A High-Temperature Risk Assessment Model for Maize Based on MODIS LST
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Data Preprocessing
2.4. Relative High Temperature Risk Assessment Model
2.5. Regional High-Temperature Risk Classification
3. Results
3.1. Trend of Temperature from 2003 to 2018
3.2. Multi-Year STDM of the Whole Region
3.3. Single-Year STDM of the Year with High-Temperature Risk
3.4. Multi-Year STDM of the City with High-Temperature Risk
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, W.; Yang, L.; Li, C.; Liu, H.; Jin, X. Effect of high temperature heat damage on summer maize production. Barley Cereal Sci. 2014, 8–9. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, A.; Wang, J.; Xue, J.; Dong, X.; Wei, G. Influence of High Temperature on Growth and Development of Maize. Crops 2008, 4, 90–92. [Google Scholar]
- Lu, W.; Yu, H.; Cao, S.; Chen, C. Effects of Climate Warming on Growth Process and Yield of Summer Maize in Huang-Huai-Hai Plain in Last 20 Years. Sci. Agric. Sin. 2015, 48, 3132–3145. [Google Scholar]
- Sun, X.; Long, Z.; Song, G.; Chen, C. Effects of Climate Change on Cropping Pattern and Yield of Summer Maize-Winter Wheat in Huang-Huai-Hai Plain. Sci. Agric. Sin. 2017, 50, 2476–2487. [Google Scholar]
- Zhang, L.; Liu, Z.; Liu, D.; Xiong, Q.; Yang, N.; Ren, T.; Zhang, C.; Zhang, X.; Li, S. Crop Mapping Based on Historical Samples and New Training Samples Generation in Heilongjiang Province, China. Sustainability 2019, 11, 5052. [Google Scholar] [CrossRef]
- Liu, Z.; Qiao, H.; Zhao, Z.; Li, S.; Chen, Y.; Zhang, X. Spatial Distribution of High Temperature Stress at Corn Flowering Stage in Huang-Huai-Hai Plain of China. Trans. Chin. Soc. Agric. Mach. 2015, 46, 272–279. [Google Scholar]
- He, L.; Wu, M.; Hou, Y.; Zhao, G.; Jin, N.; Yu, Q. Statistical characteristics of heat stress in early rice based on extreme value distribution in China. Chin. J. Eco-Agric. 2018, 26, 1601–1612. [Google Scholar]
- Jiang, Z.; Wei, X.; Jiang, H. Monitoring the land surface temperature using MODIS data in Zhejiang of China. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–6. [Google Scholar]
- Benali, A.; Carvalho, A.C.; Nunes, J.P.; Carvalhais, N.; Santos, A. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ. 2012, 124, 108–121. [Google Scholar] [CrossRef]
- McMillin, L.M. Estimation of sea surface temperatures from two infrared window measurements with different absorption. J. Geophys. Res. 1975, 80, 5113–5117. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.; Sobrino, J.A. Split-Window Coefficients for Land Surface Temperature Retrieval from Low-Resolution Thermal Infrared Sensors. IEEE Geosci. Remote Sens. Lett. 2008, 5, 806–809. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ. 2002, 83, 163–180. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sens. Environ. 1992, 42, 83–106. [Google Scholar] [CrossRef]
- Ri, C.; Liu, Q.H.; Li, H. Improved split window algorithm to retrieve LST from Terra /MODIS data. J. Remote Sens. 2013, 17, 830–840. [Google Scholar]
- Wang, S.; He, L. Practical split-window algorithm for retrieving land surface temperature over agricultural areas from ASTER data. J. Appl. Remote Sens. 2014, 8, 083582. [Google Scholar] [CrossRef]
- Metz, M.; Andreo, V.; Neteler, M. A New Fully Gap-Free Time Series of Land Surface Temperature from MODIS LST Data. Remote Sens. 2017, 9, 1333. [Google Scholar] [CrossRef]
- Westermann, S.; Langer, M.; Boike, J. Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard—Implications for MODIS LST based permafrost monitoring. Remote Sens. Environ. 2011, 115, 908–922. [Google Scholar] [CrossRef]
- Zhu, W.; Lű, A.; Jia, S. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens. Environ. 2013, 130, 62–73. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, C.; Huang, J.; Zhu, D.; Wang, L.; Liu, J. Mapping of Daily Mean Air Temperature in Agricultural Regions Using Daytime and Nighttime Land Surface Temperatures Derived from TERRA and AQUA MODIS Data. Remote Sens. 2015, 7, 8728–8756. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.; Tadesse, T.; Shan, J.; Hayes, M.; Li, D.; Xiang, D. Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US. Remote Sens. 2015, 7, 951–970. [Google Scholar] [CrossRef]
- Carter, E.K.; Melkonian, J.; Riha, S.J.; Shaw, S.B. Separating heat stress from moisture stress: Analyzing yield response to high temperature in irrigated maize. Environ. Res. Lett. 2016, 11, 94012. [Google Scholar] [CrossRef]
- Butler, E.E.; Huybers, P. Adaptation of US maize to temperature variations. Nat. Clim. Chang. 2013, 3, 68–72. [Google Scholar] [CrossRef]
- Muro, J.; Strauch, A.; Heinemann, S.; Steinbach, S.; Thonfeld, F.; Waske, B.; Diekkrüger, B. Land surface temperature trends as indicator of land use changes in wetlands. Int. J. Appl. Earth Obs. 2018, 70, 62–71. [Google Scholar] [CrossRef]
- Williamson, S.; Hik, D.; Gamon, J.; Kavanaugh, J.; Flowers, G. Estimating Temperature Fields from MODIS Land Surface Temperature and Air Temperature Observations in a Sub-Arctic Alpine Environment. Remote Sens. 2014, 6, 946–963. [Google Scholar] [CrossRef]
- Renata, D. Difference in Canopy and Air Temperature as an Indicator of Grassland Water Stress. Soil Water Res. 2013, 1, 127–138. [Google Scholar] [CrossRef]
- Huang, J.; Ma, H.; Fernando, S.; Phillip, L.; Liang, S.; Wu, Q.; Su, W.; Zhang, X.; Zhu, D. Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model. Eur. J. Agron. 2019, 102, 1–13. [Google Scholar] [CrossRef]
- Vancutsem, C.; Ceccato, P.; Dinku, T.; Connor, S.J. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ. 2010, 114, 449–465. [Google Scholar] [CrossRef]
- Cross, H.Z. Diallel Analysis of Duration and Rate of Grain Filling of Seven Inbred Lines of Corn. Crop Sci. 1975, 15, 532–535. [Google Scholar] [CrossRef]
- Zhou, J.B.; Yang, G.H.; Sun, S.X.; Zhao, J.R. Current Situation and Prospect of Maize Production in the Huanghuaihai Summer Maize Region. Crops 2008, 2, 4–7. [Google Scholar]
- Guo, Q.F.; Gao, X.X.; Liu, Q.; Liu, T.S.; Zhang, C.H.; Dong, R.; Ye, J.C. Maize Breeding Actualities and Innovation in Huanghe-Huaihe River Area. J. Maize Sci. 2007, 6, 1–4. [Google Scholar]
- Yue, Y.; Zhao, W.; Zhou, X. Climatic Characteristics and Breeding Research Direction of Summer Maize in Huanghuaihai Region. Agric. Technol. 2009, 29, 28–30. [Google Scholar]
- Caetano, M.; Araujo, A. Comparing Land Cover Products CLC2000 and MOD12Q1 for Portugal. Global Developments in Environmental Earth Orbservation from Space. 2006, pp. 469–477. Available online: https://www.researchgate.net/publication/239600644_Comparing_land_cover_products_CLC2000_and_MOD12Q1_for_Portugal (accessed on 21 November 2019).
- Mao, J.; Thornton, P.E.; Shi, X.; Zhao, M.; Post, W.M. Remote Sensing Evaluation of CLM4 GPP for the Period 2000–2009. J. Clim. 2012, 25, 5327–5342. [Google Scholar] [CrossRef]
- Naveed, S.; Aslam, M.; Maqbool, M.A.; Bano, S.; Zaman, Q.U.; Ahmad, R.M. Physiology of high temperature stress tolerance at reproductive stages in maize. Anim. Plant Sci. 2014, 24, 1141–1145. [Google Scholar]
- Dupuis, I.; Dumas, C. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol. 1990, 94, 665–670. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Hunter, R.B.; Tollenaar, M. Effect of temperature during grain filling on whole plant and grain yield in maize (Zea mays L.). Can. J. Plant Sci. 1983, 63, 357–363. [Google Scholar] [CrossRef]
- Yang, H.; Huang, T.; Ding, M.; Lu, D.; Lu, W. High Temperature during Grain Filling Impacts on Leaf Senescence in Waxy Maize. Agron. J. 2017, 109, 906. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Yao, X.; Mokbel, M.; Ye, S.; Li, G.; Alarabi, L.; Eldawy, A.; Zhao, Z.; Zhao, L.; Zhu, D. LandQv2: A MapReduce-Based System for Processing Arable Land Quality Big Data. ISPRS Int. J. Geo-Inf. 2018, 7, 271. [Google Scholar] [CrossRef]
- Peters, D.B.; Pendleton, J.W.; Hageman, R.H.; Brown, C.M. Effect of Night Air Temperature on Grain Yield of Corn, Wheat, and Soybeans. Agron. J. 1971, 63, 809. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Liu, D.; Zan, X.; Zhao, Z.; Li, S.; Zhang, X. Spatial distribution of high temperature risk on summer maize in Huang-huai-hai Plain based on MODIS data. Trans. Chin. Soc. Agric. Eng. 2018, 34, 175–181. [Google Scholar]
- Tollenaar, M.; Bruulsema, T.W. Effects of temperature on rate and duration of kernel dry matter accumulation of maize. Can. J. Plant Sci. 1988, 68, 935–940. [Google Scholar] [CrossRef]
- Investigation Report on Maize Disaster in Huang-Huai-Hai Area in 2013. Available online: http://chinamaize.blog.sohu.com/279855167.html (accessed on 21 November 2019).
- Li, D.A. Occurrence and countermeasures of high temperature heat damage in summer maize production in central and western regions of Huaibei in 2013. Mod. Agric. Sci. Technol. 2014, 63–65. [Google Scholar] [CrossRef]
- Zhu, B.M.; Zhou, Q.; Wu, Z.X.; Zhang, P.; Si, H.; Yang, Y.J. Analysis of Meteorological Causes to Influence Differentiation Abnormity of Female Ears in Summer Corn in Northwestern Shandong in 2017. Guizhou Agric. Sci. 2018, 46, 50–54. [Google Scholar]
- Zhu, P.; Zhuang, Q.; Archontoulis, S.V.; Bernacchi, C.; Müller, C. Dissecting the nonlinear response of maize yield to high temperature stress with model-data integration. Glob. Chang. Biol. 2019. [Google Scholar] [CrossRef]
Characteristic | Description |
---|---|
Collection | Aqua MODIS |
File Size | ~2 MB |
Temporal Resolution | Daily |
Temporal Extent | 2002-07-04 to Present |
Spatial Extent | Global |
Coordinate System | Sinusoidal |
File Format | HDF-EOS |
Geographic Dimensions | 1200 km × 1200 km |
Number of Science Dataset (SDS) Layers | 12 |
Columns/Rows | 1200 × 1200 |
Pixel Size | 1000 m |
Name | Units | Description |
---|---|---|
LST_Day_1km | K | Daily daytime land-surface temperature at 1 km grids |
QC_Day | * | Daytime LST quality indicators for 1 km L3 LST |
Day_view_time | h | Local sun time of daytime land-surface temperature observation |
Day_view_angl | deg | View zenith angle of daytime land-surface temperature |
LST_Night_1km | K | Daily nighttime 1 km grid land-surface temperature |
QC_Night | * | Nighttime LST quality indicators for 1 km L3 LST |
Night_view_time | h | Local sun time of nighttime land-surface temperature observation |
Night_view_angl | deg | View zenith angle of nighttime land-surface temperature |
Emis_31 | * | Band 31 emissivity |
Emis_32 | * | Band 32 emissivity |
Clear_day_cov | * | day clear-sky coverage of the LST observation |
Clear_night_cov | * | night clear-sky coverage of the LST observation |
Criteria for the Classification | Class |
---|---|
STDM > | Highest average temperature |
< STDM <= | Higher average temperature |
- <= STDM <= | Average temperature |
-2 <= STDM < - | Lower average temperature |
-2 < STDM | Lowest average temperature |
Grade | Feature |
---|---|
Increasing high-temperature risk zone | Regional high-temperature risk value increases over time |
Stable high-temperature risk zone | Regional high-temperature risk value is stable over time |
Decreasing high-temperature risk zone | Regional high-temperature risk value decreases over time |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhao, Z.; Zhang, L.; Liu, Z.; Li, S.; Zhang, X. A High-Temperature Risk Assessment Model for Maize Based on MODIS LST. Sustainability 2019, 11, 6601. https://doi.org/10.3390/su11236601
Hu X, Zhao Z, Zhang L, Liu Z, Li S, Zhang X. A High-Temperature Risk Assessment Model for Maize Based on MODIS LST. Sustainability. 2019; 11(23):6601. https://doi.org/10.3390/su11236601
Chicago/Turabian StyleHu, Xinlei, Zuliang Zhao, Lin Zhang, Zhe Liu, Shaoming Li, and Xiaodong Zhang. 2019. "A High-Temperature Risk Assessment Model for Maize Based on MODIS LST" Sustainability 11, no. 23: 6601. https://doi.org/10.3390/su11236601
APA StyleHu, X., Zhao, Z., Zhang, L., Liu, Z., Li, S., & Zhang, X. (2019). A High-Temperature Risk Assessment Model for Maize Based on MODIS LST. Sustainability, 11(23), 6601. https://doi.org/10.3390/su11236601