Habitat Enhancement Solutions for Iberian Cyprinids Affected by Hydropeaking: Insights from Flume Research
Abstract
:1. Introduction
2. Research Approach
2.1. Problem Identification
2.2. Experimental Design
2.3. Hydraulic Characterization
2.4. Assessment of Fish Responses
3. Discussion of the Major Findings
3.1. Is There an Effect of the Simulated Peak Events?
3.2. Which Flow Event Structure Is the Most Ecologically Conclusive?
3.3. Which Hydraulic Conditions Are the Most Beneficial?
3.4. Flow Sensing Technologies: Acoustic Doppler Velocimetry and Lateral Line Probe
4. Recommendations for Hydropower Producers
5. Identify Limitations to Find Research Opportunities
6. Future Hydropeaking Research: Recommendations for Freshwater Scientists
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cushman, R.M. Review of ecological effects of rapidly varying flows downstream from hydroelectric facilities. N. Am. J. Fish. Manag. 1985, 5, 330–339. [Google Scholar] [CrossRef]
- Bruder, A.; Tonolla, D.; Schweizer, S.P.; Vollenweider, S.; Langhans, S.D.; Wüest, A. A conceptual framework for hydropeaking mitigation. Sci. Total Environ. 2016, 568, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Tonolla, D.; Bruder, A.; Schweizer, S. Evaluation of mitigation measures to reduce hydropeaking impacts on river ecosystems—A case study from the Swiss Alps. Sci. Total Environ. 2017, 574, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Bejarano, M.D.; Jansson, R.; Nilsson, C. The effects of hydropeaking on riverine plants: A review. Biol. Rev. 2018, 93, 658–673. [Google Scholar] [CrossRef] [PubMed]
- Greimel, F.; Schülting, L.; Graf, W.; Bondar-Kunze, E.; Auer, S.; Zeiringer, B.; Hauer, C. Hydropeaking Impacts and Mitigation. In Riverine Ecosystem Management; Springer: Cham, Switzerland, 2018; pp. 91–110. ISBN 978-3-319-73250-3. [Google Scholar]
- Schmutz, S.; Bakken, T.H.; Friedrich, T.; Greimel, F.; Harby, A.; Jungwirth, M.; Melcher, A.; Unfer, G.; Zeiringer, B. Response of fish communities to hydrological and morphological alterations in hydropeaking rivers of Austria. River Res. Appl. 2015, 31, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Diplas, P. Modeling Unsteady Flow Characteristics of Hydropeaking Operations and Their Implications on Fish Habitat. J. Hydraul. Eng. 2010, 136, 1053–1066. [Google Scholar] [CrossRef]
- Zimmerman, J.K.H.; Letcher, B.H.; Nislow, K.H.; Lutz, K.A.; Magilligan, F.J. Determining the effects of dams on subdaily variation in river flows at a whole-basin scale. River Res. Appl. 2010, 26, 1246–1620. [Google Scholar] [CrossRef]
- Zolezzi, G.; Siviglia, A.; Toffolon, M.; Maiolini, B. Thermopeaking in Alpine streams: Event characterization and time scales. Ecohydrology 2011, 4, 564–576. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2015, 77, 161–170. [Google Scholar] [CrossRef]
- Hoes, O.A.C.; Meijer, L.J.J.; Van Der Ent, R.J.; Van De Giesen, N.C. Systematic high-resolution assessment of global hydropower potential. PLoS ONE 2017, 12, e0171844. [Google Scholar] [CrossRef] [PubMed]
- Hydropower Status Report: Section Trends and Insights; IHA: London, UK, 2019.
- Teotónio, C.; Fortes, P.; Roebeling, P.; Rodriguez, M.; Robaina-Alves, M. Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach. Renew. Sustain. Energy Rev. 2017, 74, 788–799. [Google Scholar] [CrossRef]
- Flodmark, L.E.W.; Urke, H.A.; Halleraker, J.H.; Arnekleiv, J.V.; Vollestad, L.A.; Poléo, A.B.S. Cortisol and glucose responses in juvenile brown trout subjected to a fluctuating flow regime in an artificial stream. J. Fish Biol. 2002, 60, 238–248. [Google Scholar] [CrossRef]
- Taylor, M.K.; Cook, K.V.; Hasler, C.T.; Schmidt, D.C.; Cooke, S.J. Behaviour and physiology of mountain whitefish (Prosopium williamsoni) relative to short-term changes in river flow. Ecol. Freshw. Fish 2012, 21, 609–616. [Google Scholar] [CrossRef]
- Young, P.; Cech, J.; Thompson, L. Hydropower-related pulsed-flow impacts on stream fishes: A brief review, conceptual model, knowledge gaps, and research needs. Rev. Fish Biol. Fish. 2011, 21, 713–731. [Google Scholar] [CrossRef]
- Krimmer, A.N.; Paul, A.J.; Hontela, A.; Rasmussen, J.B. Behavioural and physiological responses of brook trout Salvelinus fontinalis to midwinter flow reduction in a small ice-free mountain stream. J. Fish Biol. 2011, 79, 707–725. [Google Scholar] [CrossRef]
- Auer, S.; Zeiringer, B.; Fuhrer, S.; Tonolla, D.; Schmutz, S. Effects of river bank heterogeneity and time of day on drift and stranding of juvenile European grayling (Thymallus thymallus L.) caused by hydropeaking. Sci. Total Environ. 2017, 575, 1515–1521. [Google Scholar] [CrossRef]
- Costa, M.; Boavida, I.; Almeida, V.; Cooke, S.; Pinheiro, A. Do artificial velocity refuges mitigate the physiological and behavioural consequences of hydropeaking on a freshwater Iberian cyprinid? Ecohydrology 2018, 11, e1983. [Google Scholar] [CrossRef]
- Ribi, J.-M.; Boillat, J.-L.; Peter, A.; Schleiss, A.J. Attractiveness of a lateral shelter in a channel as a refuge for juvenile brown trout during hydropeaking. Aquat. Sci. 2014, 76, 527–541. [Google Scholar] [CrossRef]
- Boavida, I.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N. Barbel habitat alterations due to hydropeaking. J. Hydro-Environ. Res. 2015, 9, 237–247. [Google Scholar] [CrossRef]
- Person, E.; Bieri, M.; Peter, A.; Schleiss, A.J. Mitigation measures for fish habitat improvement in Alpine rivers affected by hydropower operations. Ecohydrology 2014, 7, 580–599. [Google Scholar] [CrossRef]
- Vehanen, T.; Jurvelius, J.; Lahti, M. Habitat utilisation by fish community in a short-term regulated river reservoir. Hydrobiologia 2005, 545, 257–270. [Google Scholar] [CrossRef]
- Alexandre, C.M.; Almeida, P.R.; Neves, T.; Mateus, C.S.; Costa, J.L.; Quintella, B.R. Effects of flow regulation on the movement patterns and habitat use of a potamodromous cyprinid species. Ecohydrology 2016, 9, 326–340. [Google Scholar] [CrossRef]
- Vehanen, T.; Louhi, P.; Huusko, A.; Mäki-Petäys, A.; Meer, O.; Orell, P.; Huusko, R.; Jaukkuri, M.; Sutela, T. Behaviour of upstream migrating adult salmon (Salmo salar L.) in the tailrace channels of hydropeaking hydropower plants. Fish. Manag. Ecol. 2019. [Google Scholar] [CrossRef]
- Alexandre, C.M.; Ferreira, M.T.; Almeida, P.R. Life history of a cyprinid species in non-regulated and regulated rivers from permanent and temporary Mediterranean basins. Ecohydrology 2015, 8, 1137–1153. [Google Scholar] [CrossRef]
- Scruton, D.A.; Ollerhead, L.M.N.; Clarke, K.D.; Pennell, C.; Alfredsen, K.; Harby, A.; Kelley, D. The behavioural response of juvenile Atlantic salmon (Salmo salar) and brook trout (Salvelinus fontinalis) to experimental hydropeaking on a Newfoundland (Canada) River. River Res. Appl. 2003, 19, 577–587. [Google Scholar] [CrossRef]
- Taylor, M.K.; Hasler, C.T.; Findlay, C.S.; Lewis, B.; Schmidt, D.C.; Hinch, S.G.; Cooke, S.J. Hydrologic correlates of bull trout (Salvelinus confluentus) swimming activity in a hydropeaking river. River Res. Appl. 2013, 30, 756–765. [Google Scholar] [CrossRef]
- Taylor, M.K.; Hasler, C.T.; Hinch, S.G.; Lewis, B.; Schmidt, D.C.; Cooke, S.J. Reach-scale movements of bull trout (Salvelinus confluentus) relative to hydropeaking operations in the Columbia River, Canada. Ecohydrology 2014, 7, 1079–1086. [Google Scholar] [CrossRef]
- Thompson, L.C.; Cocherell, S.A.; Chun, S.N.; Cech, J.J.; Klimley, A.P. Longitudinal movement of fish in response to a single-day flow pulse. Environ. Biol. Fishes 2011, 90, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Boavida, I.; Harby, A.; Clarke, K.D.; Heggenes, J. Move or stay: Habitat use and movements by Atlantic salmon parr (Salmo salar) during induced rapid flow variations. Hydrobiologia 2017, 785, 261–275. [Google Scholar] [CrossRef]
- Burnett, N.J.; Hinch, S.G.; Braun, D.C.; Casselman, M.T.; Middleton, C.T.; Wilson, S.M.; Cooke, S.J. Burst swimming in areas of high flow: Delayed consequences of anaerobiosis in wild adult sockeye salmon. Physiol. Biochem. Zool. 2014, 87, 587–598. [Google Scholar] [CrossRef] [Green Version]
- Capra, H.; Plichard, L.; Bergé, J.; Pella, H.; Ovidio, M.; McNeil, E.; Lamouroux, N. Fish habitat selection in a large hydropeaking river: Strong individual and temporal variations revealed by telemetry. Sci. Total Environ. 2017, 578, 109–120. [Google Scholar] [CrossRef] [PubMed]
- De Vocht, A.; Baras, E. Effect of hydropeaking on migrations and home range of adult Barbel (Barbus barbus) in the river Meuse. In Aquatic Telemetry: Advances and Applications, Proceedings of the Fifth Conference on Fish Telemetry, Ustica, Italy, 9–13 June 2003; FAO-COISPA: Rome, Italy, 2005; pp. 35–44. [Google Scholar]
- Harvey-Lavoie, S.; Cooke, S.J.; Guénard, G.; Boisclair, D. Differences in movements of northern pike inhabiting rivers with contrasting flow regimes. Ecohydrology 2016, 9, 1687–1699. [Google Scholar] [CrossRef]
- Costa, M.; Lennox, R.; Katopodis, C.; Cooke, S. Is there evidence for flow variability as an organism-level stressor in fluvial fish? J. Ecohydraulics 2017, 2, 68–83. [Google Scholar] [CrossRef]
- Flodmark, L.E.W.; Forseth, T.; L’Abée-Lund, J.H.; Vøllestad, L.A. Behaviour and growth of juvenile brown trout exposed to fluctuating flow. Ecol. Freshw. Fish 2006, 15, 57–65. [Google Scholar] [CrossRef]
- Chun, S.N.; Cocherell, S.A.; Cocherell, D.E.; Miranda, J.B.; Jones, G.J.; Graham, J.; Klimley, A.P.; Thompson, L.C.; Cech, J.J., Jr. Displacement, velocity preference, and substrate use of three native California stream fishes in simulated pulsed flows. Environ. Biol. Fishes 2011, 90, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Vilizzi, L.; Copp, G.H. An analysis of 0+ barbel (Barbus barbus) response to discharge fluctuations in a flume. River Res. Appl. 2005, 21, 421–438. [Google Scholar] [CrossRef]
- Hauer, C.; Holzapfel, P.; Leitner, P.; Graf, W. Longitudinal assessment of hydropeaking impacts on various scales for an improved process understanding and the design of mitigation measures. Sci. Total Environ. 2017, 575, 1503–1514. [Google Scholar] [CrossRef]
- Hauer, C.; Unfer, G.; Holzapfel, P.; Haimann, M.; Habersack, H. Impact of channel bar form and grain size variability on estimated stranding risk of juvenile brown trout during hydropeaking. Earth Surf. Process. Landf. 2014, 39, 1622–1641. [Google Scholar] [CrossRef]
- Casas-Mulet, R.; Alfredsen, K.; Killingtveit, A. Modelling of environmental flow options for optimal Atlantic salmon, Salmo salar, embryo survival during hydropeaking. Fish. Manag. Ecol. 2014, 21, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Pragana, I.; Boavida, I.; Cortes, R.; Pinheiro, A. Hydropower Plant Operation Scenarios to Improve Brown Trout Habitat. River Res. Appl. 2017, 33, 364–376. [Google Scholar] [CrossRef]
- Vehanen, T.; Bjerket, P.L.; Heggenes, J.; Huusko, A.; Mäki-Petäys, A. Effect of fluctuating flow and temperature on cover type selection and behaviour by juvenile brown trout in artificial flumes. J. Fish Biol. 2000, 56, 923–937. [Google Scholar] [CrossRef]
- Valentin, S.; Sempeski, P.; Souchon, Y.; Gaudin, P. Short-term habitat use by young grayling, Thymallus thymallus L., under variable flow conditions in an experimental stream. Fish. Manag. 1994, 1, 57–65. [Google Scholar] [CrossRef]
- Sloman, K.A.; Gilmour, K.M.; Taylor, A.C.; Metcalfe, N.B. Physiological effects of dominance hierarchies within groups of brown trout, Salmo trutta, held under simulated natural conditions. Fish Physiol. Biochem. 2000, 22, 11–20. [Google Scholar] [CrossRef]
- Sloman, K.A.; Taylor, A.C.; Metcalfe, N.B.; Gilmour, K.M. Effects of an environmental perturbation on the social behaviour and physiological function of brown trout. Anim. Behav. 2001, 61, 325–333. [Google Scholar] [CrossRef]
- Sfakiotakis, M.; Lane, D.M.; Davies, J.B.C. Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 1999, 24, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Kottelat, M.; Freyhof, J. Handbook of European Freshwater Fishes; Publications Kottelat, 2007; ISBN 9782839902984. [Google Scholar]
- Boavida, I.; Caetano, L.; Pinheiro, A.N. E-flows to reduce the hydropeaking impacts on the Iberian barbel (Luciobarbus bocagei) habitat. An effectiveness assessment based on the COSH Tool application. Sci. Total Environ. 2020, 699, 134209. [Google Scholar] [CrossRef]
- Costa, M.; Ferreira, M.; Pinheiro, A.; Boavida, I. The potential of lateral refuges for Iberian barbel under simulated hydropeaking conditions. Ecol. Eng. 2019, 127, 567–578. [Google Scholar] [CrossRef]
- Pretty, J.L.; Harrison, S.S.C.; Shepherd, D.J.; Smith, C.; Hildrew, A.G.; Hey, R.D. River rehabilitation and fish populations: Assessing the benefit of instream structures. J. Appl. Ecol. 2003, 40, 251–265. [Google Scholar] [CrossRef]
- Ferreira, M.T.; Oliveira, J.; Caiola, N.; de Sostoa, A.; Casals, F.; Cortes, R.; Economou, A.; Zogaris, S.; Garcia-Jalon, D.; Ilhéu, M.; et al. Ecological traits of fish assemblages from Mediterranean Europe and their responses to human disturbance. Fish. Manag. Ecol. 2007, 14, 473–481. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Ferreira, A.P.; Ferreira, M.T. Intrabasin variations in age and growth of Barbus bocagei populations. J. Appl. Ichthyol. 2002, 18, 134–139. [Google Scholar] [CrossRef]
- Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.N.; Ferreira, M.T. Effect of flow regime hydraulics on passage performance of Iberian chub (Squalius pyrenaicus) (Günther, 1868) in an experimental pool-and-weir fishway. Hydrobiologia 2013, 714, 145–154. [Google Scholar] [CrossRef]
- Costa, M.; Fuentes-Pérez, J.; Boavida, I.; Tuhtan, J.; Pinheiro, A. Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures. PLoS ONE 2019, 14, e0211115. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.M.; Branco, P.; Katopodis, C.; Ferreira, M.T.; Pinheiro, A.N. Retrofitting pool-and-weir fishways to improve passage performance of benthic fishes: Effect of boulder density and fishway discharge. Ecol. Eng. 2014, 73, 335–344. [Google Scholar] [CrossRef]
- van Netten, S.; McHenry, M. The Biophysics of the Fish Lateral Line. In The Lateral Line System; Springer: New York, NY, USA, 2013; Volume 48, pp. 99–119. ISBN 978-1-4614-8850-7. [Google Scholar]
- Tuhtan, J.; Fuentes-Pérez, J.; Toming, G.; Kruusmaa, M. Flow velocity estimation using a fish-shaped lateral line probe with product-moment correlation features and a neural network. Flow Meas. Instrum. 2017, 54, 1–8. [Google Scholar] [CrossRef]
- Fuentes-Pérez, J.; Kalev, K.; Tuhtan, J.; Kruusmaa, M. Underwater vehicle speedometry using differential pressure sensors: Preliminary results. In Proceedings of the IEEE/OES AUV, Tokyo, Japan, 6–9 November 2016; p. 6. [Google Scholar]
- Fuentes-Pérez, J.; Eckert, M.; Tuhtan, J.; Ferreira, M.; Kruusmaa, M.; Branco, P. Spatial preferences of Iberian barbel in a vertical slot fishway under variable hydrodynamic scenarios. Ecol. Eng. 2018, 125, 131–142. [Google Scholar] [CrossRef]
- Bracewell, P.; Cowx, I.G.; Uglow, R.F. Effects of handling and electrofishing on plasma glucose and whole blood lactate of Leuciscus cephalus. J. Fish Biol. 2004, 64, 65–71. [Google Scholar] [CrossRef]
- Pankhurst, N.W. The endocrinology of stress in fish: An environmental perspective. Gen. Comp. Endocrinol. 2011, 170, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Arnekleiv, J.V.; Urke, H.A.; Kristensen, T.; Halleraker, J.H.; Flodmark, L.E.W. Recovery of wild, juvenile brown trout from stress of flow reduction, electrofishing, handling and transfer from river to an indoor simulated stream channel. J. Fish Biol. 2004, 64, 541–552. [Google Scholar] [CrossRef]
- Kieffer, J.D. Limits to exhaustive exercise in fish. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2000, 126, 161–179. [Google Scholar] [CrossRef]
- Harby, A.; Noack, M. Rapid flow fluctuations and impacts on fish and the aquatic ecosystem. In Ecohydraulics—An Integrated Approach; Maddock, I., Harby, A., Kemp, P., Wood, P., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2013; pp. 323–335. [Google Scholar]
- Liao, J.C. A review of fish swimming mechanics and behaviour in altered flows. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007, 362, 1973–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bak-Coleman, J.; Court, A.; Paley, D.A.; Coombs, S. The spatiotemporal dynamics of rheotactic behavior depends on flow speed and available sensory information. J. Exp. Biol. 2013, 216, 4011–4024. [Google Scholar] [CrossRef] [Green Version]
- Kanter, M.J. Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi). J. Exp. Biol. 2003, 206, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Kalmijn, A.J. Detection of weak electric fields. In Sensory Biology of Aquatic Animals; Atema, J., Fay, R.R., Popper, A.N., Tavolga, W.N., Eds.; Springer: New York, NY, USA, 1988; pp. 151–186. ISBN 978-1-4612-8317-1, 978-1-4612-3714-3. [Google Scholar]
- Martínez-Capel, F.; García de Jalón, D. Desarrollo de curvas de preferencia de microhábitat para Leuciscus pyrenaicus y Barbus bocagei por buceo en el río Jarama (Cuenca del Tajo). Limnetica 1999, 17, 71–83. [Google Scholar]
- Mateus, C.S.; Quintella, B.R.; Almeida, P.R. The critical swimming speed of Iberian barbel Barbus bocagei in relation to size and sex. J. Fish Biol. 2008, 73, 1783–1789. [Google Scholar] [CrossRef]
- Santos, J.M.; Rivaes, R.; Boavida, I.; Branco, P. Structural microhabitat use by endemic cyprinids in a Mediterranean-type river: Implications for restoration practices. Aquat. Conserv. Mar. Freshw. Ecosyst. 2017, 28, 26–36. [Google Scholar] [CrossRef]
- Almeida, R.; Boavida, I.; Pinheiro, A.N. Habitat modeling to assess fish shelter design under hydropeaking conditions. Can. J. Civ. Eng. 2017, 44, 9098. [Google Scholar] [CrossRef] [Green Version]
- Pagliara, S.; Hassanabadi, L.; Kurdistani, S.M. Clear water scour downstream of log deflectors in horizontal channels. J. Irrig. Drain. Eng. 2015, 141, 04015007. [Google Scholar] [CrossRef]
- Carré, D.; Biron, P.; Gaskin, S. Flow dynamics and bedload sediment transport around paired deflectors for fish habitat enhancement: A field study in the Nicolet River. Can. J. Civ. Eng. 2007, 34, 761–769. [Google Scholar] [CrossRef]
- Tuhtan, J.A.; Noack, M.; Wieprecht, S. Estimating stranding risk due to hydropeaking for juvenile European grayling considering river morphology. KSCE J. Civ. Eng. 2012, 16, 197–206. [Google Scholar] [CrossRef]
- Mittelbach, G.G.; Ballew, N.G.; Kjelvik, M.K.; Fraser, D. Fish behavioral types and their ecological consequences. Can. J. Fish. Aquat. Sci. 2014, 71, 927–944. [Google Scholar] [CrossRef]
- Hayes, D.S.; Moreira, M.; Boavida, I.; Haslauer, M.; Unfer, G.; Zeiringer, B.; Greimel, F.; Auer, S.; Ferreira, T.; Schmutz, S. Life stage-specific hydropeaking flow rules. Sustaianbility 2019, 11, 1547. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.; Hayes, D.; Boavida, I.; Schletterer, M.; Schmutz, S.; Pinheiro, A. Ecologically-based criteria for hydropeaking mitigation: A review. Sci. Total Environ. 2019, 657, 1508–1522. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, M.J.; Pinheiro, A.N.; Boavida, I. Habitat Enhancement Solutions for Iberian Cyprinids Affected by Hydropeaking: Insights from Flume Research. Sustainability 2019, 11, 6998. https://doi.org/10.3390/su11246998
Costa MJ, Pinheiro AN, Boavida I. Habitat Enhancement Solutions for Iberian Cyprinids Affected by Hydropeaking: Insights from Flume Research. Sustainability. 2019; 11(24):6998. https://doi.org/10.3390/su11246998
Chicago/Turabian StyleCosta, Maria João, António N. Pinheiro, and Isabel Boavida. 2019. "Habitat Enhancement Solutions for Iberian Cyprinids Affected by Hydropeaking: Insights from Flume Research" Sustainability 11, no. 24: 6998. https://doi.org/10.3390/su11246998
APA StyleCosta, M. J., Pinheiro, A. N., & Boavida, I. (2019). Habitat Enhancement Solutions for Iberian Cyprinids Affected by Hydropeaking: Insights from Flume Research. Sustainability, 11(24), 6998. https://doi.org/10.3390/su11246998