Composting of Vegetable Waste Using Microbial Consortium and Biocontrol Efficacy of Streptomyces Sp. Al-Dhabi 30 Isolated from the Saudi Arabian Environment for Sustainable Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Isolation of Root-Associated Actinomycetes
2.3. Phytopathogens
2.4. Antimicrobial Compounds Extraction and Screening
2.5. Characterization of Potent Actinomycete Strain
2.6. Screening and Quantification of Plant Growth-Promoting Activity of Actinomycetes
2.7. Hydrolytic Enzyme Screening and Assay from Actinomycetes
2.8. Vegetable Waste Compostingand Physio-Chemical and Biological Properties
2.9. Analysis of Plant Growth Promoting Activity of Compost
3. Results
3.1. Actinomycetes and Their Antagonistic Properties Against the Selected Phytopathogens
3.2. Production of Plant Growth Promoting Factors by Actinomycetes
3.3. Enzyme Production by Actinomycetes
3.4. Characterization of Actinomycetes
3.5. Composting of Vegetable Waste
3.6. Experimental Trial of Plant Growth Analysis Treated with Compost
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, H.; Meng, A.; Long, Y.; Li, Q.; Zhang, Y. An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renew. Sustain. Energy Rev. 2014, 36, 107–122. [Google Scholar] [CrossRef]
- Forastiere, F.; Badaloni, C.; Hoogh, K.D.; Kraus, M.K.; Martuzzi, M.; Mitis, F. Health impact assessment of waste management facilities in three European countries. Environ. Health 2011, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Shi, W.; Hong, J.; Zhang, F.; Chen, W. Life cycle assessment of food waste-based biogas generation. Renew. Sustain. Energy Rev. 2015, 49, 169–177. [Google Scholar] [CrossRef]
- Huiru, Z.; Yunjun, Y.; Liberti, F.; Pietro, B.; Fantozzi, F. Technical and economic feasibility analysis of an anaerobic digestion plant fed with canteen food waste. Energy Convers. Manag. 2019, 180, 938–948. [Google Scholar] [CrossRef]
- Saha, A.; Santra, S.C. Isolation and characterization of bacteria isolated from municipal solid waste for production of industrial enzymes and waste degradation. J. Microbiol. Exp. 2014, 1, 1–8. [Google Scholar] [CrossRef]
- Sarkar, P.; Meghvanshi, M.; Singh, R. Microbial consortium: A new approach in effective degradation of organic kitchen wastes. Int. J. Environ. Sci. Dev. 2011, 2, 170–174. [Google Scholar] [CrossRef]
- Umsakul, K.; Dissara, Y.; Srimuang, N. Chemical physical and microbiological changes during composting of the water hyacinth. Pak. J. Biol. Sci. 2010, 13, 985–992. [Google Scholar] [CrossRef]
- Zeng, G.; Yu, Z.; Chen, Y.; Zhang, J.; Li, H.; Yu, M.; Zhao, M. Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting. Bioresour. Technol. 2011, 102, 5905–5911. [Google Scholar] [CrossRef]
- Maher, M.; Prasad, M.; Raviv, M. Organic soilless media components. In Soilless Culture: Theory and Practice; Raviv, M., Lieth, J.H., Eds.; Elsevier BV: Oxford, UK, 2008; pp. 459–504. [Google Scholar]
- Hwang, B.K.; Lim, S.W.; Kim, B.S.; Lee, J.Y.; Moon, S.S. Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl. Environ. Microbiol. 2001, 67, 3739–3745. [Google Scholar] [CrossRef]
- Golinska, P.; Dahm, H. Antagonistic properties of Streptomyces isolated from forest soils against fungal pathogens of pine seedlings. Dendrobiology 2013, 69. [Google Scholar] [CrossRef]
- Kanini, G.S.; Katsifas, E.A.; Savvides, A.L.; Hatzinikolaou, D.G.; Karagouni, A.D. Greek indigenous Streptomycetes as biocontrol agents against the soil-borne fungal plant pathogen R hizoctoniasolani. J. Appl. Microbiol. 2013, 114, 1468–1479. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, M. Studies on the isolation and distribution of rare actinomycetes in soil. Actinomycetologica 2008, 22, 12–19. [Google Scholar] [CrossRef]
- Mincer, T.J.; Jensen, P.R.; Kauffman, C.A.; Fenical, W. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl. Environ. Microbiol. 2002, 68, 5005–5011. [Google Scholar] [CrossRef] [PubMed]
- Mauch, F.; Mauch-Mani, B.; Boller, T. Antifungal hydrolases in pea tissue: II. Inhibition of fungal growth by combinations of chitinase and β-1, 3-glucanase. Plant Physiol. 1988, 88, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Valli, S.; Suvathi, S.S.; Aysha, O.S.; Nirmala, P.; Vinoth, K.P.; Reena, A. Antimicrobial potential of Actinomycetes species isolated from marine environment. Asian Pac. J. Trop. Biomed. 2012, 2, 469–473. [Google Scholar] [CrossRef]
- Ghaemy, M.; Aghakhani, B.; Taghavi, M.; Nasab, S.M.A.; Mohseni, M. Synthesis and characterization of new imidazole and fluorine-bisphenol based polyamides: Thermal, photophysical and antibacterial properties. React. Funct. Polym. 2013, 73, 555–563. [Google Scholar] [CrossRef]
- Wilson, K. Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology; Unit 2.4.1; Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Smith, J.A., Seidman, J.G., Struhl, K., Eds.; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley & Sons: New York, NY, USA, 1991; pp. 115–148. [Google Scholar]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef]
- Doumbou, C.L.; Salove, M.K.H.; Crawford, D.L.; Beaulieu, C. Actinomycetes, promising tools to control plant diseases and promote plant growth. Phytoprotection 2001, 82, 85–102. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- You, J.L.; Cao, L.X.; Liu, G.F.; Zhou, S.N.; Tan, H.M.; Lin, Y.C. Isolation and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. from near shore marine sediments. World J. Microbiol. Biotechnol. 2004, 21, 679–682. [Google Scholar] [CrossRef]
- Csaky, T. On the estimation of bound hydroxylamine. Acta Chem. Scand. 1984, 2, 450–454. [Google Scholar] [CrossRef]
- Gordon, S.A.; Weber, R.P. Colorimetric estimation of indole acetic acid. Plant Physiol. 1951, 26, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Skujins, J.J.; Potgieter, H.J.; Alexander, M. Dissolution of fungal cell walls by a streptomycetechitinase and beta-(1–3) glucanase. Arch. Biochem. Biophys. 1965, 111, 358–364. [Google Scholar] [CrossRef]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–37. [Google Scholar] [CrossRef]
- Indananda, C.; Matsumoto, A.; Inahashi, Y.; Takahashi, Y.; Duangmal, K.; Thamchaipenet, A. Actinophytocolaoryzae gen. nov., sp. nov., isolated from root of Thai glutinous rice plants, a new member of the family Pseudonocardiaceae. Int. J. Syst. Evol. Microbiol. 2010, 60, 1141–1146. [Google Scholar] [CrossRef]
- Verma, V.C.; Gond, S.K.; Kumar, A.; Mishra, A.; Kharwar, R.N.; Gange, A.C. EndophyticActinomycetes from Azadirachtaindica A. Juss.: Isolation, Diversity, and Anti-Microbial Activity. Microb. Ecol. 2009, 57, 749–756. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Esmail, G.A.; Duraipandiyan, V.; Arasu, M.V. Chemical profiling of Streptomyces sp. Al-Dhabi-2 recovered from an extreme environment in Saudi Arabia as a novel drug source for medical and industrial applications. Saudi. J. Biol. Sci. 2019, 26, 758–766. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Ghilan, A.K.M.; Esmail, G.A.; Arasu, M.V.; Duraipandiyan, V.; Ponmurugan, K. Bioactivity assessment of the Saudi Arabian Marine Streptomyces sp. Al-Dhabi-90, metabolic profiling and its in vitro inhibitory property against multidrug resistant and extended-spectrum beta-lactamase clinical bacterial pathogens. J. Inf. Pub. Health 2019, 549–556. [Google Scholar] [CrossRef]
- Kaur, T.; Vasudev, A.; Sohal, S.K.; Manhas, R.K. Insecticidal and growth inhibitory potential of Streptomyces hydrogenans DH16 on major pest of India, Spodopteralitura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiol. 2014, 14, 227. [Google Scholar] [CrossRef]
- Verma, V.C.; Singh, S.K.; Prakash, S. Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachtaindica A. Juss. J. Basic Microbiol. 2012, 51, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Hamdali, H.; Hafidi, M.; Virolle, M.J.; Ouhdouch, Y. Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinobacteria in a P-deficient soil under greenhouse conditions. Appl. Soil Ecol. 2008, 40, 510–517. [Google Scholar] [CrossRef]
- Chen, Y.P.; Rekha, P.D.; Arun, A.B.; Shen, F.T.; Lai, W.A.; Young, C.C. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 2006, 34, 33–41. [Google Scholar] [CrossRef]
- Tan, H.M.; Cao, L.X.; He, Z.F.; Su, G.J.; Lin, B.; Zhou, S.N. Isolation of endophyticactinobacteria from different cultivars of tomato and their activities against Ralstoniasolanaceraum In Vitro. World J. Microbiol. Biotechnol. 2006, 22, 1275–1280. [Google Scholar] [CrossRef]
- Nimnoi, P.; Pongsilp, N.; Lumyong, S. Endophyticactinomycetes isolated from Aquilariacrassna Pierre ex Lec and screening of plant growth promoter’s production. World J. Microbiol. Biotechnol. 2010, 26, 193–203. [Google Scholar] [CrossRef]
- Khamna, S.; Yokota, A.; Lumyong, S. Actinobacteria isolated from medicinal plant rhizosphere soils: Diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 2009, 25, 649–655. [Google Scholar] [CrossRef]
- Nimnoi, P.; Pongsilp, N. Genetic diversity and plant-growth promoting ability of the indole-3-acetic acid (IAA) synthetic bacteria isolated from agricultural soil as well as rhizosphere, rhizoplane and root tissue of Ficusreligiosa L., Leucaenaleucocephala and Piper sarmentosumRoxb. Res. J. Agric. Biol. Sci. 2009, 5, 29–41. [Google Scholar]
- Kumaran, S.; Deivasigamani, B.; Uttara, V. Chitinase Application—Review; Lambert Book Publishing House: Saarbrücken, Germany, 2012; ISBN 978-3-8484-4920-0. [Google Scholar]
- Gopinath, L.R.; Christy, P.M.; Mahesh, K.; Bhuvaneshwari, R.; Divya, D. Identification and evaluation of effective bacterial consortium for efficient biogas production. J. Environ. Sci. Toxic. Food Technol. 2014, 8, 80–86. [Google Scholar]
- Karnchanawong, S.; Nissaikla, S. Effects of microbial inoculation on composting of household organic waste using passive aeration bin. Int. J. Recycl. Org. Waste Agric. 2014, 3, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Limaye, L.; Patil, R.; Ranadive, P.; Kamath, G. Application of potent actinomycete strains for bio-degradation of domestic agro-waste by composting and treatment of pulp-paper mill effluent. Adv. Microbiol. 2017, 7, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Murata, A.; Hayashida, S. Accelerated composting of cereal shochu-distillery wastes by actinomycetes: Promotive composting of shochudistillery wastes (I). Seibutsu-KogakuKaishi 1995, 73, 365–372. [Google Scholar]
- Tandon, G. Bioproducts from residual lignocellulosic biomass. Advances in Biotechnology; Nawani, N.N., Khetmalas, M., Razdan, P.N., Pandey, A., Eds.; I.K. Internal Publishing House Pvt. Ltd.: New Delhi, India, 2015; pp. 52–75. [Google Scholar]
- Figueiredo, M.D.; Seldin, L.; de Araujo, F.F.; Mariano, R.D. Plant growth promoting rhizobacteria: Fundamentals and applications. In Plant Growth and Health Promoting Bacteria; Springer: Berlin/Heidelberg, Germany, 2010; pp. 21–43. [Google Scholar]
- Lamsal, K.; Kim, S.W.; Kim, Y.S.; Lee, Y.S. Biocontrol of late blight and plant growth promotion in tomato using rhizobacterial isolates. J. Microbiol. Biotechnol. 2013, 23, 897–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, J.Q.; Wu, H.J.; Huo, R.; Gao, X.W.; Borriss, R. Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chem. Biol. Technol. Agric. 2014, 1, 12. [Google Scholar] [CrossRef] [Green Version]
Actinomycetes | Antagonistic Activity (mm) | ||||
---|---|---|---|---|---|
F. oxysporum | A. niger | A. flavus | B. oryzae | F. solani | |
Streptomyces sp. Al-Dhabi 21 | 22 | 11 | 0 | 0 | 17 |
Streptomyces sp. Al-Dhabi 22 | 0 | 0 | 18 | 17 | 0 |
Streptomyces sp. Al-Dhabi 23 | 19 | 16 | 12 | 0 | 0 |
Actinomycete Al-Dhabi 24 | 0 | 16 | 22 | 19 | 0 |
Actinomycete Al-Dhabi 25 | 0 | 0 | 20 | 20 | 17 |
Streptomyces sp. Al-Dhabi 26 | 19 | 21 | 17 | 0 | 0 |
Streptomyces sp. Al-Dhabi 27 | 12 | 0 | 0 | 0 | 18 |
Streptomyces sp. Al-Dhabi 28 | 0 | 0 | 17 | 18 | 0 |
Streptomyces sp. Al-Dhabi 29 | 18 | 19 | 21 | 0 | 0 |
Streptomyces sp. Al-Dhabi 30 | 22 | 17 | 16 | 21 | 20 |
Actinomycetes | Plant Growth Promoting Activity | ||
---|---|---|---|
IAA (μg/mL) | Phosphate Solubilizing (mg/dL) | Siderophore (μg/mL) | |
Streptomyces sp. Al-Dhabi 21 | 12 | 10 | 1.6 |
Streptomyces sp. Al-Dhabi 22 | 0 | 21 | 0 |
Streptomyces sp. Al-Dhabi 23 | 9 | 9 | 18.2 |
Actinomycete Al-Dhabi 24 | 32 | 14.5 | 40.2 |
Actinomycete Al-Dhabi 25 | 3 | 39 | 2.42 |
Streptomyces sp. Al-Dhabi 26 | 19 | 27 | 2.3 |
Streptomyces sp. Al-Dhabi 27 | 21 | 12.1 | 5.67 |
Streptomyces sp. Al-Dhabi 28 | 5 | 4.2 | 0 |
Streptomyces sp. Al-Dhabi 29 | 0 | 9.2 | 1.9 |
Streptomyces sp. Al-Dhabi 30 | 43 | 43.1 | 42.1 |
Actinomycetes | Enzyme Activity (U/mL) | ||||
---|---|---|---|---|---|
Protease | Cellulase | Pectinase | Amylase | Chitinase | |
Streptomyces sp. Al-Dhabi 21 | 42 | 0 | 1.8 | 0.3 | 29.4 |
Streptomyces sp. Al-Dhabi 22 | 110 | 0 | 2.1 | 19.2 | 0 |
Streptomyces sp. Al-Dhabi 23 | 48 | 52 | 0 | 13 | 40.2 |
Actinomycete Al-Dhabi 24 | 19 | 0 | 0.43 | 12 | 0 |
Actinomycete Al-Dhabi 25 | 56 | 42 | 2 | 10.5 | 29.2 |
Streptomyces sp. Al-Dhabi 26 | 43 | 18 | 1.1 | 9.5 | 35.9 |
Streptomyces sp. Al-Dhabi 27 | 10 | 0 | 0 | 5 | 0 |
Streptomyces sp. Al-Dhabi 28 | 2.1 | 38 | 0.2 | 10.2 | 25.5 |
Streptomyces sp. Al-Dhabi 29 | 92.5 | 22 | 0 | 4.2 | 19.4 |
Streptomyces sp. Al-Dhabi 30 | 121 | 67 | 1.3 | 13.4 | 43.7 |
Parameters | Control | Experiment |
---|---|---|
Physical properties | ||
Colour | Brownish black | Black |
Moisture | 17.42 | 34.49 |
Chemical properties | ||
pH | 7.4 | 7.48 |
Electrical conductivity | ||
(ds/m) | 4.1 | 4.5 |
Nitrogen (as N%) | 2.7 | 3.8 |
Organic carbon (%) | 47.28 | 38.29 |
C:N ratio | 17.51 | 10.07 |
Antifungal activity | ||
F. oxysporum | − | +++ |
A. niger | − | +++ |
A. flavus | + | +++ |
B. oryzae | − | +++ |
F. solani | − | +++ |
Experimental Procedure | Root Length (cm) | Shoot Length (cm) | Total Weight of Plant (gm) |
---|---|---|---|
21 days treatment | |||
Control | 1.92 ± 0.26 | 6.9 ± 0.33 | 1.92 ± 0.53 |
Treatment | 2.87 ± 0.32 **** | 9.42 ± 0.28 **** | 3.1 ± 0.41 *** |
28 days treatment | |||
Control | 2.4 ± 0.32 | 7.42 ± 0.29 | 2.53 ± 0.38 |
Treatment | 3.82 ± 0.28 **** | 11.32 ± 0.18 **** | 4.6 ± 0.26 * |
35 days treatment | |||
Control | 3.6 ± 0.39 | 11.2 ± 0.11 | 3.1 ± 0.23 |
Treatment | 4.9 ± 0.41 *** | 15.2 ± 0.13 ** | 5.3 ± 0.47 ** |
42 days treatment | |||
Control | 5.1 ± 0.33 | 13.4 ± 0.42 | 4.76 ± 0.31 |
Treatment | 6.8 ± 0.27 **** | 17.1 ± 0.22 ** | 6.21 ± 0.29 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Dhabi, N.A.; Esmail, G.A.; Mohammed Ghilan, A.-K.; Valan Arasu, M. Composting of Vegetable Waste Using Microbial Consortium and Biocontrol Efficacy of Streptomyces Sp. Al-Dhabi 30 Isolated from the Saudi Arabian Environment for Sustainable Agriculture. Sustainability 2019, 11, 6845. https://doi.org/10.3390/su11236845
Al-Dhabi NA, Esmail GA, Mohammed Ghilan A-K, Valan Arasu M. Composting of Vegetable Waste Using Microbial Consortium and Biocontrol Efficacy of Streptomyces Sp. Al-Dhabi 30 Isolated from the Saudi Arabian Environment for Sustainable Agriculture. Sustainability. 2019; 11(23):6845. https://doi.org/10.3390/su11236845
Chicago/Turabian StyleAl-Dhabi, Naif Abdullah, Galal Ali Esmail, Abdul-Kareem Mohammed Ghilan, and Mariadhas Valan Arasu. 2019. "Composting of Vegetable Waste Using Microbial Consortium and Biocontrol Efficacy of Streptomyces Sp. Al-Dhabi 30 Isolated from the Saudi Arabian Environment for Sustainable Agriculture" Sustainability 11, no. 23: 6845. https://doi.org/10.3390/su11236845
APA StyleAl-Dhabi, N. A., Esmail, G. A., Mohammed Ghilan, A. -K., & Valan Arasu, M. (2019). Composting of Vegetable Waste Using Microbial Consortium and Biocontrol Efficacy of Streptomyces Sp. Al-Dhabi 30 Isolated from the Saudi Arabian Environment for Sustainable Agriculture. Sustainability, 11(23), 6845. https://doi.org/10.3390/su11236845