Comparing the Environmental Impacts of Meatless and Meat-Containing Meals in the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meal Compositions, Food Groups and Sub-categories
2.2. From Composition to Life Cycle Considerations
2.3. Life Cycle Inventory and Impact Assessment
3. Results
3.1. Meal Compositions and Associated Food Quantity Produced
3.2. Environmental Impact Assessment
3.2.1. Contribution of Food Groups
3.2.2. Impacts of Meal Types and Contribution of Life Cycle Stages
3.3. Uncertainty Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Steinfeld, H.; Gerber, P.; Wassenaar, T.D.; Castel, V.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food & Agriculture Organization: Rome, Italy, 2006. [Google Scholar]
- Weidema, B.P.; Wesnaes, M.; Hermansen, J.; Kristensen, T.; Halberg, M. Environmental Improvement Potentials of Meat and Dairy Products. JRC Scientific and Technical Reports. 2008. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC46650/jrc46650.pdf (accessed on 25 January 2018).
- Wirsenius, S. Efficiencies and biomass appropriation of food commodities on global and regional levels. Agric. Syst. 2003, 77, 219–255. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Heller, M.C.; Keoleian, G.A.; Willett, W.C. Toward a Life Cycle-Based, Diet-level Framework for Food Environmental Impact and Nutritional Quality Assessment: A Critical Review. Environ. Sci. Technol. 2013, 47, 12632–12647. [Google Scholar] [CrossRef] [PubMed]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental impact of dietary change: A systematic review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Kim, B.F.; Nachman, K.E.; Neff, R.A.; Spiker, M.L.; Santo, R.E. Concerns re: Interpretation and translation of findings in Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. Environ. Syst. Decis. 2016, 36, 104–105. [Google Scholar] [CrossRef]
- Tom, M.S.; Fischbeck, P.S.; Hendrickson, C.T. Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. Environ. Syst. Decis. 2016, 36, 92–103. [Google Scholar] [CrossRef]
- Born, B.; Purcell, M. Avoiding the Local Trap: Scale and Food Systems in Planning Research. J. Plan. Educ. Res. 2006, 26, 195–207. [Google Scholar] [CrossRef]
- Meier, M.S.; Stoessel, F.; Jungbluth, N.; Juraske, R.; Schader, C.; Stolze, M. Environmental impacts of organic and conventional agricultural products – Are the differences captured by life cycle assessment? J. Environ. Manag. 2015, 149, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Nordborg, M.; Sasu-Boakye, Y.; Cederberg, C.; Berndes, G. Challenges in developing regionalized characterization factors in land use impact assessment: Impacts on ecosystem services in case studies of animal protein production in Sweden. Int. J. Life Cycle Assess. 2017, 22, 328–345. [Google Scholar] [CrossRef]
- Tabatabaie, S.M.H.; Murthy, G.S. Effect of geographical location and stochastic weather variation on life cycle assessment of biodiesel production from camelina in the northwestern USA. Int. J. Life Cycle Assess. 2017, 22, 867–882. [Google Scholar] [CrossRef]
- Nemecek, T.; Jungbluth, N.; Canals, L.M.I.; Schenck, R. Environmental impacts of food consumption and nutrition: Where are we and what is next? Int. J. Life Cycle Assess. 2016, 21, 607–620. [Google Scholar] [CrossRef]
- Walker, C.; Gibney, E.R.; Hellweg, S. Comparison of Environmental Impact and Nutritional Quality among a European Sample Population–findings from the Food4Me study. Sci. Rep. 2018, 8, 2330. [Google Scholar] [CrossRef]
- Chen, C.; Chaudhary, A.; Mathys, A. Dietary Change Scenarios and Implications for Environmental, Nutrition, Human Health and Economic Dimensions of Food Sustainability. Nutrients 2019, 11, 856. [Google Scholar] [CrossRef]
- Eshel, G.; Shepon, A.; Noor, E.; Milo, R. Environmentally Optimal, Nutritionally Aware Beef Replacement Plant-Based Diets. Environ. Sci. Technol. 2016, 50, 8164–8168. [Google Scholar] [CrossRef]
- Heller, M.C.; Keoleian, G.A. Greenhouse Gas Emission Estimates of U.S. Dietary Choices and Food Loss. J. Ind. Ecol. 2015, 19, 391–401. [Google Scholar] [CrossRef]
- Meier, T.; Christen, O. Environmental Impacts of Dietary Recommendations and Dietary Styles: Germany as an Example. Environ. Sci. Technol. 2013, 47, 877–888. [Google Scholar] [CrossRef]
- Notarnicola, B.; Tassielli, G.; Renzulli, P.A.; Castellani, V.; Sala, S. Environmental impacts of food consumption in Europe. J. Clean. Prod. 2017, 140, 753–765. [Google Scholar] [CrossRef]
- Reijnders, L.; Soret, S. Quantification of the environmental impact of different dietary protein choices. Am. J. Clin. Nutr. 2003, 78, 664S–668S. [Google Scholar] [CrossRef] [PubMed]
- Stylianou, K.S.; Heller, M.C.; Iii, V.L.F.; Ernstoff, A.S.; Keoleian, G.A.; Jolliet, O. A life cycle assessment framework combining nutritional and environmental health impacts of diet: A case study on milk. Int. J. Life Cycle Assess. 2016, 21, 1–13. [Google Scholar] [CrossRef]
- van Dooren, C.; Marinussen, M.; Blonk, H.; Aiking, H.; Vellinga, P. Exploring dietary guidelines based on ecological and nutritional values: A comparison of six dietary patterns. Food Policy 2014, 44, 36–46. [Google Scholar] [CrossRef]
- van Mierlo, K.; Rohmer, S.; Gerdessen, J.C. A model for composing meat replacers: Reducing the environmental impact of our food consumption pattern while retaining its nutritional value. J. Clean. Prod. 2017, 165, 930–950. [Google Scholar] [CrossRef]
- Ernstoff, A.; Stylianou, K.S.; Goldstein, B. Response to: Dietary strategies to reduce environmental impact must be nutritionally complete. J. Clean. Prod. 2017, 162, 568–570. [Google Scholar] [CrossRef]
- Ridoutt, B.; Hendrie, G.; Noakes, M. Dietary strategies to reduce environmental impact must be nutritionally complete. J. Clean. Prod. 2017, 152, 26–27. [Google Scholar] [CrossRef]
- Colombo, P.E.; Elinder, L.S.; Parlesak, A.; Lindroos, A.K.; Patterson, E. Fostering sustainable dietary habits through optimized school meals in Sweden–OPTIMAT. Panorama 2017, 3, 557–560. [Google Scholar]
- Goldstein, B.; Moses, R.; Sammons, N.; Birkved, M. Potential to curb the environmental burdens of American beef consumption using a novel plant-based beef substitute. PLoS ONE 2017, 12, e0189029. [Google Scholar] [CrossRef]
- Guthrie, J.; Mancino, L.; Lin, C.-T.J. Nudging Consumers toward Better Food Choices: Policy Approaches to Changing Food Consumption Behaviors. Psychol. Mark. 2015, 32, 501–511. [Google Scholar] [CrossRef]
- Sturtewagen, L.; de Soete, W.; Dewulf, J.; Lachat, C.; lauryssen, S.; Heirman, B.; Rossi, F.; Schaubroeck, T. Resource use profile and nutritional value assessment of a typical Belgian meal, catered or home cooked, with pork or QuornTM as protein source. J. Clean. Prod. 2016, 112, 196–204. [Google Scholar] [CrossRef]
- Davis, J.; Sonesson, U.; Baumgartner, D.U.; Nemecek, T. Environmental impact of four meals with different protein sources: Case studies in Spain and Sweden. Food Res. Int. 2010, 43, 1874–1884. [Google Scholar] [CrossRef]
- Saarinen, M.; Kurppa, S.; Virtanen, Y.; Usva, K.; Mäkelä, J.; Nissinen, A. Life cycle assessment approach to the impact of home-made, ready-to-eat and school lunches on climate and eutrophication. J. Clean. Prod. 2012, 28, 177–186. [Google Scholar] [CrossRef]
- Rivera, X.C.S.; Orias, N.E.; Azapagic, A. Life cycle environmental impacts of convenience food: Comparison of ready and home-made meals. J. Clean. Prod. 2014, 73, 294–309. [Google Scholar] [CrossRef]
- Daniel, C.R.; Cross, A.J.; Koebnick, C.; Sinha, R. Trends in meat consumption in the USA. Public Health Nutr. 2011, 14, 575–583. [Google Scholar] [CrossRef] [PubMed]
- CDC. NHANES 2011–2012 Dietary Data. 2014. Available online: https://wwwn.cdc.gov/nchs/nhanes/Search/DataPage.aspx?Component=Dietary&CycleBeginYear=2011 (accessed on 28 January 2018).
- USDA. Commodity Outlook Reports of the Economic Research Service; US Department of Agriculture: Washington, DC, USA, 2015.
- NOAA. Fisheries of the United States, 2014. 2014. Available online: http://www.st.nmfs.noaa.gov/Assets/commercial/fus/fus14/documents/09_PerCapita2014.pdf (accessed on 28 January 2018).
- USDA. United States Department of Agriculture, Agricultural Research Service, National Nutrient Database for Standard Reference Release 28. 2015. Available online: http://ndb.nal.usda.gov/ndb/foods (accessed on 24 January 2015).
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Buzby, J.C.; Farah-Wells, H.; Hyman, J. The Estimated Amount, Value, and Calories of Postharvest Food Losses at the Retail and Consumer Levels in the United States; Social Science Research Network: Rochester, NY, USA, 2014; SSRN 2501659. [Google Scholar]
- Gallup. Americans Spend $151 a Week on Food; the High-Income, $180. 2012. Available online: http://news.gallup.com/poll/156416/americans-spend-151-week-food-high-income-180.aspx (accessed on 28 January 2018).
- US EPA. Advancing Sustainable Materials Advancement: 2013 Fact Sheet. 2015. Available online: https://nepis.epa.gov (accessed on 28 January 2018).
- Hunt, R.G.; Sellers, V.R.; Frankalin, W.E.; Nelson, J.M.; Rathje, W.L.; Hughes, W.W.; Wilson, D.C. Estimates of the Volume of MSW and Selected Components in Trash Cans and Landfills: Final Report. Franklin Associates, Robert G. Hunt, Council for Solid Waste Solutions, Garbage Project. 1990. Available online: https://p2infohouse.org/ref/51/50496.pdf (accessed on 28 January 2018).
- Sebastian, R.S.; Enns, C.W.; Goldman, J.D. Snacking Patterns of US Adults: What We Eat in America, NHANES 2007–2008. Food Surveys Research Group Dietary Data Brief; 2011. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/DBrief/4_adult_snacking_0708.pdf (accessed on 28 January 2018).
- CPC. U.S. Beverage Guidance Panel—Nutrition Transition Program. 2001. Available online: http://www.cpc.unc.edu/projects/nutrans/policy/beverage/us-beverage-panel (accessed on 28 January 2018).
- US EPA. Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2010. 2010. Available online: http://www.epa.gov/osw/nonhaz/municipal/msw99.htm (accessed on 11 November 2015).
- Heller, M.C.; Keoleian, G.A. Assessing the sustainability of the US food system: A life cycle perspective. Agric. Syst. 2003, 76, 1007–1041. [Google Scholar] [CrossRef]
- Pelletier, N. Life Cycle Thinking, Measurement and Management for Food System Sustainability. Environ. Sci. Technol. 2015, 49, 7515–7519. [Google Scholar] [CrossRef]
- Blonk, H. Agri-Footprint; A Life Cycle Inventory Database Covering Food and Feed Production and Processing. 2014. Available online: http://www.agri-footprint.com/ (accessed on 2 February 2018).
- Humbert, S.; de Schryver, A.; Bengoa, X.; Margni, M.; Jolliet, O. IMPACT 2002+: User Guide Draft for Version Q 2.21 (Version Adapted by Quantis). Quantis Sustainability Counts Google Scholar. 2012. Available online: https://www.quantis-intl.com/pdf/IMPACT2002+_UserGuide_for_vQ2.21_30April2014a.pdf (accessed on 28 January 2018).
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. LCA 2003, 8, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Hauschild, M.Z.; Huijbregts, M.A.J. (Eds.) Life Cycle Impact Assessment; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Jolliet, O.; Saade, M.; Shaked, S.; Jolliet, A. Environmental Life Cycle Assessment; Taylor & Francis: London, UK, 2015. [Google Scholar]
- Hauschild, M.Z.; Rosenbaum, R.; Olsen, S.I. Life Cycle Assessment-Theory and Practice. Available online: http://www.springer.com/de/book/9783319564746 (accessed on 11 February 2018).
- Niles, M.T.; Ahuja, R.; Barker, T.; Esquivel, J. Climate change mitigation beyond agriculture: A review of food system opportunities and implications. Renew. Agric. Food Syst. 2018, 33, 297–308. [Google Scholar] [CrossRef]
- Archer, E.; Pavela, G.; Lavie, C.J. The Inadmissibility of What We Eat in America and NHANES Dietary Data in Nutrition and Obesity Research and the Scientific Formulation of National Dietary Guidelines. Mayo Clin. Proc. 2015, 90, 911–926. [Google Scholar] [CrossRef] [Green Version]
- Heller, M.C.; Willits-Smith, A.; Meyer, R.; Keoleian, G.A.; Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Lett. 2018, 13, 044004. [Google Scholar] [CrossRef] [PubMed]
- Blackstone, N.T.; El-Abbadi, N.H.; McCabe, M.S.; Griffin, T.S.; Nelson, M.E. Linking sustainability to the healthy eating patterns of the Dietary Guidelines for Americans: A modelling study. Lancet Planet. Health 2018, 2, e344–e352. [Google Scholar] [CrossRef]
- de Rosa, M.; Knudsen, M.T.; Hermansen, J.E. A comparison of Land Use Change models: Challenges and future developments. J. Clean. Prod. 2016, 113, 183–193. [Google Scholar] [CrossRef]
- Schmidt, J.H.; Weidema, B.P.; Brandão, M. A framework for modelling indirect land use changes in Life Cycle Assessment. J. Clean. Prod. 2015, 99, 230–238. [Google Scholar] [CrossRef]
- Jonnalagadda, S.S.; Mitchell, D.C.; Smiciklas-Wright, H.; Meaker, K.B.; Van Heel, N.; Karmally, W.; Ershow, A.G.; Kris-Etherton, P.M. Accuracy of Energy Intake Data Estimated by a Multiplepass, 24-hour Dietary Recall Technique. J. Am. Diet. Assoc. 2000, 100, 303–311. [Google Scholar] [CrossRef]
- Murakami, K.; Sasaki, S.; Takahashi, Y.; Uenishi, K.; Yamasaki, M.; Hayabuchi, H.; Goda, T.; Oka, J.; Baba, K.; Ohki, K.; et al. Misreporting of dietary energy, protein, potassium and sodium in relation to body mass index in young Japanese women. Eur. J. Clin. Nutr. 2008, 62, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Esteve-Llorens, X.; Moreira, M.T.; Feijoo, G.; González-García, S. Linking environmental sustainability and nutritional quality of the Atlantic diet recommendations and real consumption habits in Galicia (NW Spain). Sci. Total Environ. 2019, 683, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Renault, D.; Wallender, W.W. Nutritional water productivity and diets. Agric. Water Manag. 2000, 45, 275–296. [Google Scholar] [CrossRef]
- Vanham, D.; Mekonnen, M.M.; Hoekstra, A.Y. The water footprint of the EU for different diets. Ecol. Indic. 2013, 32, 1–8. [Google Scholar] [CrossRef]
- Muñoz, I.; Canals, L.M.I.; Fernández-Alba, A.R. Life cycle assessment of the average Spanish diet including human excretion. Int. J. Life Cycle Assess. 2010, 15, 794–805. [Google Scholar] [CrossRef]
- Forouzanfar, M.H.; Alexander, L.; Anderson, H.R.; Bachman, V.F.; Biryukov, S.; Brauer, M.; Burnett, R.; Casey, D.; Coates, M.M.; Cohen, A.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 2287–2323. [Google Scholar] [CrossRef]
- Godin, L.; Sahakian, M. Cutting through conflicting prescriptions: How guidelines inform ‘healthy and sustainable’ diets in Switzerland. Appetite 2018, 130, 123–133. [Google Scholar] [CrossRef] [PubMed]
Meal | Carbon Footprint (kg CO2 eq.) * | Water Use (m3) * | Resource Consumption (MJ) * | Health Impact of Pollution (DALY) * | Ecosystem Quality (PDF-m2-y) * | |||||
---|---|---|---|---|---|---|---|---|---|---|
Amt. | % | Amt. | % | Amt. | % | Amt. | % | Amt. | % | |
Breakfast | 1.5 | 58% | 0.26 | 64% | 8.3 | 44% | 1.7 × 10−6 | 62% | 4.9 | 70% |
Lunch | 2.8 | 74% | 0.56 | 81% | 15.5 | 59% | 3.1 × 10−6 | 78% | 9.0 | 85% |
Dinner | 3.7 | 77% | 0.80 | 84% | 20.4 | 64% | 4.0 × 10−6 | 81% | 11.6 | 88% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ernstoff, A.; Tu, Q.; Faist, M.; Del Duce, A.; Mandlebaum, S.; Dettling, J. Comparing the Environmental Impacts of Meatless and Meat-Containing Meals in the United States. Sustainability 2019, 11, 6235. https://doi.org/10.3390/su11226235
Ernstoff A, Tu Q, Faist M, Del Duce A, Mandlebaum S, Dettling J. Comparing the Environmental Impacts of Meatless and Meat-Containing Meals in the United States. Sustainability. 2019; 11(22):6235. https://doi.org/10.3390/su11226235
Chicago/Turabian StyleErnstoff, Alexi, Qingshi Tu, Mireille Faist, Andrea Del Duce, Sarah Mandlebaum, and Jon Dettling. 2019. "Comparing the Environmental Impacts of Meatless and Meat-Containing Meals in the United States" Sustainability 11, no. 22: 6235. https://doi.org/10.3390/su11226235
APA StyleErnstoff, A., Tu, Q., Faist, M., Del Duce, A., Mandlebaum, S., & Dettling, J. (2019). Comparing the Environmental Impacts of Meatless and Meat-Containing Meals in the United States. Sustainability, 11(22), 6235. https://doi.org/10.3390/su11226235