% to 2.12%. The result shows that higher centrality of the station has a positive effect
on accessibility.
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Table 2. Public transport accessibility level (PTAL) and public transport accessibility index (PTAI).

Categories
PTAL PTAI

Communities POIs Communities POIs

No access 570 22.75% 2619 1.94% 570 22.75% 2619 1.94%
Very poor 125 4.99% 1853 1.37% 231 9.22% 8009 5.94%

Poor 464 18.52% 12,074 8.95% 352 14.05% 9445 7.00%
Moderate 528 21.08% 28,509 21.14% 364 14.53% 15,414 11.43%

Good 444 17.72% 37,985 28.17% 313 12.50% 19,821 14.70%
Very good 326 13.01% 44,684 33.14% 350 13.97% 33,135 24.57%
Excellent 48 1.92% 7116 5.28% 325 12.97% 46,397 34.41%

Total 2505 100% 134,840 100% 2505 100% 134,840 100%

Table 3. CPTAI categories and distribution at the community scale.

Categories Ranges
Community/Enclaves POI

Number Percent Number Percent

Zero 0/NULL 582 23.23% 2685 1.99%
Very poor 0–3 222 8.86% 2874 2.13%

Poor 3–8 418 16.69% 12918 9.58%
moderate 8–23 506 20.20% 29325 21.75%

Good 23–52 427 17.05% 37048 27.48%
Very good 52–131 297 11.86% 41964 31.12%
Excellent >131 53 2.12% 8026 5.95%

Total 2505 100.00% 134840 100.00%

Figure 4 shows the distribution of CPTAI categories in Wuhan Metropolitan area. Most of the
communities/enclaves are accessible to public transport. High levels of accessibility from good to
excellent are most concentrated in city center and the core areas of six new city clusters, while there are
still communities with low accessibility in the city center.
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4.3. CPTAI Assessment

Smart card data of public transport is adopted to evaluate the approach. The dataset includes
data of bus and metro of Wuhan in May 2015. The database has the hourly swiping data of smart
card for both check-in and check-out. We calculate the daily average swipes for each station and
allocate the trips of stations to reachable communities by applying the weight of POI number within
each community. By allocating, a total of 2.48 million trips by metro and 6.16 million trips by bus
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are allocated to communities, including both check-in data and check-out data. Trips by metro make
up less than a quarter of public transport flow. Therefore, public bus is still the most popular public
transport mode.

By applying cross-tabulation analysis with Chi-square and Cramer’s V test, the association between
CPTAI indexes and public transport modes are tested. Table 4 shows the results of cross-tabulation
analysis between the six levels and two commuting modes. The CPTAI index is categorized from very
poor to excellent. The rows present trips and percentage of trips for each mode. The columns are the
figures for each access level. The results indicate that the number of trips shows an upward trend with
the increasing accessibility of public transports. For the very poor to poor accessibility level, trips by
metro are quite few and fewer than trips by bus. This may be because metro stations on the periphery
area are within longer walking distance and with low connectivity for the metro facilities are scarcer
than bus facilities.

Table 4. Cross tabulation results for public transport modes and PTAI categories.

CPTAI Categories
Total

Excellent Very Good Good Moderate Poor Very Poor

Modes

metro
Observed 300,121 1,139,169 622,783 384,839 35,721 114 2,482,747
Expected 200,778.5 999,703.3 736,382.1 431,583.3 100,838.2 13,461.6 2,482,747.0

% in mode 12.1% 45.9% 25.1% 15.5% 1.4% 0.0% 100.0%

bus
Observed 398,493 2,339,324 1,939,477 1,116,866 315,148 46,726 6,156,034
Expected 497,835.5 2,478,789.7 1,825,877.9 1,070,121.7 250,030.8 33,378.4 6,156,034.0

% in mode 6.5% 38.0% 31.5% 18.1% 5.1% 0.8% 100.0%

Total
Observed 698,614 3,478,493 2,562,260 1,501,705 350,869 46,840 8,638,781
Expected 698,614.0 3,478,493.0 2,562,260.0 1,501,705.0 350,869.0 46,840.0 8,638,781.0

% in mode 8.1% 40.3% 29.7% 17.4% 4.1% 0.5% 100.0%

Quantitative statistics of trips by public transport modes based on different transport access levels
are shown in Figure 5. It shows that in places with poor accessibility, public bus is dominant. While
with the increase of accessibility, the number of trips by metro rises more rapidly than by bus according
to Figure 5.
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Figure 5. PTAI categories and public transport modes in Wuhan Metropolitan area.

According to Table 5, the Pearson Chi-square is 205558.167 with the p-value less than 0.001.
Accessibility level is significantly associated with accessibility levels and commuting by public
transport modes.
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Table 5. Chi-square test of the association for CPTAI categories and travel modes.

Value df p-Value

Pearson Chi-square 205558.167a 5 0.000
Likelihood ratio 225294.220 5 0.000

N of validate cases 8638781

a. 0 cells (0.0%) expected count < 5. The minimum expected count is 13461.61.

Cramer’s V test is used to explore the strength of association between public transport modes and
the CPTAI categories. The value is in range of 0 to 1. The closer to 1 the stronger relationship there
is. Seen in Table 6 the relationship between public transport modes and access levels is weak as the
index of Crammer’s V is 0.154. This is in consistency with the result of Table 4. The distribution of
trips in each CPTAI category is similar for each mode, and the difference between the two modes is
small. However, the number of trips in each category of both modes varies greatly. One reason is the
lack of metro facilities in urban periphery where the accessibility level is poor, and using of bus is more
common. Another reason can be the congestion in urban center where the accessibility levels of both
modes are good, people choose metro more for time-saving. However, for the traffic capacity variation
for each mode, the overall choice of bus is more than that of metro.

Table 6. Chi-square based measures of association for CPTAI categories and travel modes.

Value p-Value

Nominal by nominal
Phi 0.154 0.000

Cramer’s V 0.154 0.000
Contingency coefficient 0.152 0.000

N of validate cases 8,638,781

4.4. Comparison between CPTAI, PTAI and PTAL

Chi-square test is applied for each index with trip modes to make a comparison of the new index
CPTAI with PTAL and PTAI. Cross-tabulation results of the six accessibility levels of three indexes and
the two trip modes are as shown in Table 7. All indexes show consistency in the correlation between
trips and access levels. Trips increase as the access level increase except for the excellent level of
PTAL and CPTAI. This is mainly because the percentage of communities with excellent access level is
relatively low in these two approaches, according to Tables 2 and 3.

For further analysis, most trips are in moderate to excellent access level, only 4.6% of trips share
poor access in PTAL index, 3.3% of PTAI and 3.7% of CPTAI. This implies the insufficient supply of
public transport facilities in the study area. As for different traffic modes, compared with the typical
PTAL, CPTAI has slightly more trips in good access levels by bus and a bit more trips in good access
levels by metro. The result suggests that centrality of station affects the metro more than the public
bus, especially when the metro network is still under construction and not completely developed.
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Table 7. Cross tabulation results for public transport modes and PTAL, PTAI and PTAI categories.

PTAL PTAI CPTAI Total

Exc VG Good Mod Poor VP Exc VG Good Mod Poor VP Exc VG Good Mod Poor VP

bus
Observed 39.8 233.9 193.9 111.7 31.5 4.7 277.4 187.3 75.0 50.0 17.4 8.5 36.6 242.0 198.9 109.1 26.1 2.9 615.6
expected 49.8 247.9 182.6 107.0 25.0 3.3 308.9 175.6 72.8 38.1 14.2 6.1 44.7 259.4 184.6 103.9 20.9 2.1 615.6
% mode 6.5 38.0 31.5 18.1 5.1 0.8 45.1 30.4 12.2 8.1 2.8 1.4 6.0 39.3 32.3 17.7 4.2 0.5 100

metro
Observed 30.0 113.9 62.3 38.5 3.6 0.0 156.1 59.1 27.1 3.4 2.5 0.1 26.1 122.0 60.2 36.8 3.2 0.0 248.3
expected 20.1 100.0 73.6 43.2 10.1 1.3 124.6 70.8 29.4 15.4 5.7 2.5 18.0 104.6 74.5 41.9 8.4 0.8 248.3
% mode 12.1 45.9 25.1 15.5 1.4 0.0 62.9 23.8 10.9 1.4 1.0 0.0 10.5 49.1 24.2 14.8 1.3 0.0 100

total
Observed 69.9 347.8 256.2 150.2 35.1 4.7 433.5 246.4 102.2 53.4 19.9 8.6 62.8 364.0 259.1 145.9 29.3 2.9 863.9
expected 69.9 347.8 256.2 150.2 35.1 4.7 433.5 246.4 102.2 53.4 19.9 8.6 62.8 364.0 259.1 145.9 29.3 2.9 863.9
% mode 8.1 40.3 29.7 17.4 4.1 0.5 50.2 28.5 11.8 6.2 2.3 1.0 7.3 42.1 30.0 16.9 3.4 0.3 100 a

a: Exc is the abbreviation for Excellent, VG for very good, Mod for moderate, VP for very poor.
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Results of Chi-square based measures are shown in Table 8. The correlation between index
categories and transport modes is significant. The reason is that the chi-squares are large, and p values
are less than 0.001. For the Phi value and Cramer’s V are not large, the correlation of accessibility
levels and transportation modes is not strong accordingly. PTAI categories have a relatively stronger
relationship with transport accessibility among the three indexes, for the maximum likelihood ratio
and Phi value of PTAI.

Table 8. Chi-square measures of association for PTAL, PTAI and CPTAI categories and trip modes.

PTAL PTAI CPTAI

Value p-Value Value p-Value Value p-Value

Pearson Chi-square 195,527.372 a 0.000 329,470.499 b 0.000 205,558.167 c 0.000
Likelihood ratio 208,888.081 0.000 387,990.103 0.000 225,294.220 0.000

Phi 0.150 0.000 0.195 0.000 0.154 0.000
Cramer’s V 0.150 0.000 0.195 0.000 0.154 0.000

Contingency coefficient 0.149 0.000 0.192 0.000 0.152 0.000
N of validate cases 8,638,873 8,638,873 8,638,781

a. 0 cells (0.0%) expected count < 5. The minimum expected count is 8338.12. b. 0 cells (0.0%) expected count < 5. The
minimum expected count is 24577.23. c. 0 cells (0.0%) expected count < 5. The minimum expected count is 13461.61.

As PTAI considers the activities covered by the station, stations with similar socioeconomic
environment and schedules would share similar PTAI value, no matter the station is on the periphery
or in city center. This index may be suitable for measuring the physical access level to facilities without
considering the quality of services, such as less transfer, fewer steps and more available choice of
travel plans. Hence, CPTAI is more suitable and flexible to evaluate accessibility from a systematic and
comprehensive perspective.

The results show a relative relationship between trip modes and PTAI access levels, reflecting that
the integrated public transport system of Wuhan metropolitan area is immature. Further construction
needs to consider not only the generation and attraction of traffic but also the efficiency of the public
transport system.

5. Discussion

This paper proposes an approach to evaluate the accessibility of public transport service in Wuhan
metropolitan area. It brings out the index of CPTAI in community level to see the accessibility pattern
of public transportation. A statistical test is applied to see the correlation between accessibility levels
and trip modes. The results of CPTAI show consistency with the existing indexes and have a significant
association with choices of traffic modes.

By calculating CPTAI, results show that 582 communities/enclaves out of 2505 communities have
no access to public transport service, which means 1.99% of POIs have no access to public transport
service. While 2.13% and 9.58% of activities are with very poor to poor access to public transport
services, which are mainly located in the periphery of Wuhan metropolitan area. 33.5% of activities
located in near half of the communities/enclaves have zero to moderate access to public transport
services. However, these below-good community parts are not only in the suburban area. In the central
area, there are still 22.6% of the communities have below-good accessibility levels to public transport
services. These communities cover 16345 POIs, which may bring out 5% of activities.

Nearly 73.4% of communities/enclaves are within walking catchment areas of bus transits and
33.4% communities within walking catchments of metro stations. There are 4459 bus stops and 96 metro
stations in this area, with an average bus frequency of 26.8 and metro frequency of 3.7 in morning
rush hours. However, the trips by bus is only 2.4 times of trips by metro. According to the Wuhan
Transportation Annual Report, the percentage of trips by Metro among all public mode is increasing
year by year. The mode of metro is more attractive for daily trips. This is because there is more
uncertainty of travel time with bus than metro because of above-ground traffic congestion.
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By applying a Chi-square test, results imply that there is a statistically significant correlation
between the index categories of accessibility levels and mode choices of traffic. Most of the trips by
metro are with above-average levels of accessibility. While by bus, 5.9% of trips are with accessibility
below-average level. Considering the number of facilities, the mode of metro is more productive. As
metro stations are located in urban core areas, communities with no access to metro service tend to
choose the mode of public bus for the availability of bus facilities in the suburban areas. While the fact
is that efficient bus services do not cover the urban periphery area. Stations in the outer city area are
often with low service frequency, and bus stations are often in poor connection to other stations in
the integrated transport network. In other words, from those stations, the choices of travel plans are
quite limited, and the cost to activities is relatively high. Vulnerable groups like old, poor-educated,
low-income and unemployed ones, who have high demands for public transport services, are not able
to easily access efficient public transport services. It leads to informal transport modes like electric
motorcycles and unlicensed taxies, which may bring out safety problems [48,49].

The comparison of the indexes of PTAL, PTAI and CPTAI shows how the distribution of activities
and the centrality of stations affect the accessibility level of public transport services at the community
level. By comparing PTAL with PTAI, trips with high access levels of PTAI increase rapidly by 12.4%,
while trips with poor access levels decrease by 1.3%. For the mode of bus, the trips with high access
levels increase dramatically by 11.7%, while trips with poor access levels decrease by 1.7%. For the
mode of metro, the trips with high access levels increase by 14.5%, while trips with poor access levels
decrease by 0.4%. To test the impact of the centrality of stations, we compare PTAI with CPTAI. Results
indicate that trips with high access levels of CPTAI decrease by 11.1%, and trips with poor access levels
increase by 0.3%. For the mode of bus, trips decrease by 10.1% with high access level, and increase by
0.5% with poor access levels. For the mode of metro, trips decrease by 13.8% with high access levels
and increase by 0.3% with poor access levels.

The discussions above show that in general, the centrality of stations has a slightly positive
correlation with the accessibility level in the immature integrated public transport system. Among the
two factors of COS, the factor of connections has a strong positive impact on accessibility. Activities are
densely distributed in areas with high access levels and sparsely distributed in areas with poor access
to public transport mode. By contrast, the cost has a robust negative effect on accessibility. Stations
with fewer travel options and more travel steps would attract fewer trips. The compensation of these
two factors on accessibility leads to the slight difference between PTAL and CPTAI, while the difference
between PTAL/CPTAI and PTAI is more significant.

Public transport facilities are evaluated to be more accessible by utilizing PTAI index without
considering the quality of public transport service. By following the PTAI index, people have to
sacrifice comfort to pursue public transport service. By comparing the two modes, the bus network is
better integrated into the public transport system than the metro network.

Overall, the new index can be seen as a measure for evaluating the locational difference. It considers
the distribution of activities particularly from the perspective of land use plan, and public transport
network configuration with respect to public transport plan. Poor access to public transport services
leads to difficulties with accessing public services and job chances, and also brings about isolation
for vulnerable residents. This approach measures accessibility to both residential spaces and living
activities. The analysis demonstrates that the operation and configuration of the integrated public
transport system are closely associated with the service accessibility and quality of public transport.
The output of this research can provide the urban planners and decision-makers with the public
transport access level information. More efficient public transport plan and rational land use plan can
be made accordingly, hence to improve the allocation of public transport and facilities.

6. Conclusions

In this study, we present a novel approach to measure the rush-hour accessibility of public
transport services for all community/enclaves in Wuhan metropolitan area. The approach models
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different public transport networks as an integrated system, and considers the geographic distribution
and topological degree of stations in the integrated transport system. The dataset of SCD is employed
to evaluate the usefulness and effectiveness of the index in assessing the use of public transport. Results
imply that CPTAI is an effective method for assessing the accessibility of integrated public transport
service in Wuhan metropolitan area.

Results of the index show that there are still communities in urban fringe with no access to public
transport service. In these areas the activities are sparsely distributed, and there are inadequate public
transport facilities. While less than one-third of the communities which are covered by near two-thirds
of the activities have fine access to public transport service. There are still activities in central city
with poor access to public transport services. This is because of unproper urban planning from the
municipality or difficulties of building transport facilities around such areas. The problem should be
further analyzed before the municipality makes decisions. The association between accessibility levels
and transport modes is significant but the association is not very strong. In places with poor accessibility,
the mode of bus is dominant for the availability of facilities. With the increase of accessibility level, the
choice for metro rises more rapidly than bus, and the increasing rates varies in each mode. However,
the number of trips by bus is larger than metro for the capacity of existing facilities. The comparison
of the three indexes shows consistency. The centrality of station has slight impact on the choice of
available facilities. This index is more suitable for cities with even public transport networks, especially
rail transit. The approach can be easily applied in a city to evaluate the public transport construction
with consideration of the rational allocation of urban functions. As public transport is regarded as one
of the most effective ways to alleviate urban congestion, promote the eco-environment, and mitigate
the extremely uneven development of different areas. Promoting the proper development of public
transport is of great importance to meet various needs of different groups of people at a lower cost.
Therefore, it helps to build a resource-saving and environment-friendly society, and achieve sustainable
urban development.

A weakness of this approach is the measure focuses on morning rush hours and does not consider
the difference of activities between periods of time. Activities vary in time. For example, trips for
leisure activities often gather in the afternoon and catering gather at dawn. In this study, the POIs
we count for are mainly distributed along the roads, for the dataset is collected for traffic navigation.
Consequently, the distances may be less considered. There are also limitations for the estimation
of average waiting time and walking time in our model. Waiting time at station can be random,
very long or short, and walk speed varies among different groups. Moreover, because of the lack of
public transport survey data within the communities, the reallocation of smart card data by weight
of the number of activities in communities may result in bias from reality. Furthermore, the traffic
capacity and travel experience are omitted in this study, which may have a significant influence on
people’s choice. Future researches will be investigated on the temporal difference of traffic demand,
traffic capacity and other factors which may affect people’s choice. In the future, when evaluating the
accessibility of public transport services, we will also try to seek for more compatible data to test the
accuracy and reliability of the proposed approach.
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