Sustainable Cities: A Reflection on Potentialities and Limits based on Existing Eco-Districts in Europe
Abstract
:1. Introduction
2. Methodology
2.1. Conceptual Framework and Steps of the Analysis
- Development of a harmoniously coupled human–environment system (promoting the protection of existing ecosystems, developing with the given landscape, historical background, social–economic–political situation, encouraging biodiversity and the production of local food);
- Sustainable urban metabolism (considering comprehensive water management, a reduction of energy consumption promoting different renewable energy sources, developing a transition from energy consumer neighborhood to energy producer);
- Environmentally benign building design using local and sustainable materials (together with the use of local, low embodied energy, high insulation performance and ecological materials, this principle considers also the reuse, renovation and recycling of existing structures and constant analysis of residents’ behavior and behavioral change)
- Catering for a livable and vibrant neighborhood (a mix of uses is encouraged, giving strong relevance to public spaces, as well as a mix of building typologies. Sustainable business opportunities should also be considered for avoiding gentrification and promoting mixed-income levels);
- Provide compact development and integrated sustainable mobility (proposing a contiguous compact neighborhood in which primary services and daily needs are guaranteed, public transport is also strongly encouraged through a reduction of motorized transportation and streets are designed as public spaces);
- Catering for resilient neighborhoods (ensuring an interactive and adaptive process);
- Ensuring democratic governance and empowerment of neighborhood residents (promoting residents’ engagement, different education facilities and workshops for knowledge exchange);
- Satisfaction of human needs (integration of marginalized populations and mitigation of adverse impacts on disadvantaged groups);
- Consideration of the neighborhood’s impact on the wider environment (promoting the neighborhood as a showcase to spread sustainable measures to the broader city).
2.2. Selection of Eco-District Examples
3. Results
4. Discussion
4.1. Reflections on Eco-District Models
4.2. Theoretical and Empirical Indicators
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economics and Social Affairs, Population Division. The World’s Cities in 2018; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Grubler, A.; Bai, X.; Buettner, T.; Dhakal, S.; Fisk, D.J.; Ichinose, T.; Keirstead, J.E.; Sammer, G.; Satterthwaite, D.; Schulz, N.B.; et al. Urban Energy Systems. In Global Energy Assessment (GEA); Johansson, T.B., Nakicenovic, N., Patwardhan, A., Gomez-Echeverri, L., Eds.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Kourtit, K.; Nijkamp, P. Big data dashboards as smart decision support tools for i-cities—An experiment on stockholm. Land Use Policy 2018, 71, 24–35. [Google Scholar] [CrossRef]
- Mondini, G. Valutazioni integrate per la gestione delle nuove sfide sociali. Valori e Valutazioni 2016, 17, 15–17. [Google Scholar]
- Cotella, G.; Crivello, S. The Macroregional Geopolitics of Energy Security: Towards a New Energy World Order? In Low-Carbon Energy Security from a European Perspective; Academic Press: Cambridge, MA, USA, 2016; ISBN 9780128029879. [Google Scholar]
- Bottero, M.; D’Alpaos, C.; Oppio, A. Ranking of Adaptive Reuse Strategies for Abandoned Industrial Heritage in Vulnerable Contexts: A Multiple Criteria Decision Aiding Approach. Sustainability 2019, 11, 785. [Google Scholar] [CrossRef]
- Bottero, M.; Comino, E.; Dell’Anna, F.; Dominici, L.; Rosso, M. Strategic Assessment and Economic Evaluation: The Case Study of Yanzhou Island (China). Sustainability 2019, 11, 1076. [Google Scholar] [CrossRef]
- Brandon, P.S.; Lombardi, P. Evaluating Sustainable Development in the Built Environment; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 978-1405192583. [Google Scholar]
- Luque-Ayala, A.; Marvin, S. Developing a critical understanding of smart urbanism? Urban Stud. 2015, 52, 2105–2116. [Google Scholar] [CrossRef] [Green Version]
- Santangelo, M.; Aru, S.; Pollio, A. Smart city. In Ibridazioni, Innovazioni e Inerzie Nelle Città Contemporanee; Carocci Ed.: Roma, Italy, 2013; ISBN 9788843072811. [Google Scholar]
- Hollands, R.G. Will the real smart city please stand up? City 2008, 12, 303–320. [Google Scholar] [CrossRef]
- Galloway, A. Intimations of everyday life: Ubiquitous computing and the city. Cult. Stud. 2004, 18, 384–408. [Google Scholar] [CrossRef]
- Klauser, F.; Paasche, T.; Söderström, O. Michel Foucault and the Smart City: Power Dynamics Inherent in Contemporary Governing through Code. Environ. Plan. D Soc. Space 2014, 32, 869–885. [Google Scholar] [CrossRef]
- Murgante, B.; Borruso, G. Smart cities in a smart world. In Future City Architecture for Optimal Living; Rassia, S., Pardalos, P., Eds.; Springer Verlag: Berlin, Germany, 2015; pp. 13–35. [Google Scholar]
- Cotella, G.; Crivello, S.; Karatayev, M. European Union Energy Policy Evolutionary Patterns. In Low-Carbon Energy Security from a European Perspective; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 13–42. [Google Scholar]
- European Commission. European Commission the Strategic Energy Technology (SET) Plan; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-74277-4. [Google Scholar]
- Kitchin, R. The real-time city? Big data and smart urbanism. GeoJournal 2014, 79, 1–14. [Google Scholar] [CrossRef]
- Allam, Z.; Newman, P. Redefining the Smart City: Culture, Metabolism and Governance. Smart Cities 2018, 1, 4–25. [Google Scholar] [CrossRef] [Green Version]
- Dabeedooal, Y.J.; Dindoyal, V.; Allam, Z.; Jones, D.S. Smart Tourism as a Pillar for Sustainable Urban Development: An Alternate Smart City Strategy from Mauritius. Smart Cities 2019, 2, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Allam, Z. The Emergence of Anti-Privacy and Control at the Nexus between the Concepts of Safe City and Smart City. Smart Cities 2019, 2, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Datta, A. New urban utopias of postcolonial India. Dialog Hum. Geogr. 2015, 5, 3–22. [Google Scholar] [CrossRef]
- Deakin, M.; Allwinkle, S. Urban Regeneration and Sustainable Communities: The Role of Networks, Innovation, and Creativity in Building Successful Partnerships. J. Urban Technol. 2007, 14, 77–91. [Google Scholar] [CrossRef]
- Leydesdorff, L. The triple helix: An evolutionary model of innovations. Res. Policy 2000, 29, 243–255. [Google Scholar] [CrossRef]
- Graham, S. Splintering Urbanism; Routledge: Abington, UK, 2002; ISBN 9780203452202. [Google Scholar]
- Allam, Z.; Newman, P. Economically Incentivising Smart Urban Regeneration. Case Study of Port Louis, Mauritius. Smart Cities 2018, 1, 53–74. [Google Scholar] [CrossRef] [Green Version]
- Allam, Z.; Dhunny, A.Z.; Siew, G.; Jones, D.S. Towards Smart Urban Regeneration: Findings of an Urban Footprint Survey in Port Louis, Mauritius. Smart Cities 2018, 1, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Cotella, G. The Urban Dimension of EU Cohesion Policy. In Territorial Cohesion. The Urban Dimension; Medeiros, E., Ed.; Springer: Berlin, Germany, 2019; pp. 133–151. ISBN 978-3-030-03386-6. [Google Scholar]
- Hollands, R.G. Critical interventions into the corporate smart city. Camb. J. Reg. Econ. Soc. 2015, 8, 61–77. [Google Scholar] [CrossRef]
- Söderström, O.; Paasche, T.; Klauser, F. Smart cities as corporate storytelling. City 2014, 18, 307–320. [Google Scholar] [CrossRef]
- Choguill, C.L. Developing sustainable neighbourhoods. Habitat Int. 2008, 32, 41–48. [Google Scholar] [CrossRef]
- Cotella, G.; Janin Rivolin, U.; Santangelo, M. Transferring Good Territorial Governance in Europe: Opportunities and Barriers’ In Territorial Governance across Europe: Pathways, Practices and Prospects; Schmidt, P., Van Well, L., Eds.; Routledge: London, UK, 2015; pp. 238–253. ISBN 978-1-138-86087-2. [Google Scholar]
- Cassen, C.; Hamdi-Chérif, M.; Cotella, G.; Toniolo, J.; Lombardi, P.; Hourcade, J.C. Low Carbon Scenarios for Europe: An Evaluation of Upscaling Low Carbon Experiments. Sustainability 2018, 10, 848. [Google Scholar] [CrossRef]
- Lützkendorf, T.; Balouktsi, M. Assessing a Sustainable Urban Development: Typology of Indicators and Sources of Information. Procedia Environ. Sci. 2017, 38, 546–553. [Google Scholar] [CrossRef]
- Luederitz, C.; Lang, D.J.; Von Wehrden, H. A systematic review of guiding principles for sustainable urban neighborhood development. Landsc. Urban Plan. 2013, 118, 40–52. [Google Scholar] [CrossRef]
- Valkenburg, G.; Cotella, G. Governance of energy transitions: About inclusion and closure in complex sociotechnical problems. Energy Sustain. Soc. 2016, 6, 739. [Google Scholar] [CrossRef]
- Kyvelou, S.; Sinou, M.; Baer, I.; Papadopoulos, T. Sustainability in Energy and Buildings; Howlett, R.J., Jain, L.C., Lee, S.H., Eds.; Smart Innovation, Systems and Technologies; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7, ISBN 978-3-642-17386-8. [Google Scholar]
- Medved, P. A contribution to the structural model of autonomous sustainable neighbourhoods: New socio-economical basis for sustainable urban planning. J. Clean. Prod. 2016, 120, 21–30. [Google Scholar] [CrossRef]
- Medved, P. Exploring the ‘Just City principles’ within two European sustainable neighbourhoods. J. Urban Des. 2018, 23, 414–431. [Google Scholar] [CrossRef]
- Medved, P. Leading sustainable neighbourhoods in Europe: Exploring the key principles and processes. Urbani izziv 2017, 28, 107–121. [Google Scholar] [CrossRef]
- Schroepfer, T.; Hee, L. Emerging Forms of Sustainable Urbanism: Case Studies of Vauban Freiburg and solarCity Linz. J. Green Build. 2008, 3, 65–76. [Google Scholar] [CrossRef]
- Marique, A.F.; Reiter, S. Towards more sustainable neighbourhoods: Are good practices reproducible and extensible? A review of a few existing “sustainable neighbourhoods”. In Proceedings of the PLEA 2011—27th Conference on Passive and Low Energy Architecture, Louvain-la-Neuve, Belgium, 13–15 July 2011. [Google Scholar]
- Cucca, R. The social impact of green urban renewal in two European Capital Cities: Copenhagen and Vienna in comparison. In Proceedings of the Environmental Justice in the Anthropocene Symposium 2017, Fort Collins, CO, USA, 24–25 April 2017. [Google Scholar]
- Caiati, G.; Declich, A. The social nature of materials. A brief overview and two case studies concerning the Energy transition context. Matér. Tech. 2016, 104, 603. [Google Scholar] [CrossRef]
- Flurin, C. Eco-districts: Development and Evaluation. A European Case Study. Procedia Environ. Sci. 2017, 37, 34–45. [Google Scholar] [CrossRef]
- Tozzi, P. Participative stakes in the adaptation of urban planning towards sustainability—A close examination of projects in some eco-districts of the city of Bordeaux. Sud-Ouest Eur 2014, 37, 105–116. [Google Scholar] [CrossRef]
- Machline, E.; Pearlmutter, D.; Schwartz, M. Parisian eco-districts: Low energy and affordable housing? Build. Res. Inf. 2018, 46, 636–652. [Google Scholar] [CrossRef]
- Zaręba, A.; Krzemińska, A.; Łach, J. Energy sustainable cities. From eco villages, eco districts towards zero carbon cities. E3S Web Conf. 2017, 22, 199. [Google Scholar] [CrossRef] [Green Version]
- Hagen, B.; Nassar, C.; Pijawka, D. The Social Dimension of Sustainable Neighborhood Design: Comparing Two Neighborhoods in Freiburg, Germany. Urban Plan. 2017, 2, 64. [Google Scholar] [CrossRef]
- Kasioumi, E. Sustainable urbanism: Vision and planning process through an examination of two model neighborhood developments. Berkeley Plan. J. 2011, 24, 91–114. [Google Scholar] [CrossRef]
- Vall-Casas, P.; Koschinsky, J.; Mendoza-Arroyo, C.; Benages-Albert, M. Retrofitting suburbia through systemic densification: The case of the metropolitan region of Barcelona. J. Archit. Plann. Res. 2016, 33, 45–70. [Google Scholar]
- Farreny, R.; Oliver-Solà, J.; Montlleó, M.; Escribà, E.; Gabarrell, X.; Rieradevall, J. The ecodesign and planning of sustainable neighbourhoods: The Vallbona case study (Barcelona). Inf. la Construcción 2011, 63, 115–124. [Google Scholar] [CrossRef]
- Fitzgerald, J.; Lenhart, J. Eco-districts: Can they accelerate urban climate planning? Environ. Plan. C Gov. Policy 2016, 34, 364–380. [Google Scholar] [CrossRef]
- Bossuyt, D.M.; Savini, F. Urban sustainability and political parties: Eco-development in Stockholm and Amsterdam. Environ. Plan. C Politics Space 2018, 36, 1006–1026. [Google Scholar] [CrossRef]
- United Nations. The Sustainable Development Goals Report; United Nations Publ.: New, York, NY, USA, 2017. [Google Scholar]
- Datola, G.; Bottero, M.; De Angelis, E. How Urban Resilience Can Change Cities: A System Dynamics Model Approach. In Proceedings of the International Conference on Computational Science and Its Applications (ICCSA 2019), Saint Petersburg, Russia, 1–4 July 2019. [Google Scholar]
- Assumma, V.; Bottero, M.; Monaco, R.; Soares, A.J. An integrated evaluation model for shaping future resilient scenarios in multi-pole territorial systems. Environ. Territ. Model. Plan. Des. 2018, 4, 17–24. [Google Scholar]
- Bottero, M.; Ferretti, V. Integrating the analytic network process (ANP) and the driving force-pressure-state-impact-responses (DPSIR) model for the sustainability assessment of territorial transformations. Manag. Environ. Qual. An Int. J. 2010, 21, 618–644. [Google Scholar] [CrossRef]
- Chelleri, L.; Waters, J.J.; Olazabal, M.; Minucci, G. Resilience trade-offs: Addressing multiple scales and temporal aspects of urban resilience. Environ. Urban. 2015, 27, 181–198. [Google Scholar] [CrossRef]
- IEA. IEA Global Energy and CO2 Status Report 2018; OECD/IEA: Paris, France, 2019. [Google Scholar]
- IEA. IEA 2018 World Energy Outlook—Executive Summary; OECD/IEA: Paris, France, 2018. [Google Scholar]
- OECD. OECD Regulatory Policy Outlook 2018; OECD: Paris, France, 2018. [Google Scholar]
- IEA. World Energy Balances 2018; IEA: Paris, France, 2018; ISBN 9789264301559. [Google Scholar]
- Becchio, C.; Bottero, M.C.; Corgnati, S.P.; Dell’Anna, F. Decision making for sustainable urban energy planning: An integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin. Land use policy 2018, 78, 803–817. [Google Scholar] [CrossRef]
- Caprioli, C.; Bottero, M.C. Agent-based modelling and Geographic Information System for the evaluation of eco-district’s scenarios. In Proceedings of the Environmental and territorial modelling for planning and design; Leone, A., Gargiulo, C., Eds.; FedOAPress: Naples, Italy, 2018; pp. 35–45. [Google Scholar]
- D’Alpaos, C. The value of flexibility to switch between water supply sources. Appl. Math. Sci. 2012, 6, 6381–6401. [Google Scholar]
- Foth, M. Participatory urban informatics: Towards citizen-ability. Smart Sustain. Built Environ. 2018, 7, 4–19. [Google Scholar] [CrossRef]
- Hale, L.A. Anthropocentric urban sustainability: Human significance in building automation. Sustain. Cities Soc. 2018, 42, 423–433. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; Da Costa, E.; Ioppolo, G.; Sabatini, J. Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar] [CrossRef]
- Las Casas, G.; Scorza, F.; Murgante, B. New urban agenda and open challenges for urban and regional planning. In Proceedings of the ISHT: International Symposium on New Metropolitan Perspectives, Reggio Calabria, Italy, 22–25 May 2018. [Google Scholar]
- Allam, Z. Achieving Neuroplasticity in Artificial Neural Networks through Smart Cities. Smart Cities 2019, 2, 118–134. [Google Scholar] [CrossRef] [Green Version]
City | Projects Name | Authors |
---|---|---|
LINZ (Austria) | SolarCity | Medved, 2016, 2017 [37,39]; Schroepfer, 2008 [40] |
COPENHAGEN (Denmark) | Vesterbro | Marique, 2011 [41]; Cucca, 2017 [42] Medved, 2016 [37] |
Kalundborg (Denmark) | Kalundborg | Caiati, 2016 [43] |
Helsinki (Finland) | Viikki | Medved, 2016 [37] |
BORDEAUX (France) | Ginko | Flurin, 2017 [44]; Tozzi, 2014 [45] |
Paris (France) | Gare de Rungis (13th), Clichy-Batignolles (17th), Pajol (18th), Frequel-Fontarabie (20th), Boucicaut (15th) and Claude Bernard (19th) | Machline, 2016 [46] |
Saint Ouen (France) | Docks de Saint Ouen | Flurin, 2017 [44] |
FREIBURG (Germany) | Riesfield | Zaręba, 2017 [47]; Medved, 2016, 2017 [37,39]; Hagen, 2017 [48] |
FREIBURG (Germany) | Vauban | Zaręba, 2017 [47]; Medved, 2016, 2017, 2018 [37,38,39]; Hagen, 2017 [48]; Marique, 2011 [41]; Kasioumi, E., 2011 [49]; Schroepfer, 2008 [40] |
HANOVER (Germany) | Kronsberg | Marique, 2011 [41]; Medved, 2016 [37] |
Ostfildern (Germany) | Scharnhauser Park | Medved, 2016 [37] |
Tubingen (Germany) | Französisches Viertel—Südstadt | Medved, 2016 [37] |
Cloughjordan (Ireland) | Cloughjordan Eco-village | Zaręba, 2017 [47] |
Amsterdam (Netherlands) | GWL Terrein | Medved, 2016 [37] |
Amsterdam (Netherlands) | Haven-Stad (Port-City) | Bossuyt, 2017 [39] |
CULEMBORG (Netherlands) | Eva-Lanxmeer | Marique, 2011 [41]; Medved, 2016 [37] |
Utrecht (Netherlands) | Leidsche Rijn | Medved, 2016 [37] |
Barcelona (Spain) | Lliçà d’Amunt | Vall-Casas, 2016 [50] |
BARCELONA (Spain) | Trinitat Nova | Flurin, 2017 [44]; Medved, 2016 [37] |
Barcelona (Spain) | Vallbona | Farreny, 2011 [51] |
MALMO (Sweden) | Augustenborg | Marique, 2011 [41]; Medved, 2016 [37] |
MALMO (Sweden) | bo01 | Flurin, 2017 [44]; Zaręba, 2017 [47]; Medved, 2016, 2017, 2018 [37,38,39]; Fitzgerald, 2016 [52]; Marique, 2011 [41] |
STOCKHOLM (Sweden) | Hammarby Sjostad | Bossuyt, 2017 [53]; Marique, 2011 [41]; Kasioumi, E., 2011 [49] |
LONDON (UK) | Bed Zed | Machline, 2016 [46]; Marique, 2011 [41]; Medved, 2016, 2018 [37,38] |
LONDON (UK) | Royal Seaport | Bossuyt, 2017 [53]; Medved, 2016 [37] |
LONDON (UK) | Greenwich Millennium Village | Medved, 2016, 2017 [37,39] |
Energy and Natural Resources Dimension | Socio-Economic Dimension | Mobility Dimension | Urban Design Dimension | |
---|---|---|---|---|
Solar City LINZ (Austria) |
|
|
|
|
Vesterbo COPENHAGEN (Denmark) |
|
|
|
|
Ginko BORDEAUX (France) |
|
|
|
|
Riesfield FREIBURG (Germany) |
|
|
|
|
Vauban FREIBURG (Germany) |
|
|
| |
Kronsberg HANOVER (Germany) |
|
|
| |
Eva-Lanxmeer CULEMBORG (Netherlands) |
|
| ||
Trinitat Nova BARCELONA (Spain) |
|
|
|
|
Augustenborg MALMO (Sweden) |
|
|
|
|
bo01 MALMO (Sweden) |
|
|
| |
Hammarby Sjostad STOCKHOLM (Sweden) |
|
|
|
|
Royal Seaport STOCKHOLM (Sweden) |
|
|
|
|
BedZed LONDON (UK) |
|
|
| |
Greenwich Millennium Village LONDON (UK) |
|
|
|
Luederitz Principles | Luederitz Indicators | Energy | Socio-Econ. | Mobility | Urban Design |
---|---|---|---|---|---|
Principle I “Develop harmonized coupled human-environment systems” | Protection of ecosystems | E13 (Ma, Mb, Srs)* | |||
Development harmonized with the given landscape, historical background, social-economic-political situation | E16 (BO, Fv) | UD9 (BO, Fr, LOg), UD5 (LI, BO, Fr, Ma, Shs, LOg) | |||
Biodiversity | E13 (Ma, Mb, Srs) | ||||
Local food production | E17 (CU, Mb, Srs, LOb) | ||||
Principle II “Sustainable urban metabolism” | Comprehensive water management | E2 (LI, Fr, BA, Lb), E3 (LI, CO, Fv, BA, Mb, Shs, Srs), E4 (LI, Fv, BA, Mb), E10 (Fv, Ma, LOb) | |||
Reduction of energy consumption and different renewable energy sources | E1 (CO), E5 (LI, Fr, Fv, BA), E7 (LI, Fr, Fv, BA, Ma, Srs), E8 (LI, Fr, BA, LOb), E9 (LI, Fv), E14 (Fr, Fv, LOb), E15 (BA, Ma, Mb)) | ||||
Neighborhood from energy consumer to energy producer | E18 (CU, Mb) | ||||
Principle III “Environmentally benign building design using local and sustainable materials” | Local materials | E17 (CU, Mb, Srs, LOb) | |||
Best practice design to reduce heating energy demand and water consumption | UD10 (LI) | ||||
Low embodied energy materials | |||||
Ecological building materials | E6 (LI, CO, LOb) | ||||
High performance materials for insulation | E5 (LI, Fr, Fv, BA) | ||||
Reuse, renovate, recycle existing structures | E1 (CO), E12 (BA, Mb) | ||||
Analyzing residents’ behavior and behavioral change | M10 (LOg) | ||||
Principle IV “Cater for a livable and vibrant neighborhood” | Mixed-use neighborhoods | UD1 (LI, CO, BO, Fr, Fv, H, BA, Srs, LOg) | |||
Public places | UD5 (LI, BO, Fr, Ma, Shs, LOg), UD6 (LI, Fr) | ||||
Sustainable business opportunities | SE9 (BO, BA, Srs) | ||||
Mixed-income | SE8 (BO, BA), SE14 (BA, LOg) | ||||
Avoiding gentrification | SE8 (BA) | ||||
Mixed-use typologies | UD2 (BO, LOg) | ||||
High density neighborhood | UD7 (CO, Fr, Fv, LOg) | ||||
Principle V “Provide compact development and integrated sustainable mobility” | Primary services and daily needs | UD8 (LI, Fv, LOg) | |||
Good public transport | M1 (LI, CO, BO, Fr, Fv, Ma, Shs), M2 (LI, BA), M3 (LI, Srs, LOg) | ||||
Reduce motorized transportation | M5 (Fr, Fv, BA, LOg), M6 (LI, Fr, Fv, LOg), M8 (Ma, Lob, LOg) | ||||
Streets as public place | M4 (LI, Fr, Fv, BA, Srs, LOg), M5 (Fr, Fv, BA, LOg) | ||||
Contiguous compact neighborhoods | |||||
Principle VI “Cater for resilient neighborhoods” | Interactive and adaptive process | SE13 (H, BA, Mb, Srs, LOg) | UD4 (LI, H, BA, Mb) | ||
Principle VII “Ensure democratic governance and empower neighborhood residents” | Residents’ engagement | SE1 (LI, BO, CU, BA, Ma), SE10 (CU, BA) | |||
Education facilities and workshop opportunities for knowledge exchange | SE2 (LI, CO, BO, H, BA, Ma) | ||||
Principle VIII “Satisfaction of human needs” | Integration of marginalized population and mitigate adverse impacts on disadvantaged groups | SE8 (BO, BA) | |||
Principle IX “Consider neighborhood impact on the wider environment” | Neighborhood as showcase to spread sustainable measures to the broader city | SE3 (LI), SE13 (LOg) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bottero, M.; Caprioli, C.; Cotella, G.; Santangelo, M. Sustainable Cities: A Reflection on Potentialities and Limits based on Existing Eco-Districts in Europe. Sustainability 2019, 11, 5794. https://doi.org/10.3390/su11205794
Bottero M, Caprioli C, Cotella G, Santangelo M. Sustainable Cities: A Reflection on Potentialities and Limits based on Existing Eco-Districts in Europe. Sustainability. 2019; 11(20):5794. https://doi.org/10.3390/su11205794
Chicago/Turabian StyleBottero, Marta, Caterina Caprioli, Giancarlo Cotella, and Marco Santangelo. 2019. "Sustainable Cities: A Reflection on Potentialities and Limits based on Existing Eco-Districts in Europe" Sustainability 11, no. 20: 5794. https://doi.org/10.3390/su11205794
APA StyleBottero, M., Caprioli, C., Cotella, G., & Santangelo, M. (2019). Sustainable Cities: A Reflection on Potentialities and Limits based on Existing Eco-Districts in Europe. Sustainability, 11(20), 5794. https://doi.org/10.3390/su11205794