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Abstract: The problem of designing a multi-product, multi-period green supply chain network under
uncertainties in carbon price and customer demand is studied in this paper. The purpose of this
study is to develop a robust green supply chain network design model to minimize the total cost and
to effectively cope with uncertainties. A scenario tree method is applied to model the uncertainty,
and a green supply chain network design model is developed under the p-robustness criterion.
Furthermore, the solution method for determining the lower and upper bounds of the relative regret
limit is introduced, which is convenient for decision-makers to choose the corresponding supply
chain network structure through the tradeoff between risk and cost performance. In particular,
to overcome the large scale of the model caused by a high number of uncertain scenarios and reduce the
computational difficulty, a scenario reduction technique is applied to filter the scenarios. Numerical
calculations are executed to analyze the influence of relevant parameters on the performance of the
designed green supply chain network. The results show that the proposed p-robust green supply chain
network design model can effectively deal with carbon and demand uncertainties while ensuring
cost performance, and can offer more choices for decision-makers with different risk preferences.

Keywords: green supply chain network design; carbon cap and trade; p-robust; uncertainty;
scenario reduction

1. Introduction

Supply chain network design (SCND) has a significant impact on the environmental impact of
supply chains [1]. Green concepts and environmental protection practices have aroused wide public
concern [2]. Traditional SCND focuses on minimizing cost and improving responsiveness, which may
not be consistent with the idea of environmental sustainability [3,4]. With the increasing importance of
environmental issues to supply chains, SCND models are no longer only focusing on pure economic
models, but rather are integrating different environmental factors too, such as for example green
SCND, which is a paradigm designed to incorporate economic and environmental objectives/factors
into the design of supply chain networks [5]. However, complex green supply chains always generate
enormous uncertainties for different formats (i.e., carbon prices and demand), which may create new
challenges for the green supply chain networks and redesign. Carbon pricing uncertainty significantly
affects transportation and production operations. If carbon pricing is too high, the supply chain will
bear too much carbon costs. On the contrary, if carbon pricing is lower, carbon emissions will barely
be reduced. Therefore, it is very important to develop an effective scheme to deal with the carbon
price uncertainty. Demand uncertainty is transferred step by step from customer demand to suppliers
at all levels along the direction of the supply chain, which may result in inferior strategic decisions.
In addition, demand uncertainty may also influence warehouse capacities. If the manager does not
consider the demand uncertainty when setting its storage capacity, it may lead to unsatisfied customer
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demand, a loss of part of the market share, or incur an excessive inventory holding cost. Designing a
green supply chain network that can effectively cope with uncertainties will ensure the competitive
advantages of a supply chain.

Increases in environmental concerns, customer awareness, customer expectations, and stringent
carbon policies have made carbon emission reduction one of the main goals of supply chain design
and operation [1]. Currently, more and more countries have developed carbon policies and plan to
implement them. Carbon pricing and carbon trading mechanisms are two globally popular carbon
regulatory policy schemes. Carbon pricing is a charge applied to each unit of greenhouse gas emitted.
It aims to encourage companies to reduce emissions through green practices and green technologies
whose managerial and implementation cost is less than the charge. Carbon pricing can be incorporated
into existing taxation systems, making it relatively easy to implement. However, how to set the correct
carbon tax to minimize carbon emissions and economic impact is the main challenge [1,6].

Cap and trade (i.e., the carbon trading mechanism) is a policy in which a limited number of
carbon credits are created for distribution among players in the economy [1]. This mechanism puts
pressure on companies whose emissions exceed the allocated allowances to receive significant fines for
excessive pollution, and creates incentives to encourage those with emissions below the quota to sell
surplus allowances by offering financial reward. The cap-and-trade scheme encourages appropriate
environmental initiatives [7]. During the auctioning phase, cap and trade is often faced with the
uncertainty of carbon price and a lack of control over it. This brings an uncertainty to supply chain
design and planning, and increases the complexity of a supply chain when it faces frequent supply
and demand interruptions [1].

The existing research on green SCND problems often assumes that complete knowledge of the
random parameter is known. However, this assumption is rarely realistic in practice, prompting
researchers to develop some more specific and relatively novel methodologies to deal with uncertainties,
specifically, robust optimization (RO). Since the 1990s, RO has been widely applied in many fields,
such as natural science and social science. However, researches on green SCND by RO method are,
surprisingly, very rare. Gao and Ryan [8] and Mohammed et al. [9] are the only two studies that used
the RO method to research green SCND problems with stochastic parameters. In particular, so far, no
research has adopted RO to address the uncertainty of carbon price in a multi-product, multi-period
green supply chain network. This study fills this research gap by addressing a multi-product,
multi-period green SCND problem while considering the uncertain carbon price and demand. We
aim to develop a robust two-stage green supply chain network design model to minimize the total
cost and make the optimal decisions on facility location, transportation quantities, and inventory
balances. The proposed model can effectively deal with the uncertainties while ensuring network
operations performance.

In this paper, we aim to answer the following questions:

1. How to describe the carbon price and demand uncertainties?
2. How to develop the robust green supply chain network design model including both strategic

and tactical decisions?
3. How to filter the scenarios to reduce the solving difficulty when the number of uncertain scenarios

increases substantially with the increase of the number of periods?
4. How to make a tradeoff between the relative regret limit and the total cost of the supply chain

network system, so as to help decision-makers design or redesign their supply chain network to
benefit enterprises and reduce carbon emission?

To address the above questions, we develop a robust multi-product, multi-period green
SCND model, and propose some modern mathematical technologies such as scenario tree, p-robust
optimization, and scenario reduction technique.

The main contributions of this paper are summarized from several aspects. First, it is the first
work to design a green supply chain network under the carbon price and demand uncertainties by
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a scenario-based p-robust optimization approach. Accordingly, a two-stage scenario-based p-robust
green supply chain network design model in a carbon trading environment is developed. Second,
the scenario tree method is used to describe the uncertainties, and a scenario reduction technique
is proposed to solve the large-scale problem induced by the increase of the number of uncertain
scenarios. Furthermore, a method for obtaining the lower and upper bounds of the relative regret limit
is introduced. The proposed model in this paper determines the location, capacity, and production
technology investments for all supply chain facilities as well as production allocation and distribution
quantities. In practical applications, the effectiveness and practicality of the proposed p-robust
optimization approach for dealing with carbon price and demand uncertainties are verified. The results
indicate that the developed model is appropriate and robust, and can offer more choices for the
decision-maker with different risk preferences. Finally, some managerial insights for designing a green
supply chain network are proposed. For example, risk-averse decision-makers may choose the scheme
with a lower relative regret limit, whereas risk-taking decision-makers may choose the scheme with
a larger relative regret limit to save costs. Besides, when the relative regret limit is relatively large,
selling a carbon quota can benefit enterprises through saving energy and reducing carbon emission.

2. Literature Review

The design of a green supply chain network has received enormous attention and has become
mainstream. Extensive research has been done to address this problem. Elhedhli et al. [10] developed
a green supply chain design model to simultaneously minimize logistics costs and the environmental
cost of CO2 emissions. Jin et al. [11], Zakeri et al. [7], and Fareeduddin et al. [12] presented optimization
models for supply chain design problems that included various carbon policies. Fahimnia et al. [13]
proposed a tactical supply chain planning model that incorporated economic and carbon emission
factors into objective function under a carbon tax policy scheme. More recently, Xu et al. [14] developed
an integrated mixed integer linear programming (MILP) model by comparing the cost and emissions
performance of a hybrid closed-loop supply chain (HCLSC) and a dedicated closed-loop supply chain
(DCLSC). Kuo et al. [15] used a multi-criteria method to design a supply chain network based on
the results of a product environmental footprint. Alkhayyal [16] proposed a reverse supply chain
optimization model that has been assembled to factor in the impact of supply chain operational and
strategic actions on the environment. As observed, all previous modeling efforts assumed deterministic
parameters, such as demand and cost, and most were concentrated in the case of a single period or
single product. Only four studies [7,12,13] have focused on the multi-product, multi-period situations.

In the context of changing internal and external environment, considering the uncertainties in the
model parameters becomes more important. Xu et al. [17] pointed out that the time of logistics tasks
occurring in the collaborative logistics network is random; the duration of each task is usually uncertain.
Thus, they developed a fuzzy resources allocation model considering multi-stage random tasks. The
design of a supply chain network under uncertain conditions seems to be a more recent research.
Part of the research has proposed stochastic programming models for SCND considering various
uncertain factors, such as demand, return, and supply uncertainties [18–20]. Another part has focused
on designing the supply chain network using a RO approach. However, lot of the research only focused
on a single-product, single-period supply chain network design. For example, Pishvaee et al. [21]
used RO approach to deal with inherent uncertainties in the design of a closed-loop supply chain
network. They compared the robustness between the deterministic mixed-integer linear programming
model and the novel RO model under different test problems. Research has also been expanded to
consider multiple products. Ramezani et al. [22] proposed a robust multi-product and multi-level
closed-loop logistics network model considering both forward and reverse processes in uncertain
environments. Baghalian et al. [23] used a RO approach to address the demand-side and supply-side
uncertainties. Tian and Yue [24] developed a p-robust supply chain network model under uncertain
demands and costs, and integrated the supplier selection together with the facility location and capacity
problem. As far as we know, few studies have been devoted to addressing the design of a supply
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chain network in a multi-product and multi-period setting by RO approach. In the literature [25–27],
there are only three studies on this aspect. Niknamfar et al. [25] used a limited set of discrete scenarios
to describe uncertainties and developed a robust optimization method to reduce the total cost of
three-level supply chains in a production and distribution problem. Akbari et al. [26] proposed a
new robust optimization method for designing a multi-echelon, multi-product, multi-period supply
chain network with process uncertainty. Hasani et al. [27] used a robust optimization approach to
handle the uncertainties of demand and procurement costs, and proposed a closed-loop global supply
chain model. The uncertainty was modeled using the budget of an uncertainty concept in interval
robust optimization. However, none of these reviewed studies is concerned with environmental issues
through the emerging concept of a “green supply chain network”. Research focusing on the green
SCND in an uncertain environment is, surprisingly, very rare. Only a few studies have devoted
their effort to this research, while assuming that the decision-maker has complete knowledge of the
underlying distribution of parameters. For example, Marufuzzaman et al. [28] discussed a two-stage
stochastic programming model to design and manage a biodiesel supply chain experiencing uncertainty.
The influence of carbon emissions on supply chain-related activities was studied by using various
carbon regulation mechanisms. Rezaee et al. [6] presented a single-period green SCND model in a
carbon trading environment and applied it to a case study in Australia. Besides, Gao and Ryan [8]
and Mohammed et al. [9] also addressed the green SCND problem by using stochastic programming.
In particular, they focused on multi-product, multi-period situations, and extended the stochastic
programming to RO to address this problem. In detail, Gao and Ryan [8] used carbon policies to
analyze a closed-loop supply chain (CLSC) network design problem under the demand and return
uncertainties. They are the first researchers who have solved this problem by combining robust
optimization with stochastic programming. Mohammed et al. [9] considered two different types of
uncertainties and proposed an RO model for planning a multi-period, multi-product CLSC with a
carbon footprint.

Although some researches have solved stochastic multi-product and multi-stage supply chain
design problems, they usually assume that the exact parameter distribution information is known.
For example, Nickel et al. [29] used a set of scenarios to describe the uncertainty of demand and
interest rates, and proposed a multi-period stochastic supply chain network design model. Pimentel
et al. [30] considered the facility location, network design, and capacity-planning decisions under
demand uncertainty, and presented the stochastic capacity planning and dynamic network design
problem. Fattahi et al. [31] developed a multi-stage stochastic program under uncertainty in which
customers’ demands were sensitive to the delivery lead time of products. However, none of these
researches incorporated environmental factors into the design of supply chain networks.

As observed, of the research on green SCND, only Rezaee et al. [6] considered the uncertainty in
carbon credit price. As far as we know, no research has addressed the carbon credit price uncertainty
by RO approach in the context of green SCND, especially in the context of multi-period multi-stage
SCND. Considering carbon credit uncertainties in a multi-period setting would represent a more
realistic situation, this paper studies the problem of designing a multi-product, multi-period green
supply chain network while considering the supply chain network structure, logistics operation,
carbon emission, inventory, cost, stochastic carbon price, and demand. The corresponding two-stage
stochastic programming model and the scenario-based p-robust green SCND model are developed.
In modeling, a scenario tree is applied to describe the uncertainties, and a scenario reduction technique
is proposed to filter the scenarios and maintain the validity of the results.

3. Problem Description

Here, we consider the problem of designing a multi-product, multi-period green supply chain
network including the supplier S, the plant P, the warehouse W, and the end-user J, as shown in Figure 1.
We aim to develop a robust two-stage green supply chain network design model that includes both
strategic and tactical decisions. The first-stage decisions, also referred to as here-and-now decisions,
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include selecting suppliers, determining the location and capacity of manufacturing and storage
facilities, and determining the production technology requirements of each plant. The second-stage
decisions, also referred to as wait-and-see decisions, include determining the quantity of production
and material flow across the supply chain in each period, determining the inventory levels in both the
plants and the warehouses, and ensuring that the supply chain operates under carbon trading schemes.
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Under such a four-stage supply chain network structure, the manufacturer can be viewed as a
leader responsible for selecting suppliers, building manufacturing plants, and deciding the locations,
capacities, and production technology of warehouses to satisfy customer demands in many customer
zones. All these decisions are based on the assumption that the demand and carbon price are uncertain.
A set of alternative scenarios is used to describe the uncertainties of the data. Moreover, the supply
chain design must ensure stable performance over time.

In terms of sources of uncertainty, we mainly consider the uncertainty of carbon price and customer
demand. The carbon price has two scenarios: low and high; the customer demand has three scenarios:
low, medium, and high. In order to describe the parameters under uncertain conditions, a scenario tree
is applied to describe the uncertainties. The first-stage decisions are made based on all scenarios, and
the second-stage decisions are made upon the realizations of demand and carbon price. In particular,
considering the lead time of production and transportation, plans and warehouses are allowed to hold
appropriate inventories.

4. Model Development

Before developing the model, the following assumptions are established:

1. The probability of each scenario can be set by experience and prediction;
2. The specific values of uncertain parameters in different scenarios can be obtained by historical

data or prediction;
3. Considering the actual situation, cross-transport and multiple modes of transport are allowed.

The notations used in this paper are defined and described below.

• Indices

n Supplier index, n = 1, 2, . . . , N
m Plant index, m = 1, 2, . . .M
w Warehouse index, w = 1, 2, . . . , W
j End-user index, j = 1, 2, . . . , J
r Raw material index, r = 1, 2, . . . , R
i Product index, i = 1, 2, . . . , I
s Scenario index, s = 1, 2, . . . , S
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t Period index, t = 1, 2, . . . , T
u Capacity index in a manufacturing plant, u = 1, 2, . . .U
h Production technology, h = 1, 2, . . .H
v Warehouse capacity level, v = 1, 2, . . .V
k Transport mode index, k = 1, 2, . . .K
D End-user demand
C Carbon price

• Parameters

prs
t Market price of carbon credit in period t under scenario s

ds
i jt Market demand of product i in period t under scenario s

capt Maximum amount of carbon emissions allowed in period t (ton)
fmhu,t=1 Fixed cost of establishing plant m with technology h and capacity u
fwv,t=1 Fixed cost of establishing warehouse w with capacity v
fn,t=1 Fixed cost of selecting supplier n
cmimht Cost of producing a unit of product i with technology h in plant m in period t
csrnmt Cost of purchasing a unit of raw material r from supplier n for processing at plant m in period t
cimwkt Unit transportation cost for product i shipped from plant m to warehouse w through mode k in

period t
ciwjkt Unit transportation cost for product i shipped from warehouse w to end-user j through mode k in

period t
cimjkt Unit transportation cost for product i shipped from plant m to end-user j through mode k
ρih Processing time of a unit of product i with technology h in period t (h)
vi Volume of a unit of product i (m3)
αri Required amount of raw material r for producing a unit of product i (kg)
pcmhu Production capacity (time) of plant m with technology h and capacity u (h)
cwv Holding capacity of warehouse w with capacity level v (m3)
crnt Raw material capacity of supplier n to provide raw material r in period t (kg)
ICmrt Per-unit storage cost of raw material r from plant m in period t
ICmit Per-unit storage cost of product i from plant m in period t
ICwit Per-unit storage cost of product i from warehouse w in period t
Is,min
mrt Minimum inventory of raw material r from plant m in period t

Is,min
mit Minimum inventory of product i from plant m in period t

Is,min
wit Minimum inventory of product i from warehouse w in period t
δmr Safety inventory coefficient of raw material r in plant m
δmi Safety inventory coefficient of product i in plant m
δwi Safety inventory coefficient of product i in plant w
lbmwkt Lower bound on the transfer quantity allowed from plant m to warehouse w through mode k in

period t (m3)
lbwjkt Lower bound on the transfer quantity allowed from warehouse w to end-user j through mode k in

period t (m3)
lbmjkt Lower bound on the transfer quantity allowed from plant m to end-user j through mode k in

period t (m3)
ubmwkt Upper bound on the transfer quantity allowed from plant m to warehouse w through mode k in

period t (m3)
ubwjkt Upper bound on the transfer quantity allowed from warehouse w to end-user j through mode k in

period t (m3)
ubmjkt Upper bound on the transfer quantity allowed from plant m to end-user j through mode k in

period t (m3)
emimht Carbon emissions of producing a unit of product i with technology h in plant m in period t (ton)
etimwkt Carbon emissions of shipping a unit of product i from plant m to warehouse w through mode k in

period t (ton)
etiwjkt Carbon emissions of shipping a unit of product i from warehouse w to end-user j through mode k

in period t (ton)
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etimjkt Carbon emissions of shipping a unit of product i from plant m to end-user j through mode k in
period t (ton)

pci jt Unit penalty cost for the shortage of product i from end-user j in period t
ρs Probability of scenario s
b Total budget for establishing facilities

• Decision variables

Fmhu,t=1 If plant m with technology h and capacity u is established, Fmhu,t=1 = 1, otherwise Fmhu,t=1 = 0
fwv,t=1 If warehouse w with capacity v, Fwv,t=1 = 1, otherwise Fwv,t=1 = 0
Fn,t=1 If supplier n is selected, Fn,t=1 = 1, otherwise Fn,t=1 = 0
Gs

mwkt If there is a flow between plant m and warehouse w though mode k in period t under scenario s,
Gs

mwkt = 1, otherwise Gs
mwkt = 0

Gs
wjkt If there is a flow between warehouse w and end-user j though mode k in period t under scenario s,

Gs
wjkt = 1, otherwise Gs

wjkt = 0

Gs
mjkt If there is a flow between plant m and end-user j though mode k in period t under scenario s,

Gs
mjkt = 1, otherwise Gs

mjkt = 0

Qs
imht Quantity of product i produced in plant m with technology h in time period t under scenario s

Is
mrt The inventory of raw material r from plant m in period t under scenario s

Is
mit The inventory of product i from plant m in period t under scenario s

Is
wit The inventory of product i from warehouse w in period t under scenario s

Rs
rnmt Quantity of raw material r shipped from supplier n to plant m in period t under scenario s

Ls
imwkt Quantity of product i shipped from plant m to warehouse w through k in period t under scenario s

Ls
iwjkt Quantity of product i shipped from warehouse w to end-user j through mode k in period t under

scenario s
Ls

imjkt Quantity of product i shipped from plant m to end-user j through mode k in period t under
scenario s

Os
i jt Quantity of shortage for product i in end-user j in period t under scenario s

Es
t Net number of carbon credits traded in period t under scenario s

4.1. Constraints

For the supply chain network design problem, the constraints mainly include the budget constraint,
the carbon credit limitation, the capacity constraint of the plants and warehouses, the material flow
constraints between different supply chain participants, and the flow balances in plants and warehouses.

Constraint (1) guarantees that the total cost of establishing the manufacturing plants and
warehouses should be within the budget limitation.∑

m

∑
u

∑
h

Fmhu,t=1 fmhu,t=1 +
∑

w

∑
v

Fwv,t=1 fwv,t=1 ≤ b (1)

Constraints (2) and (3) ensure that up to one facility can be established in each candidate location.∑
u

∑
h

Fmhu,t=1 ≤ 1, ∀m (2)

∑
v

Fwv,t=1 ≤ 1, ∀w (3)

Constraint (4) presents the carbon credit limitation for each scenario in time period t by subtracting
the production and transport emissions from the regulated cap.

Es
t =

∑
i

∑
m

∑
w

∑
k

etimwktLs
imwkt +

∑
i

∑
w

∑
j

∑
k

etiwjktLs
iwjkt

+
∑
i

∑
m

∑
j

∑
k

etimjktLs
imjkt +

∑
i

∑
m

∑
h

emimhtQs
imht − capt,∀s, t

(4)
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Constraints (5) and (6) enforce restrictions on the capacity of manufacturing plants and warehouses,
respectively, in period t. ∑

i

ρihQs
imht ≤

∑
u

pcmhuFmhu,t=1 ∀m, h, s, t (5)

∑
i

∑
m

∑
k

viLs
imwkt ≤

∑
v

cwvFwv,t=1 ∀w, s, t (6)

Constraint (7) ensures that no purchases are made from the unselected supplier, and limits each
supplier’s capacity for supplying raw material r.∑

m
Rs

rnmt ≤ crntFn,t=1 ∀r, n, s, t (7)

Constraint (8) ensures that the quantity of raw materials should meet the requirement of
manufacturing plants. ∑

i

∑
h

αriQs
imht =

∑
n

Rs
rnmt ∀r, m, s, t (8)

Constraints (9), (10), and (11) enforce the flow balances in manufacturing plant, warehouse, and
end-user locations, respectively.∑

w

∑
k

Ls
iwjkt +

∑
m

∑
k

Ls
imjkt + Os

i jt = ds
i jt ∀i, j, s, t, (9)

Is
mrt = Is

rm,t−1 +
∑

n
Rs

rnmt −
∑

i

∑
h

αriQs
imht ∀m, r, s, t (10)

Is
imt = Is

im,t−1 +
∑

h

Qs
imht −

∑
w

∑
k

Ls
imwkt −

∑
j

∑
k

Ls
imjkt ∀m, i, s, t (11)

The ending stock level of the products in the warehouse is equal to the opening stock level
plus the plant-to-warehouse shipments minus the warehouse-to-customer shipments, as shown in
constraint (12).

Is
wit = Is

wi,t−1 +
∑

m

∑
k

Ls
imwkt −

∑
j

∑
k

Ls
iwjkt ∀w, i, s, t (12)

The stock level of raw materials and finished products should be no less than the required
minimum stock, that is:

Is
mrt ≥ Is,min

mrt ∀m, r, s, t (13)

Is
mit ≥ Is,min

mit ∀m, i, s, t (14)

Is
wit ≥ Is,min

wit ∀w, i, s, t (15)

Constraints (16–18) prevent production interruptions due to shortage of raw materials, product.
Plants and warehouses usually set the corresponding minimum inventory as a guarantee.

Is,min
mrt = δmr

∑
i

∑
h

αriQs
imht ∀m, r, s, t (16)

Is,min
mit = δmi(

∑
w

∑
k

Ls
imwkt +

∑
j

∑
k

Ls
imjkt) ∀m, i, s, t (17)

Is,min
wit = δwi

∑
j

∑
k

Ls
iwjkt ∀w, i, s, t (18)

As stated in constraints (19–21), the transfer quantities between different supply chain participants
should satisfy the product flow limitations.
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Gs
mwktlbmwkt ≤

∑
i

Ls
imwktvi ≤ ubmwktGs

mwkt ∀m, w, k, s, t (19)

Gs
wjktlbwjkt ≤

∑
i

Ls
iwjktvi ≤ ubwjktGs

wjkt ∀w, j, k, s, t (20)

Gs
mjktlbmjkt ≤

∑
i

Ls
imjktvi ≤ ubmjktGs

mjkt ∀m, j, k, s, t (21)

Constraints (22) and (23) enforce the binary and non-negativity restrictions on decision variables.

Fmhu,t=1, Fwv,t=1, Fn,t, Gs
mwkt, Gs

wjkt, Gs
mjkt ∈ {0, 1} ∀m, h, u, w, n, k, s, j, t (22)

Qs
imht, Rs

rnmt, Ls
imwkt, Ls

iwjkt, Ls
imjkt, Is

mit, Is
mrt, Is

wit ≥ 0 ∀i, m, h, s, r, n.m.w, k, j (23)

4.2. Objective Function

In the proposed green supply chain network design model, the related costs are as follows.
The construction costs of the plant and warehouse at the beginning of the whole planning

horizon are:
TACt=1 =

∑
m

∑
u

∑
h

fmhu,t=1Fmhu,t=1 +
∑

w

∑
v

fwv,t=1Fwv,t=1 (24)

The costs of selecting suppliers from candidates are:

TIDCt=1 =
∑

n
fn,t=1Fn,t=1 (25)

Transportation costs among plants, warehouses, and end-users in period t under scenario s are
calculated as:

TTCs
t =

∑
i

∑
m

∑
w

∑
k

cimwktLs
imwkt +

∑
i

∑
w

∑
j

∑
k

ciwjktLs
iwjkt +

∑
i

∑
m

∑
j

∑
k

cimjktLs
imjkt (26)

Production and raw materials purchasing costs in period t under scenario s are:

TMHCs
t =

∑
i

∑
m

∑
h

cmimhtQs
imht +

∑
r

∑
n

∑
m

csrnmtRs
rnmt (27)

Penalty/shortage cost and the net cost of carbon credits in period t under scenario s are:

TLCs
t =

∑
i

∑
j

pci jtOs
i jt + prs

tE
s
t . (28)

Inventory holding costs for raw materials, products in plants, and warehouses in period t under
scenario s are calculated as:

TICs
t =

∑
m

∑
r

ICmrt
Is
mrt + Is

mr,t−1

2
+

∑
m

∑
i

ICmit

Is
mit + Is

mi,t−1

2
+

∑
w

∑
i

ICwit

Is
wit + Is

wi,t−1

2
(29)

Denote πs as the total cost for the supply chain network design for scenario s during the whole
period, which is given by:

πs =
∑

t

TTCs
t + TMHCs

t + TLCs
t + TICs

t + TACt=1 + TIDCt=1 (30)



Sustainability 2019, 11, 5928 10 of 22

4.3. Deterministic Cost Minimization Model

For any scenario s, the supply chain network design problem can be modeled as a general
deterministic optimization model when the parameters are certain, that is:

DCMs : minπs

s.t.(1) ∼ (23).
(31)

For the convenience of description, let x = (Fmhu,t=1, Fwv,t=1, Fn,t=1, Gs
mwkt, Gs

wjkt, Gs
mjkt)

T be
the vector of decision variables that should be made before any scenario happens, and ys =

(Qs
imht, Rs

rnmt, Ls
imwkt, Ls

iwjkt, Ls
imjkt, Es

t , Os
i jt)

T be the vector of control variables that can be determined
after observing scenario s. Then, the above DCMs model (31) can be described as follows:

DCMs : minπs(x, ys)

s.t. x, ys
∈ ∆s

where ∆s is the feasible region defined by constraints (1)–(23) under scenario s. By solving the problem
DCMs, the optimal network structure and operation strategies under any scenario s can be obtained.
Since it is usually difficult to know exactly which scenarios may occur in the future, a p-robust approach
is used to develop the green supply chain network design model.

4.4. p-Robust Green Supply Chain Network Design Model

For the deterministic optimization problem DCMs, let π∗s be the optimal objective function value
under scenario s. Let

{
x, ys} be a feasible solution to DCMs, which corresponds to the objective function

value of πs(x, ys). For any scenario s, a relative regret value, defined as αs = [πs(x, ys) − π∗s]/π∗s, is
introduced to evaluate the robustness of a solution. Let p represent the relative regret limit, for a
given p value, if αs ≤ p is valid for all scenarios, the feasible solution is considered as a p-robust
solution, because the relative regret value is not higher than the desired level [24]. Then, we develop
the following p-robust green supply chain network design model (RSCND):

RSCND : min π =
∑
s
ρsπs(x, ys)

s.t. x, ys
∈ ∆s

∀s
πs(x, ys) ≤ (1 + p)π∗s ∀s

(32)

where the objective function measures the expected total cost for the supply chain network design. Let
(x∗, y1∗, · · · , yS∗) be the optimal solution of RSCND model; constraint (32) measures the robustness
of a solution in any scenario. In many studies, the value of the relative regret limit p is assumed to
be arbitrary. However, it can be seen that there may exist many feasible, robust solutions satisfying
constraint (32) if p is large enough; conversely, there may be no feasible, robust solutions if p is too
small. Therefore, in order to obtain the optimal robust solution, we will introduce an approach to
determine the lower bound and upper bound of the p values in the next section. The decision-maker
can adjust the robustness level of the designed supply chain network by dynamically adjusting the
relative regret limit p.

4.5. Determine Upper and Lower Bounds for Relative Regret Limit

In order to ensure the existence of a feasible solution to the RSCND model, the relative regret
limit p cannot be infinitesimally. Therefore, it is needed to determine a lower bound for the relative
regret limit, which is noted as p. When p = p, the relative regret for the worst-case scenario reaches
the lowest level, thus obtaining the optimal network design scheme in the worst case. Even in the
worst case, constraint (32) needs to be satisfied. However, the expected total cost will be higher
due to the small feasible solution region. On the other hand, the expected total cost π in RSCND
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decreases with the increases of the relative regret limit because of the increasing of the feasible solution
region. In particular, when the relative regret limit p is very large, constraint (32) in RSCND becomes a
redundant constraint, resulting in RSCND becoming a general stochastic programming model without
constraint (32). Therefore, it is necessary to set an upper bound p for the relative regret limit, which can
be defined as the smallest relative regret limit that enables the expected total cost in RSCND to reach
its same minimum value as without constraint (32) in RSCND.

A larger relative regret limit corresponds to a smaller expected total cost, but the supply chain
network has inferior robustness in dealing with uncertain disturbances. Therefore, there is a tradeoff

between the overall performance and the worst-case performance. When selecting a small relative
regret limit, the solution benefits the worst-case scenario, but damages the performance of the supply
chain network, and vice versa. The value of the relative regret limit p can be selected according to
the supply chain network designer’s preference. If the risk-averse designer prefers to pursue good
performance for the worst-case scenario, it is better to select a smaller relative regret limit. On the
contrary, if the designer is willing to pursue the optimal performance for all scenarios and is able to
bear the worst-case performance, then it is better to select a larger relative regret limit. In the following,
the method to obtain lower bound p and upper bound p are presented.

The lower bound p is the smallest value that guarantees the existence of a feasible solution to the
problem RSCND. Thereby, it can be obtained by solving the following model (p-LOW):

p− LOW : min p
s.t. x, ys

∈ ∆s
∀s

πs(x, ys) ≤ (1 + p)π∗s ∀s
p ≥ 0

According to problem RSCND, when the relative regret limit p is large enough, constraint (32)
becomes redundant, and the objective function π reduces to its minimum value πmin, which can be
obtained by solving the following stochastic programming model (SPM):

minπ =
∑
s
ρsπs(x, ys)

s.t. x, ys
∈ ∆s

∀s

On that basis, the upper bound p can be obtained by solving the following model (p-UP) with an
extra constraint, π = πmin:

p−UP : min p
s.t. x, ys

∈ ∆s
∀s

πs(x, ys) ≤ (1 + p)π∗s ∀s
π = πmin

p ≥ 0

By solving the above p-LOW, SPM, and p-UP models, the lower bound p and upper bound p can
be obtained. Any value of p ∈ [p, p] can be used to solve model RSCND, and then obtain a robust green
supply chain network design scheme. Note that all modes including p-LOW, SPM, p-UP, and RSCND
are mixed integer linear programming, which can be solved efficiently.

5. Scenario Generation and Reduction

This study considers two sources of uncertainty: carbon price and market demand. A scenario
tree approach is applied to describe the uncertainties in both sources. Let C denote the carbon price,
which has two possible values, C1 and C2, representing low and high prices, respectively, C ∈ {C1, C2}.
In each period t, the corresponding probabilities that the carbon price scenarios occur are ptC1 and ptC2 ,
ptC1 + ptC2 = 1. Let D denote the future market demand, which has three possible values, D1, D2, and
D3, representing low, medium, and high demand, respectively, D ∈ {D1, D2, D3}. The corresponding
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probabilities that the demand scenarios occur in period t are qtD1 , qtD2 , and qtD3 , qtD1 + qtD2 + qtD3 = 1.
Then, the total number of scenarios for the whole period is calculated as |S| = 6T, and the probability
that each scenario s happens is ρs =

∏
t,C,D

ptCqtD. As can be seen from Figure 2, the number of uncertain

scenarios will increase exponentially with the increase of the number of periods, which results in too
large a model to be solved effectively. Then, we introduce a scenario reduction technique to filter the
scenarios, which reduces the solving difficulty.
Sustainability 2019, 11, x 14 of 24 

. 

Figure 2. Scenario tree. 

In a multi-scenario problem, let  be the vector of uncertain parameters. Let the 
uncertain parameter  take on a finite set of values given by . The probability 
associated with the uncertain parameter  taking on a value  is 

, . To model the selection of scenarios, let the new probability 
assigned to a scenario s be , a continuous variable. The scenario reduction optimization 
model can be described as in reference [32]: 

 (33) 

By solving model (33), the minimum set of scenarios and their associated probabilities are 
obtained. Denote  as the value of the probability corresponding to scenario s with the 
uncertain parameters  in the reduced set of scenarios. 

6. Numerical Studies 

Figure 2. Scenario tree.

In a multi-scenario problem, let θ = {θr}r=1,··· ,R be the vector of uncertain parameters. Let the
uncertain parameter θr take on a finite set of values given by θtr

r (tr = 1, . . . , Tr). The probability
associated with the uncertain parameter θr taking on a value θtr

r (tr = 1, . . . , Tr) is ptr
r = Pr

{
θr = θtr

r

}
,

Tr∑
tr=1

ptr
r = 1. To model the selection of scenarios, let the new probability assigned to a scenario s be

p̂t1,t2,...,tR , a continuous variable. The scenario reduction optimization model can be described as in
reference [32]:

min f =
T1∑

t1=1

T2∑
t2=1
· · ·

TR∑
tr=1

[(1− pt1
1 pt2

2 · · · p
tR
R )p̂t1,t2,...,tR ]

s.t.
T2∑

t2=1

T3∑
t3=1
· · ·

TR∑
tr=1

p̂t1,t2,...,tR = pt1
1 t1 = 1, . . . , T1

T1∑
t1=1

T3∑
t3=1
· · ·

TR∑
tr=1

p̂t1,t2,...,tR = pt2
2 t2 = 1, . . . , T2,

...
T1∑

t1=1

T2∑
t2=1
· · ·

TR−1∑
tr−1=1

p̂t1,t2,...,tR = ptR
R tR = 1, . . . , TR

T1∑
t1=1

T2∑
t2=1
· · ·

TR∑
tr=1

p̂t1,t2,...,tR = 1

0 ≤ p̂t1,t2,...,tR ≤ 1 ∀t1, t2, . . . , tR.

(33)
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By solving model (33), the minimum set of scenarios and their associated probabilities are
obtained. Denote p̂∗t1,t2,...,tR

as the value of the probability corresponding to scenario s with the uncertain

parameters
{
θt1

1 ,θt2
2 , . . . ,θtR

R

}
in the reduced set of scenarios.

6. Numerical Studies

6.1. Description and Parameter Assignment

In order to verify the validity of the proposed p-robust green supply chain network design model,
numerical calculations are carried out for the automotive components’ supply chain network design.
Due to confidentiality, the true data in a real case cannot be accessed unconditionally. Therefore,
a virtual case study is created to perform the experiment, in which a set of representative data is
presented. During the planning period |T| = 6, plants use |R| = 3 raw materials to produce |I| = 2
products with a ratio of αri = 1 and volume of vi = 1 to meet the demand of |J| = 5 end-user areas. We
assume that there are |N| = 3 potential suppliers and the supply capacities are 6000, 6500, and 7000 for
each one. Further, |M| = 3 potential plants use two optional technologies to make products, and the
products are shipped out from the plant through a series of optional paths to the warehouse or directly
to the end user. The capacity for each manufacturing plant can be small, medium, or large, denoted as
uS, uM, and uL, respectively, in which u ∈ {uS, uM, uL}. After arriving at the warehouse, the products
are allocated and sorted in order to deliver the products to the customer area accurately and in a
timely manner. The minimum transport volumes from plant to warehouse, warehouse to end user, and
plant to end user are all set as 0, and the maximum transport volumes are set as 4000, 4000, and 1000,
respectively. The carbon emissions per unit product of transport from plant to warehouse, warehouse
to end user, and plant to end user are set as 0.5, 0.8, and 4, respectively. The safety inventory coefficients
of raw materials and products in factories are δmr = 0.1 and δmi = 0.1, respectively. There are |W|= 4
potential warehouses, and the safety inventory coefficient of products in each warehouse is set as
δwi = 0.05. We assume that the total budget for the establishment of facilities does not exceed 170,000.
Other parameters, such as requirements and costs required for the model, are shown in Tables 1–12.

Table 1. End-user demand for products and unit penalty cost.

Demand Scenario/Penalty Cost
End-User

j1 j2 j3 j4 j5

D1 1000 800 700 820 1150
D2 1100 850 730 900 1300
D3 1200 920 750 950 1400

pci jt 200 250 220 280 250

Table 2. Maximum overall allowed carbon emissions and price of carbon credit.

Cap/Price
Period

t1 t2 t3 t4 t5 t6

capt 24,000 22,000 21,000 25,000 24,000 22,000
C1 20 20 20 20 20 20
C2 30 30 30 30 30 30

Table 3. Fixed cost of establishing plant m with technology h and capacity u.

Technology
Plant 1 Plant 2 Plant 3

uS uM uL uS uM uL uS uM uL

h1 20,000 21,000 22,000 25,000 26,000 27,000 28,000 29,000 30,000
h2 22,000 23,500 24,000 26,000 27,500 28,500 26,000 27,500 28,500
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Table 4. Processing time per unit product with technology h.

Technology
Product

i1 i2

h1 0.1 0.2
h2 0.15 0.25

Table 5. Production capacity (time) in plant m with technology h and capacity u.

Technology
Plant 1 Plant 2 Plant 3

uS uM uL uS uM uL uS uM uL

h1 1000 1100 1200 1200 1300 1400 1300 1400 1500
h2 1100 1200 1300 1300 1400 1500 1400 1500 1600

Table 6. Fixed cost of establishing warehouse with a certain capacity.

Warehouse (fwv,v)

w1 (28,000, 5000) (30,000, 5200)
w2 (31,000, 5100) (32,500, 5250)
w3 (33,000, 5200) (35,000, 5400)
w4 (35,000, 5400) (37,500, 5550)

Table 7. Cost of manufacturing a unit product and estimated carbon emissions to produce a unit product.

Technology
Cost Carbon Emissions

m1 m2 m3 m1 m2 m3

h1 0.9 0.8 0.7 4 3 2
h2 1.0 0.9 0.8 3 2 1

Table 8. Fixed cost of selecting supplier and unit purchasing cost of raw material.

Supplier Selecting Cost
Plant

m1 m2 m3

n1 2400 10 15 20
n2 2800 17 16 13
n3 3200 16 18 18

Table 9. Unit transportation cost for product shipped from plant to warehouse and end user.

Plant
Warehouse End-User

w1 w2 w3 w4 j1 j2 j3 j4 j5

m1 0.60 0.65 0.70 0.85 1.00 1.10 1.20 1.90 1.80
m2 0.70 0.70 0.65 0.75 1.20 1.10 1.30 1.40 1.50
m3 0.80 0.90 0.70 0.70 1.30 1.20 1.20 1.10 1.40

Table 10. Unit transportation cost for product shipped from warehouse to end user.

Warehouse
End-User

j1 j2 j3 j4 j5

w1 0.50 0.45 0.40 0.55 0.60
w2 0.60 0.65 0.70 0.55 0.50
w3 0.70 0.75 0.80 0.65 0.60
w4 0.85 0.75 0.80 0.70 0.90
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Table 11. Per-unit storage cost of product and raw material.

Plant/
Warehouse

Plant (Raw Materials) Plant (Products) Warehouse (Products)

m1 m2 m3 m1 m2 m3 w1 w2 w3 w4

Cost 0.50 0.55 0.65 0.6 0.65 0.60 0.70 0.75 0.85 1

Table 12. Carbon price and demand scenario probability in different periods after scenario reduction.

Scenario
Carbon Price Scenario in Each Period Demand Scenario in Each Period

ρs
t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

1 C1 C1 C1 C1 C1 C1 D1 D1 D1 D1 D1 D1 0.15
2 C1 C1 C1 C1 C1 C1 D2 D2 D2 D2 D2 D2 0.120
3 C1 C1 C1 C1 C1 C1 D3 D3 D3 D3 D3 D3 0.013
4 C1 C1 C2 C1 C2 C1 D3 D3 D3 D3 D3 D3 0.007
5 C1 C2 C1 C2 C1 C1 D3 D3 D3 D3 D3 D3 0.010
6 C2 C2 C2 C2 C2 C2 D1 D1 D1 D1 D1 D1 0.35
7 C2 C2 C2 C2 C2 C2 D2 D2 D2 D2 D2 D2 0.28
8 C2 C1 C1 C1 C2 C1 D3 D3 D3 D3 D3 D3 0.007
9 C2 C1 C2 C2 C1 C1 D3 D3 D3 D3 D3 D3 0.003

10 C2 C2 C2 C1 C1 C1 D3 D3 D3 D3 D3 D3 0.003
11 C2 C2 C2 C2 C2 C2 D3 D3 D3 D3 D3 D3 0.057

In each period t, the probabilities of two price scenarios (low and high) are set to ptC1 = 0.30 and
ptC2 = 0.70, respectively. Furthermore, the probabilities of three demand scenarios (low, zero, and
high), qtD1 = 0.5, qtD2 = 0.40, and qtD3 = 0.10, are used. Thus, we have six combinatorial scenarios
altogether, and the corresponding probabilities are ρtC1tD1 = 0.15, ρtC1tD2 = 0.12, ρtC1tD3 = 0.03,
ρtC2tD1 = 0.35, ρtC2tD2 = 0.28, and ρtC2tD3 = 0.07. By solving model (33), 11 scenarios and their
corresponding probabilities are obtained, as shown in Table 12. All the models, including DCMs,
p-LOW, SPM, p-UP, and RSCND, are coded in GAMS 24.7.1 modeling language using CPLEX as the
core optimization solver.

6.2. Results Analysis

1. Total costs of supply chain network in different scenarios.
In this section, we evaluate the performance of the proposed p-robust green supply chain network

design model under different scenarios. By solving p-LOW, SPM, and p-UP, the lower and upper
bounds as well as the minimum expected total cost are obtained as p = 0.032, p = 0.042, and
πmin = 2681735.559, respectively. Besides, the problem DCMs is solved for determining the optimal
cost π∗s under different scenarios (see second column in Table 13). Likewise, the robust optimal costs
πs under the 11 scenarios are also calculated by solving the p-robust model RSCND for the resulting
lower and upper bounds. In order to verify the robustness of the proposed approach, the relative
regret value αs is further calculated under different scenarios.

The results in Table 13 show that under the same scenario s, the robust optimal costs πs are higher
than the deterministic supply chain network design costs π∗s both for the lower and upper bounds. This
increasing trend is due to the uncertainty of carbon price and demand, but the increasing proportion is
small. For example, the largest relative regret values are 0.0323 for the lower bound and 0.0418 for the
upper bound, both in scenario 4. Since the relative regret values are somewhat small, decision-makers
can effectively use the proposed p-robust optimization approach to deal with carbon and demand
uncertainties, which shows that the proposed model is robust.

As can be seen from Table 13, compared with the total cost of a deterministic supply chain network
design under a single scenario, the total cost of the network under any scenario obtained by solving the
p-robust model RSCND in this paper shows an increasing trend due to the uncertainty of carbon price
and demand, but the increasing proportion is small, which shows that the proposed model is robust.
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Table 13. Objective function and relative regret for each scenario.

Scenario s π*
s

p=p p=p

πs αs πs αs

1 2,481,572.95 2,561,753.71 0.0323 2,483,228.764 0.0007
2 3,040,158.77 3,138,387.68 0.0323 3,043,745.404 0.0012
3 3,524,771.24 3,638,658.20 0.0323 3,593,428.924 0.0195
4 3,361,727.28 3,470,346.22 0.0323 3,502,280.25 0.0418
5 3,342,622.42 3,439,524.85 0.0290 3,467,732.183 0.0374
6 2,145,813.53 2,215,145.74 0.0323 2,175,694.415 0.0139
7 2,918,783.87 3,013,091.11 0.0323 2,948,686.603 0.0102
8 3,447,670.02 3,550,851.35 0.0299 3,512,060.912 0.0187
9 3,460,920.65 3,572,744.57 0.0323 3,525,250.858 0.0186

10 3,633,799.14 3,751,208.84 0.0323 3,655,320.274 0.0059
11 3,563,915.99 3,679,067.73 0.0323 3,593,728.111 0.0084

* represents the optimal value.

2. Expected value of perfect information (EVPI).
The EVPI is defined as the difference between RP = min

∑
s
ρsπs and WS =

∑
s
ρsπ∗s [33]. Thus,

the value of EVPI in this study is EVPI = RP −WS = πmin −
∑
s
ρsπ∗s = 25044.9424, which can be

interpreted as a fee that a decision-maker is willing to pay to gain access to perfect carbon price and
customer demand information.
3. Performance comparisons and carbon emission comparisons under robust optimization and
stochastic programming.

To highlight the advantages of the proposed approach in dealing with carbon price and customer
demand uncertainties, a comparative performance evaluation is conducted first for the robust
optimization model with p = p and the stochastic programming model (SPM). Denote πSP

s and

πRO
s as their corresponding optimal costs under different scenarios, and the relative regret limit p is

set as p = p. In addition, let αSP−D, αRO−D and αRO−SP be the relative ratios expressed as αSP−D =

(πSP
s − π

∗
s)/π∗s × 100%, αRO−D = (πRO

s − π∗s)/π∗s × 100%, and αRO−SP = (πRO
s − πSP

s )/πSP
s × 100%,

respectively, to reflect the magnitude of cost fluctuations because of carbon price and customer demand
uncertainties. As shown in Table 14, the largest relative ratios are 3.23% for αRO−D and 4.18% for αSP−D.
The smallest relative ratios are 2.90% for αRO−D and 0.07% for αSP−D, respectively. These experimental
results demonstrate that the cost fluctuation induced by the robust optimization model is smaller than
that induced by the stochastic programming model, indicating that the proposed p-robust green supply
chain network design model can better hedge against the carbon price and demand uncertainties, and
achieve a more stable cost performance.

Table 14. Performance comparisons under robust optimization and stochastic programming.

Scenario s π*
s πRO

s (p=p) αRO−D πSP
s αSP−D αRO−SP

1 2,481,572.954 2,561,753.71 3.2310 2,483,228.764 0.0667 0.7316
2 3,040,158.768 3,138,387.68 3.2310 3,043,745.404 0.1180 0.4838
3 3,524,771.235 3,638,658.20 3.2310 3,593,428.924 1.9479 −1.8632
4 3,361,727.278 3,470,346.22 3.2310 3,502,280.25 4.1810 −1.3647
5 3,342,622.417 3,439,524.85 2.8990 3,467,732.183 3.7429 −1.0009
6 2,145,813.53 2,215,145.74 3.2310 2,175,694.415 1.3925 0.7941
7 2,918,783.871 3,013,091.11 3.2310 2,948,686.603 1.0245 0.5831
8 3,447,670.022 3,550,851.35 2.9928 3,512,060.912 1.8677 −0.9438
9 3,460,920.653 3,572,744.57 3.2310 3,525,250.858 1.8588 −0.2271

10 3,633,799.139 3,751,208.84 3.2310 3,655,320.274 0.5922 −0.2566
11 3,563,915.987 3,679,067.73 3.2310 3,593,728.111 0.8365 0.4725



Sustainability 2019, 11, 5928 17 of 22

From Table 14, it can be seen that the maximum value of robust optimization αRO−D is 3.23%, and
the minimum value is 2.90%. The maximum value of stochastic programming αSP−D is 4.18%, and
the minimum value is 0.07%. In conclusion, the fluctuation of the objective function value of robust
optimization is relatively small, whereas that of stochastic programming is relatively large. This shows
that the p-robust green supply chain network design method can achieve more stable cost performance
under uncertain carbon price and demand.

Further analysis is performed to study the impact of carbon price and demand uncertainties
on carbon emissions. Let R∗s represent the optimal carbon emission under scenario s. Denote
RRO

s and RSP
s as the carbon emissions derived by robust optimization with p = p and stochastic

programming, respectively. Similarly, let λSP−D, λRO−D and λRO−SP be the relative ratios expressed as
λSP−D = (RSP

s −R∗s)/R∗s × 100%, λRO−D = (RRO
s −R∗s)/R∗s × 100%, and λRO−D = (RRO

s −R∗s)/R∗s × 100%,
respectively. Table 15 shows that the absolute value of λRO−D is less than or equal to that of λSP−D
in any scenario s, which further provides evidence that the proposed p-robust green supply chain
network design model can better hedge against the carbon price and demand uncertainties and achieve
more stable solutions.

Table 15. Carbon emissions derived by robust optimization and stochastic programming.

Scenario s R*
s RRO

s (p=p) λRO−D RSP
s λSP−D λRO−SP

1 130,332.875 130,331.794 0.0000 130,331.794 0.0000 0.0000
2 145,682.061 145,683.273 0.0000 145,561.907 −0.0008 0.0008
3 158,446.731 157,203.597 −0.0078 152,350.8 −0.0385 0.0319
4 158,863.8 157,209.46 −0.0104 152,341.2 −0.0411 0.0320
5 158,430.022 157,609.065 −0.0052 152,792.233 −0.0356 0.0315
6 107,917.835 107,917.835 0.0000 107,917.835 0.0000 0.0000
7 106,415.685 106,415.685 0.0000 106,415.685 0.0000 0.0000
8 153,969.585 148,423.624 −0.0360 145,149.212 −0.0573 0.0226
9 148,088.823 145,554.075 −0.0171 143,749.281 −0.0293 0.0126

10 133,711.469 133,542.264 −0.0013 131,169.989 −0.0190 0.0181
11 107,170.645 107,170.645 0.0000 107,170.645 0.0000 0.0000

* represents the optimal value.

4. Cost performance and carbon emission evaluations under different p values.
More experiments are conducted to investigate the impact of the relative regret limit p on the

supply chain network cost performance, carbon emission cost, and carbon emission. In order to
observe the changing tendencies of the cost–profit performances and the carbon emissions, the relative
regret limit p is set to start from the lower bound p = 0.032 to the upper bound p = 0.042 in increments
of ∆p = 0.001. By solving RSCND, we obtain the results shown in Figures 3 and 4. Figure 3 shows that
when p is small enough, the robustness of the supply chain network is better, whereas the expected
total cost is higher, and vice versa. Therefore, it is necessary to make a tradeoff between p and the
total cost of the supply chain network system. As shown in Figure 3, there are three effective design
schemes: when p is set as p = 0.032, p = 0.035, and p = 0.042, the supply chain network costs are
π = 2682632.48, π = 2681840.84, and π = 2681735.56, respectively. These results imply that, from the
perspective of supply chain cost performance stability, risk-averse decision-makers should choose the
scheme with a lower p, whereas risk-preference decision-makers should choose the scheme with a
larger p to save costs.

From Figures 3 and 4, it can be seen that both the carbon emission cost and the carbon emission
decrease as p increases, which means that decision-makers can achieve substantial emission reductions
by increasing p slightly. That is, environmentalists tend to choose the scheme with a larger relative
regret limit p.



Sustainability 2019, 11, 5928 18 of 22
Sustainability 2019, 11, x 20 of 24 

 
Figure 3. Total network cost and carbon emission cost under different relative regret limits. 

 

Figure 4 Carbon emissions under different relative regret limits. 

5. Supply chain network structure 
According to the three effective design schemes derived above and the two-stage stochastic 

programming design scheme, the corresponding supply chain network structures are given in 
Figures 5–8, where the figures above facilities represent the outputs of products, the figures below 
facilities represent the inventory level of products, and the figures between facilities represent the 
volume of raw materials transported and the distribution of products. The results in Figures 5–8 
show that when , the optimal supply chain network node selection scheme includes the 
suppliers , , and , the plants  and , and the warehouses  and  (see Figure 5). 
From Figures 6–8, we can see that the supply chain network structures for three situations ( , 

, and stochastic programming) are the same, and the optimal choice is , , , , 
, , and . 

Figures 5–8 show that only when the regret value limit p is set as the lower bound  ( ), 
the design of the supply chain network is different in node selection, which is mainly reflected in the 
warehouse selection (the warehouse selection is  and  for the case , whereas the 
warehouse selection is  and  for other cases). In the case where , the robustness level of 
the supply chain network as well as the corresponding total network cost are the highest. With the 
increase of p, the network structure remains unchanged, but the level of robustness and the total cost 
of the network decrease. However, it can be seen from the transportation path and quantity 
distribution that there are obvious differences in the second-stage decision making corresponding to 
the four network structures. The results show that the supply chain network designed according to 
the proposed p-robust approach has good stability in its structure. 

1470000

1475000

1480000

1485000

1490000

1495000

1500000

0.032 0.033 0.034 0.035 0.036 0.037 0.038 0.039 0.04 0.041 0.042

ca
rb

on
 e

m
iss

io
n

p

Figure 3. Total network cost and carbon emission cost under different relative regret limits.

Sustainability 2019, 11, x 20 of 24 

 
Figure 3. Total network cost and carbon emission cost under different relative regret limits. 

 

Figure 4 Carbon emissions under different relative regret limits. 

5. Supply chain network structure 
According to the three effective design schemes derived above and the two-stage stochastic 

programming design scheme, the corresponding supply chain network structures are given in 
Figures 5–8, where the figures above facilities represent the outputs of products, the figures below 
facilities represent the inventory level of products, and the figures between facilities represent the 
volume of raw materials transported and the distribution of products. The results in Figures 5–8 
show that when , the optimal supply chain network node selection scheme includes the 
suppliers , , and , the plants  and , and the warehouses  and  (see Figure 5). 
From Figures 6–8, we can see that the supply chain network structures for three situations ( , 

, and stochastic programming) are the same, and the optimal choice is , , , , 
, , and . 

Figures 5–8 show that only when the regret value limit p is set as the lower bound  ( ), 
the design of the supply chain network is different in node selection, which is mainly reflected in the 
warehouse selection (the warehouse selection is  and  for the case , whereas the 
warehouse selection is  and  for other cases). In the case where , the robustness level of 
the supply chain network as well as the corresponding total network cost are the highest. With the 
increase of p, the network structure remains unchanged, but the level of robustness and the total cost 
of the network decrease. However, it can be seen from the transportation path and quantity 
distribution that there are obvious differences in the second-stage decision making corresponding to 
the four network structures. The results show that the supply chain network designed according to 
the proposed p-robust approach has good stability in its structure. 

1470000

1475000

1480000

1485000

1490000

1495000

1500000

0.032 0.033 0.034 0.035 0.036 0.037 0.038 0.039 0.04 0.041 0.042

ca
rb

on
 e

m
iss

io
n

p

Figure 4. Carbon emissions under different relative regret limits.

5. Supply chain network structure.
According to the three effective design schemes derived above and the two-stage stochastic

programming design scheme, the corresponding supply chain network structures are given in
Figures 5–8, where the figures above facilities represent the outputs of products, the figures below
facilities represent the inventory level of products, and the figures between facilities represent the
volume of raw materials transported and the distribution of products. The results in Figures 5–8 show
that when p = p, the optimal supply chain network node selection scheme includes the suppliers N1,
N2, and N3, the plants M2 and M3, and the warehouses W1 and W2 (see Figure 5). From Figures 6–8,
we can see that the supply chain network structures for three situations (p = p, p = 0.035, and stochastic
programming) are the same, and the optimal choice is N1, N2, N3, M2, M3, W1, and W3.

Figures 5–8 show that only when the regret value limit p is set as the lower bound p (p = p), the
design of the supply chain network is different in node selection, which is mainly reflected in the
warehouse selection (the warehouse selection is W1 and W2 for the case p = p, whereas the warehouse
selection is W1 and W3 for other cases). In the case where p = p, the robustness level of the supply
chain network as well as the corresponding total network cost are the highest. With the increase of p,
the network structure remains unchanged, but the level of robustness and the total cost of the network
decrease. However, it can be seen from the transportation path and quantity distribution that there are
obvious differences in the second-stage decision making corresponding to the four network structures.
The results show that the supply chain network designed according to the proposed p-robust approach
has good stability in its structure.
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7. Conclusions

In this research, we provided an approach for designing a robust green supply chain network with
uncertain carbon price and market demand. Under the constraints of supply chain network structure,
logistics operation, carbon emission, inventory, and cost, a two-stage SPM and a scenario-based
multi-product, multi-period green supply chain network model based on p-robustness in a carbon
trading environment were developed. For the p-robust green supply chain network problem, the
solution method for determining the lower and upper bounds of the relative regret limit was proposed,
which is convenient for decision-makers in choosing the corresponding supply chain network structure
through the tradeoff between risk and cost performance. A scenario tree was applied to describe
uncertainties in both carbon price and market demand, and the number of uncertain scenarios tended
to increase exponentially with the increase of the number of periods, which resulted in too large a
model to be solved effectively. Thus, a scenario reduction technique was proposed to filter the scenarios
and maintain the validity of the results.

Numerical experiments were conducted to validate the effectiveness and practicality of the
proposed p-robust optimization approach in coping with carbon price and demand uncertainties.
The results show that the proposed p-robust green supply chain network design model can effectively
hedge against the demand and carbon price uncertainties, and provide more options for decision-makers
with different risk preferences. Especially, the total network cost fluctuation induced by the robust
optimization model is smaller than that induced by the stochastic programming model, indicating
that the proposed p-robust green supply chain network design model can achieve a more stable cost
performance. A risk-averse decision-maker should choose the scheme with a lower relative regret limit,
whereas a risk-taking decision-maker should choose the scheme with a larger relative regret limit to
save costs. If companies use the proposed p-robust optimization approach to design their green supply
chain network in the initial stages, they might reduce the potential marketing risks, substantially
reduce the redesign costs, and effectively hedge against uncertainty disturbances. Moreover, the carbon
emission cost and carbon emission decreased with the increase of p, indicating that selling carbon quota
can benefit enterprises and reduce carbon emissions, so as to achieve the goal of energy conservation
and emission reduction.

Our models can be extended to multi-period cases involving a consideration of the uncertainty
of the emissions rate of production systems. Furthermore, risk measures, such as mean–variance
and conditional risk, can also be used to measure the cost–performance risk of the supply chain
network. Another interesting direction for future research is to construct the uncertainty sets of
carbon price and demand to study the green supply chain network design problem under the criterion
of minimum–maximum or minimum–maximum regret values. Finally, designing a green supply
chain network under different carbon price policies or demand uncertainty may also be future
research directions.
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