Clean Power Dispatching of Coal-Fired Power Generation in China Based on the Production Cleanliness Evaluation Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background and Data Collection
2.2. Methods
2.2.1. Environmental Constraints
Pollutant Concentration Constraint
Carbon Emission Constraint
Sustainability Constraint
2.2.2. Comprehensive Production Cleanliness Evaluation Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- China Statistical Yearbook 2018; China Statistics Press: Beijing, China, 2018.
- China Energy Statistical Yearbook 2018; China Statistics Press: Beijing, China, 2018.
- National Development and Reform Commission. Available online: http://www.ndrc.gov.cn/fzgggz/fzgh/ghwb/gjjgh/201706/t20170605_849994.html (accessed on 19 November 2019).
- Bostan, V.; Li, L. A decision model for reducing active power losses during electric power dispatching. Comput. Oper. Res. 2003, 30, 833–849. [Google Scholar] [CrossRef]
- King, T.D.; El-Hawary, M.E.; El-Hawary, F. Optimal environmental dispatching of electric power systems via an improved hopfield neural network model. IEEE Trans. Power Syst. 1995, 10, 1559–1565. [Google Scholar] [CrossRef]
- Sáenz, J.P.; Celik, N.; Xi, H. Two-stage economic and environmental load dispatching framework using particle filtering. Int. J. Electr. Power Energy Syst. 2013, 48, 93–110. [Google Scholar] [CrossRef]
- Kerl, P.Y.; Zhang, W.; Moreno-Cruz, J.B.; Nenes, A.; Realff, M.J.; Russell, A.G. New approach for optimal electricity planning and dispatching with hourly time-scale air quality and health considerations. Proc. Natl. Acad. Sci. USA 2015, 112, 10884–10889. [Google Scholar] [CrossRef]
- Liang, X.; Ma, J.; Li, D.; Wang, J. Grid dispatching of energy saving and environmental protection based on thermodynamic system model with flow dimension. In Proceedings of the 2nd International Conference on Mechatronics and Automatic Control, Beijing, China, 20–21 September 2014. [Google Scholar] [CrossRef]
- Goudarzi, A.; Swanson, A.G.; Van Coller, J.; Siano, P. Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators. Appl. Energy 2017, 189, 667–696. [Google Scholar] [CrossRef]
- Chen, H.Y.; Zhang, S.L.; Zhang, Y. Energy-Saving Power Generation Dispatching in Regional Electricity Market. Power Syst. Technol. 2008, 32, 20–26. [Google Scholar] [CrossRef]
- Li, Y.; Miao, S.; Yin, B. Real-Time Dispatch Model for Power System with Advanced Adiabatic Compressed Air Energy Storage. Trans. China Electrotech. Soc. 2019, 34, 387–397. [Google Scholar] [CrossRef]
- Frigura-Iliasa, M.; Frigura-Iliasa, F.M.; Balcu, F.I. Algorithm for Solving Economical and Environmental Dispatch Problems of Thermal Power Plants. IOP Conf. Ser. Earth Environ. Sci. 2019, 219, 012010. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H. Optimal Dispatch Method of Transmission and Distribution Coordination for Power Systems with High Proportion of Renewable Energy. Autom. Electr. Power Syst. 2019, 43, 67–75. [Google Scholar] [CrossRef]
- Global Energy and CO2 Status Report; International Energy Agency: Paris, France, 2019.
- Karmaker, A.; Rahman, M.M.; Hossain, M.A.; Ahmed, R. Exploration and Corrective Measures of Greenhouse Gas Emission from Fossil Fuel Power Stations for Bangladesh. J. Clean. Prod. 2019, 118645. [Google Scholar] [CrossRef]
- Chang, C.T.; Yang, C.H.; Lin, T.P. Carbon dioxide emissions evaluations and mitigations in the building and traffic sectors in Taichung metropolitan area, Taiwan. J. Clean. Prod. 2019, 230, 1241–1255. [Google Scholar] [CrossRef]
- Töbelmann, D.; Wendler, T. The Impact of Environmental Innovation on Carbon Dioxide Emissions. J. Clean. Prod. 2019, 224. [Google Scholar] [CrossRef]
- Hwang-Hee, K.; Seung-Kee, L.; Chan-Gi, P. Carbon Dioxide Emission Evaluation of Porous Vegetation Concrete Blocks for Ecological Restoration Projects. Sustainability 2017, 9, 318. [Google Scholar] [CrossRef]
- Brand, C.; Goodman, A.; Ogilvie, D. Evaluating the impacts of new walking and cycling infrastructure on carbon dioxide emissions from motorized travel: A controlled longitudinal study. Appl. Energy 2014, 128, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Balbaa, A.; Swief, R.A.; El-Amary, N.H. Smart Integration Based on Hybrid Particle Swarm Optimization Technique for Carbon Dioxide Emission Reduction in Eco-Ports. Sustainability 2019, 11, 2218. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Zhang, N.; Wang, Y.; Yang, J.; Xia, Q. Modeling carbon emission flow in multiple energy systems. IEEE Trans. Smart Grid 2019, 10, 3562–3574. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, C.; Tian, H. Largely underestimated carbon emission from land use and land cover change in the conterminous US. GCB Bioenergy 2019. [Google Scholar] [CrossRef]
- Wang, J.; Yang, F.; Chen, K. Regional carbon emission evolution mechanism and its prediction approach: A case study of Hebei, China. Environ. Sci. Pollut. Res. 2019, 11. [Google Scholar] [CrossRef]
- Khan, F.I.; Sadiq, R.; Veitch, B. Life cycle iNdeX (LInX): A new indexing procedure for process and product design and decision-making. J. Clean. Prod. 2004, 12, 59–76. [Google Scholar] [CrossRef]
- Blackett, G.; Savory, E.; Toy, N.; Parke, G.A.R. An evaluation of the environmental burdens of present and alternative materials used for electricity transmission. Build. Environ. 2008, 43, 1326–1338. [Google Scholar] [CrossRef]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.Y. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Cherubini, F.; Bargigli, S.; Ulgiati, S. Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration. Energy 2009, 34, 2116–2123. [Google Scholar] [CrossRef]
- Turconi, R.; Boldrin, A.; Astrup, T. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renew. Sustain. Energy Rev. 2013, 28, 555–565. [Google Scholar] [CrossRef]
- Olivares, K.S.; Romero, R.J.; Santoyo, E.; Herrera, I.; Galindo, Y.R.; Rodríguez, A.; Castelazo, E.S.; Cerezo, J. Life cycle assessment of a solar absorption air-conditioning system. J. Clean. Prod. 2019, 240. [Google Scholar] [CrossRef]
- Ulgiati, S.; Rauget, M.; Bargigli, S. Overcoming the inadequacy of single-criterion approaches to Life Cycle Assessment. Ecol. Model. 2006, 190, 432–442. [Google Scholar] [CrossRef]
- Tseng, M.L.; Lin, Y.H.; Chiu, A.S. Fuzzy AHP-based study of cleaner production implementation in Taiwan PWB manufacturer. J. Clean. Prod. 2009, 17, 1249–1256. [Google Scholar] [CrossRef]
- Tong, O.; Shao, S.; Zhang, Y.; Chen, Y. An AHP-based water-conservation and waste-reduction indicator system for cleaner production of textile-printing industry in China and technique integration. Clean Technol. Environ. Policy 2012, 14, 857–868. [Google Scholar] [CrossRef]
- Peng, W.; Li, C. Cleaner production evaluation in aviation industry based on AHP-Fuzzy. In Proceedings of the 2011 2nd International Conference on Artificial Intelligence, Management Science & Electronic Commerce, Dengleng, China, 8–10 August 2011. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, Y.M.; Tao, L.; Jing, H. A methodology for assessing cleaner production in the vanadium extraction industry. J. Clean. Prod. 2014, 84, 598–605. [Google Scholar] [CrossRef]
- Canan, A.; Ahmet, B.; Tekin, T.K. Sustainability analysis of different hydrogen production options using hesitant fuzzy AHP. Int. J. Hydrog. Energy 2018, 43, 18059–18076. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, Z.B. Application of AHP-Fuzzy Comprehensive Evaluation Method in Assessing Clean Production in Fuel Ethanol Industry. Urban Environ. Urban Ecol. 2014, 27, 43–46. [Google Scholar]
- Chavezrodriguez, M.F.; Nebra, S. Technology. Assessing GHG Emissions, Ecological Footprint, and Water Linkage for Different Fuels. Environ. Sci. Technol. 2010, 44, 9252–9257. [Google Scholar] [CrossRef] [PubMed]
- Cerutti, A.K.; Beccaro, G.L.; Bagliani, M.; Donno, D. Multifunctional Ecological Footprint Analysis for assessing eco-efficiency: A case study of fruit production systems in Northern Italy. J. Clean. Prod. 2013, 40, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, A.F.; Alba-Rodríguez, M.D.; Marrero, M. A budget for the ecological footprint of buildings is possible: A case study using the dwelling construction cost database of Andalusia. Sustain. Cities Soc. 2019, 51. [Google Scholar] [CrossRef]
- Mikulčić, H.; Cabezas, H.; Vujanović, M. Environmental Assessment of Different Cement Manufacturing Processes Based on Emergy and Ecological Footprint Analysis. J. Clean. Prod. 2016, 130, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Odum, H.T. Environmental accounting: EMERGY and environmental decision making. Child Dev. 1996, 42, 1187–1201. [Google Scholar]
- Bertalanffy, L.V. General System Theory; George Braziller: New York, NY, USA, 1973. [Google Scholar]
- Lotka, A.J. The Law of Evolution as a maximal Principle. Hum. Biol. 1945, 17, 167–194. [Google Scholar]
- Hau, J.L.; Bakshi, B.R. Promise and problems of emergy analysis. Ecol. Model. 2004, 178, 215–225. [Google Scholar] [CrossRef]
- Pulselli, R.M.; Simoncini, E.; Marchettini, N. Energy and emergy based cost–benefit evaluation of building envelopes relative to geographical location and climate. Build. Environ. 2009, 44, 920–928. [Google Scholar] [CrossRef]
- Cai, W.; Liu, C.H.; Zhang, C.X.; Ma, M.D. Developing the ecological compensation criterion of industrial solid waste based on emergy for sustainable development. Energy 2018, 157, 940–948. [Google Scholar] [CrossRef]
- Geber, U.; Björklund, J. The relationship between ecosystem services and purchased input in Swedish wastewater treatment systems —A case study. Ecol. Eng. 2001, 18, 39–59. [Google Scholar] [CrossRef]
- Nimmanterdwong, P.; Chalermsinsuwan, B.; Piumsomboon, P. Emergy analysis of three alternative carbon dioxide capture processes. Energy 2017, 128, 101–108. [Google Scholar] [CrossRef]
- Caruso, C.; Catenacci, G.; Marchettini, N.; Principi, I. Emergy Based Analysis of Italian Electricity Production System. J. Therm. Anal. Calorim. 2001, 66, 265–272. [Google Scholar] [CrossRef]
- Luo, Y.H.; Ding, L.X. Evaluation of biomass power generation systems based on emergy theory. Proc. Chin. Soc. Electr. Eng. 2009, 29, 112–117. [Google Scholar]
- Riposo, D.M. Integrated Energy and Environmental Analysis of Utility-Scale Wind Power Production. In Dissertations and Theses—Gradworks; University of Maryland: College Park, MD, USA, 2008; Available online: http://hdl.handle.net/1903/8598 (accessed on 17 November 2019).
- Brown, M.T.; Ulgiati, S. Can emergy sustainability index be improved? A response to Harizaj. Ecol. Model. 2011, 222, 2034–2035. [Google Scholar] [CrossRef]
- Mu, H.; Feng, X.; Chu, K.H. Improved emergy indices for the evaluation of industrial systems incorporating waste management. Ecol. Eng. 2011, 37, 335–342. [Google Scholar] [CrossRef]
- Lu, H.; Lan, S.; Li, L. Studies on emergy indices for evaluating system sustainable development property. China Environ. Sci. 2002, 22. [Google Scholar] [CrossRef]
- Ma, F.; Eneji, A.E.; Wu, Y. An Evaluation of Input–Output Value for Sustainability in a Chinese Steel Production System Based on Emergy Analysis. Sustainability 2018, 10, 4749. [Google Scholar] [CrossRef] [Green Version]
- Bi, G.B.; Song, W.; Zhou, P.; Liang, L. Does environmental regulation affect energy efficiency in China’s thermal power generation? Empirical evidence from a slacks-based DEA model. Energy Policy 2014, 66, 537–546. [Google Scholar] [CrossRef]
- Aitken, M.L.; Loughlin, D.H.; Dodder, R.S.; Yelverton, W.H. Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage. Clean Technol. Environ. 2016, 18, 573–581. [Google Scholar] [CrossRef]
- Zhou, Y.; Cai, B.; Liu, L.; Cao, D. Study on spatial distribution of CO2 emission from thermal power of China. Therm. Power Gener. 2011, 40, 1–3. [Google Scholar]
- Han, T.; Zhao, R.; Zhang, S.; Yu, X.H.; Liao, H.Y. Research and application on carbon capture of coal-fired power plant. Coal Eng. 2017, 49, 24–28. [Google Scholar]
- Talaq, J.H.; El-Hawary, F.; El-Hawary, M.E. A Summary of Environmental/Economic Dispatch Algorithms. IEEE Trans. Power Syst. 1994, 9, 1508–1516. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Chen, X. Multi-objective Unit Commitment Fuzzy Modeling and Optimization for Energy-saving and Emission Reduction. In Proceedings of the 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, China, 26–29 November 2010. [Google Scholar]
- Kim, S.H. Evaluation of negative environmental impacts of electricity generation: Neoclassical and institutional approaches. Energy Policy 2007, 35, 413–423. [Google Scholar] [CrossRef]
- Odum, H.T. Emergy evaluation of an OTEC electrical power system. Energy Econ. 2000, 25, 389–393. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, X.; Wu, J.; Zhang, Y.Z.; Lin, L.L.; Yang, G.; Deng, S.H.; Li, L.; Yu, X.Y.; Qi, H.; et al. Sustainability evaluation of a steel production system in China based on emergy. J. Clean. Prod. 2015, 112, 1498–1509. [Google Scholar] [CrossRef]
- Jiang, M.M.; Zhou, J.B.; Chen, B.; Chen, G.Q. Emergy-based ecological account for the Chinese economy in 2004. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 2337–2356. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J. Emergy evaluation of power plant eco-industrial park. Chin. J. Appl. Ecol. 2004, 15, 1047. [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecol. Eng. 1997, 9, 51–69. [Google Scholar] [CrossRef]
Emergy Indices | Formula |
---|---|
EYR | Y/F |
ELR ESI | (F + N)/R EYR/ELR |
Improved Emergy Indices | Implications | Formula |
---|---|---|
IEYR IELR IESI | Improved emergy yield ratio Improved environmental loading ratio Improved environmental sustainability ratio | EEVA/(R + N + F) (N + R)/EEVA IEYR/IELR |
Soot(mg/Nm3) | |||||||||||||
Units | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | 30 |
1 | 1.5 | 1.98 | 1.98 | 1.56 | 2.26 | 2.29 | 2.12 | 2.16 | 2.04 | 2.05 | 1.91 | 1.75 | |
2 | 1.3 | 1.00 | 1.00 | 1.83 | / | 2.47 | 2.47 | 2.36 | 1.67 | 1.74 | 2.61 | 2.61 | |
3 | 1.23 | 1.15 | 1.15 | 1.31 | 1.54 | 1.72 | 1.73 | 2.18 | 1.50 | 2.26 | 2.22 | 2.54 | |
4 | 1.34 | 1.55 | 1.55 | 2.04 | 2.27 | 2.35 | 2.49 | 2.53 | 1.85 | 6.71 | 1.99 | 1.95 | |
SO2(mg/Nm3) | |||||||||||||
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | 100 | |
1 | 16.41 | 17.47 | 17.47 | 14.18 | 16.84 | 18.11 | 17.07 | 16.98 | 14.46 | 14.81 | 16.57 | 17.47 | |
2 | 17.33 | 17.43 | 17.43 | 16.83 | / | 15.11 | 14.42 | 14.43 | 11.00 | 14.14 | 14.57 | 15.26 | |
3 | 18.88 | 19.09 | 19.09 | 22.76 | 23.47 | 20.30 | 24.11 | 20.66 | 18.04 | 21.84 | 22.20 | 25.04 | |
4 | 16.38 | 14.82 | 14.82 | 16.16 | 17.88 | 17.57 | 20.43 | 18.98 | 18.65 | 17.63 | 17.31 | 19.36 | |
NOx(mg/Nm3) | |||||||||||||
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | 200 | |
1 | 27.63 | 25.16 | 25.16 | 30.27 | 31.81 | 30.15 | 22.9 | 24.85 | 28.59 | 28.5 | 27.34 | 23.18 | |
2 | 23.98 | 72.8 | 72.8 | 28.64 | / | 31.19 | 24.25 | 24.31 | 22.73 | 26.59 | 24.52 | 19.99 | |
3 | 27.86 | 26.44 | 26.44 | 34.06 | 33.47 | 31.45 | 28.51 | 31.22 | 31.49 | 37.89 | 36.54 | 36.7 | |
4 | 29.87 | 27.06 | 27.06 | 35.2 | 34.56 | 36.45 | 39.3 | 40.7 | 38.18 | 217.64 | 30.02 | 26.02 |
Unit Number | Unit Capacity (MW) | Coal Consumption Rate (g/KW h) | Unit Output | Unit Emission Parameter | |||
---|---|---|---|---|---|---|---|
Minimum Output (MW) | Maximum Output (MW) | (t/h) | |||||
1 | 600 | 281.82 | 350 | 600 | 593,830.338 | −2871.238 | 4.278 |
2 | 600 | 282.05 | 300 | 600 | 149,738.287 | −463.955 | 1.203 |
3 | 660 | 290.03 | 370 | 660 | 97,159.567 | −3333.705 | 3.583 |
4 | 660 | 288.49 | 370 | 660 | 1,248,820.644 | −4609.993 | 4.966 |
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1# | ||||||||||||
Actual Emission Intensity (t/MWh) | 0.701 | 0.749 | 0.743 | 0.423 | 0.725 | 0.732 | 0.737 | 0.736 | 0.752 | 0.686 | 0.735 | 0.682 |
Upper Limit Intensity (t/MWh) | 0.701 | 0.929 | 0.743 | 0.393 | 0.688 | 0.728 | 0.737 | 0.736 | 0.081 | 0.686 | 0.735 | 0.682 |
2# | ||||||||||||
Actual Emission Intensity (t/MWh) | 0.695 | 0.749 | 0.746 | 0.139 | 0.000 | 0.729 | 0.733 | 0.736 | 0.747 | 0.685 | 0.729 | 0.666 |
Upper Limit Intensity (t/MWh) | 0.695 | 0.220 | 0.616 | 0.139 | 0.000 | 0.721 | 0.725 | 0.731 | 0.728 | 0.685 | 0.662 | 0.666 |
3# | ||||||||||||
Actual Emission Intensity (t/MWh) | 0.713 | 0.755 | 0.758 | 0.187 | 0.740 | 0.747 | 0.749 | 0.746 | 0.777 | 0.698 | 0.753 | 0.721 |
Upper Limit Intensity (t/MWh) | 1.966 | 2.298 | 2.219 | 0.429 | 2.010 | 1.974 | 1.882 | 1.891 | 2.301 | 2.036 | 2.307 | 2.359 |
4# | ||||||||||||
Actual Emission Intensity (t/MWh) | 0.716 | 0.753 | 0.758 | 0.190 | 0.742 | 0.746 | 0.747 | 0.749 | 0.766 | 0.697 | 0.754 | 0.712 |
Upper Limit Intensity (t/MWh) | 0.716 | 0.753 | 0.742 | 0.190 | 0.730 | 0.726 | 0.747 | 0.740 | 0.062 | 0.144 | 0.754 | 0.712 |
1# | 2# | 3# | 4# | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Raw Data (Units) | Emergy (Sej) | Raw Data (Units) | Emergy (Sej) | Raw Data (Units) | Emergy (Sej) | Raw Data (Units) | Emergy (Sej) | Transformation (Sej/Unit) | ||
Input | Coal | 1.25 × 1012 | 8.38 × 1016 | 1.16 × 1012 | 7.76 × 1016 | 1.60 × 1012 | 1.07 × 1017 | 1.53 × 1012 | 1.02 × 1017 | 6.69 × 1004 [54] |
Liquid ammonia | 3.73 × 1008 | 5.52 × 1018 | 3.18 × 1008 | 4.71 × 1018 | 4.91 × 1008 | 7.27 × 1018 | 5.04 × 1008 | 7.46 × 1018 | 1.48 × 1010 [54] | |
Limestone | 1.36 × 1010 | 4.97 × 19 | 1.24 × 1010 | 4.50 × 1019 | 1.87 × 1010 | 6.79 × 1019 | 1.8 5 × 1010 | 6.73 × 1019 | 3.64 × 1009 [54] | |
Electricity | 5.03 × 1014 | 8.05 × 1019 | 8.32 × 1014 | 1.33 × 1020 | 5.23 × 1014 | 8.37 × 1019 | 5.48 × 1014 | 8.77 × 1019 | 1.60 × 1005 [55] | |
Water | 7.95 × 1008 | 5.28 × 1014 | 7.41 × 1008 | 4.92 × 1014 | 9.93 × 1008 | 6.59 × 1014 | 9.59 × 1008 | 6.37 × 1014 | 6.64 × 1005 [55] | |
Depreciation 1 | 3.54 × 1006 | 1.23 × 1019 | 3.30 × 1006 | 1.14 × 1019 | 4.00 × 1006 | 1.38 × 1019 | 3.83 × 1006 | 1.33 × 1019 | 3.46 × 1012 [29] | |
Operating and maintenance 1 | 1.11 × 1005 | 3.84 × 1017 | 1.03 × 1005 | 3.58 × 1017 | 1.34 × 1006 | 4.63 × 1018 | 1.28 × 1006 | 4.44 × 1018 | 3.46 × 1012 [29] | |
Labor 1 | 5.46 × 1006 | 1.89 × 1019 | 5.08 × 1006 | 1.76 × 1019 | 6.16 × 1006 | 2.13 × 1019 | 5.90 × 1006 | 2.04 × 1019 | 3.46 × 1012 [29] | |
Output | Electricity | 1.36 × 1016 | 2.17 × 1021 | 1.25 × 1016 | 2.01 × 1021 | 1.68 × 1016 | 2.70 × 1021 | 1.63 × 1016 | 2.60 × 1021 | 1.60 × 1005 [55] |
Gypsum | 2.53 × 1010 | 2.53 × 1019 | 2.38 × 1010 | 2.38 × 1019 | 3.28 × 1010 | 3.28 × 1019 | 3.20 × 1010 | 3.20 × 1019 | 1.00 × 1009 [55] | |
Slug | 5.84 × 1009 | 1.77 × 1018 | 5.58 × 1009 | 1.69 × 1018 | 7.44 × 1009 | 2.25 × 1018 | 7.43 × 1009 | 2.25 × 1018 | 3.02 × 1008 [29] | |
Dust | 2.05 × 1007 | 3.45 × 1013 | 1.63 × 1007 | 2.75 × 1013 | 2.22 × 1007 | 3.73 × 1013 | 2.48 × 1007 | 4.17 × 1013 | 1.68 × 1006 [29] | |
SO2 | 1.53 × 1008 | 2.59 × 1014 | 1.35 × 1008 | 2.27 × 1014 | 2.72 × 1008 | 4.59 × 1014 | 2.15 × 1008 | 3.63 × 1014 | 1.69 × 1006 [53] | |
NOx | 2.96 × 1008 | 5.01 × 1014 | 2.46 × 1008 | 4.16 × 1014 | 4.56 × 1008 | 7.72 × 1014 | 4.56 × 1008 | 7.71 × 1014 | 1.69 × 1006 [53] | |
CO2 | 2.19 × 1012 | 3.71 × 1018 | 2.03 × 1012 | 3.43 × 1018 | 2.79 × 1012 | 4.7 × 1018 | 2.67 × 1012 | 4.51 × 1018 | 1.69 × 1006 [53] |
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1# | IEYR | 10.49 | 10.15 | 10.62 | 53.00 | 10.49 | 11.39 | 11.27 | 10.56 | 10.67 | 12.19 | 11.99 | 10.43 |
IESI | 15.57 | 13.48 | 16.44 | 86.85 | 14.56 | 23.48 | 24.59 | 19.97 | 23.86 | 23.60 | 23.50 | 15.15 | |
2# | IEYR | 10.77 | 10.40 | 10.76 | 34.67 | 0.00 | 11.35 | 11.22 | 10.63 | 10.70 | 11.51 | 1.98 | 10.91 |
IESI | 15.26 | 13.05 | 16.02 | 54.53 | 0.00 | 23.63 | 24.85 | 19.79 | 23.44 | 23.22 | 39.88 | 15.02 | |
3# | IELR | 11.06 | 12.08 | 11.16 | 30.20 | 11.92 | 11.38 | 11.40 | 11.32 | 11.29 | 11.95 | 12.19 | 10.67 |
IESI | 11.88 | 17.47 | 13.48 | 31.55 | 14.85 | 16.57 | 18.88 | 17.76 | 18.80 | 16.46 | 16.94 | 12.02 | |
4# | IEYR | 10.99 | 9.85 | 11.21 | 29.10 | 11.08 | 10.81 | 10.95 | 10.72 | 10.65 | 11.89 | 11.34 | 10.41 |
IESI | 11.92 | 9.10 | 13.45 | 34.64 | 17.16 | 18.22 | 19.88 | 18.69 | 20.45 | 18.68 | 18.41 | 12.70 |
Unit Number | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3.04 | 1.50 | 2.66 | 7.56 | 2.67 | 3.04 | 3.18 | 3.18 | 1.37 | 3.06 | 2.55 | 2.72 |
2 | 3.04 | 1.28 | 2.13 | 7.93 | 0.00 | 2.49 | 3.23 | 3.21 | 2.64 | 3.04 | 2.30 | 2.48 |
3 | 2.99 | 2.48 | 2.61 | 10.75 | 2.91 | 2.98 | 3.14 | 3.14 | 2.48 | 2.87 | 2.45 | 2.42 |
4 | 2.99 | 2.49 | 2.57 | 10.80 | 2.90 | 2.99 | 3.14 | 3.00 | 2.01 | 1.89 | 2.50 | 2.51 |
Units with excessive CO2 emissions | 2 | 2 3 | 1 | 1 4 | 2 4 | 2 | 2 4 | 1 2 4 | 4 | 2 | ||
Units with unqualified emergy indices | 4 |
Unit | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 1 | \ | \ | 1 | 1 | 1 | \ | 1 | 1 | 1 |
2 | 1 | \ | \ | 3 | \ | \ | \ | \ | \ | 2 | \ | 3 |
3 | 2 | 1 | \ | 2 | 1 | 2 | 2 | 2 | 1 | 3 | 3 | 4 |
4 | 2 | \ | 2 | 1 | \ | \ | 2 | \ | \ | \ | 2 | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Song, Y.; Shen, J. Clean Power Dispatching of Coal-Fired Power Generation in China Based on the Production Cleanliness Evaluation Method. Sustainability 2019, 11, 6778. https://doi.org/10.3390/su11236778
Li T, Song Y, Shen J. Clean Power Dispatching of Coal-Fired Power Generation in China Based on the Production Cleanliness Evaluation Method. Sustainability. 2019; 11(23):6778. https://doi.org/10.3390/su11236778
Chicago/Turabian StyleLi, Tao, Yimiao Song, and Jing Shen. 2019. "Clean Power Dispatching of Coal-Fired Power Generation in China Based on the Production Cleanliness Evaluation Method" Sustainability 11, no. 23: 6778. https://doi.org/10.3390/su11236778
APA StyleLi, T., Song, Y., & Shen, J. (2019). Clean Power Dispatching of Coal-Fired Power Generation in China Based on the Production Cleanliness Evaluation Method. Sustainability, 11(23), 6778. https://doi.org/10.3390/su11236778