Liquidity Risk and Investors’ Mood: Linking the Financial Market Liquidity to Sentiment Analysis through Twitter in the S&P500 Index
Abstract
:1. Introduction
2. Review of the Literature
3. Data Sampling and Methodology
4. Research Findings and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaplan, A.M.; Haenlein, M. Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 2010, 53, 59–68. [Google Scholar] [CrossRef]
- O’connor, P. Managing a hotel’s image on TripAdvisor. J. Hosp. Mark. Manag. 2010, 19, 754–772. [Google Scholar] [CrossRef]
- Ceron, A.; Curini, L.; Iacus, S.M. Using sentiment analysis to monitor electoral campaigns: Method matters—Evidence from the United States and Italy. Soc. Sci. Comput. Rev. 2015, 33, 3–20. [Google Scholar] [CrossRef]
- Zeng, B.; Gerritsen, R. What do we know about social media in tourism? A review. Tour. Manag. Perspect. 2014, 10, 27–36. [Google Scholar] [CrossRef]
- Grajales, F.J., III; Sheps, S.; Ho, K.; Novak-Lauscher, H.; Eysenbach, G. Social media: A review and tutorial of applications in medicine and health care. J. Med. Internet Res. 2014, 16, e13. [Google Scholar] [CrossRef]
- Adams, S.A.; Van Veghel, D.; Dekker, L. Developing a research agenda on ethical issues related to using social media in healthcare: Lessons from the first Dutch Twitter heart operation. Camb. Q. Healthc. Ethics 2015, 24, 293–302. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; de Pablos, P.O.; Tang, J.; Yan, X. Mapping development of social media research through different disciplines: Collaborative learning in management and computer science. Comput. Hum. Behav. 2015, 51, 1142–1153. [Google Scholar] [CrossRef]
- Boulianne, S. Social media use and participation: A meta-analysis of current research. Inf. Commun. Soc. 2015, 18, 524–538. [Google Scholar] [CrossRef]
- Filo, K.; Lock, D.; Karg, A. Sport and social media research: A review. Sport Manag. Rev. 2015, 18, 166–181. [Google Scholar] [CrossRef] [Green Version]
- McFarland, L.A.; Ployhart, R.E. Social media: A contextual framework to guide research and practice. J. Appl. Psychol. 2015, 100, 1653. [Google Scholar] [CrossRef]
- Leonardi, P.M.; Vaast, E. Social media and their affordances for organizing: A review and agenda for research. Acad. Manag. Ann. 2017, 11, 150–188. [Google Scholar] [CrossRef]
- Roth, P.L.; Bobko, P.; Van Iddekinge, C.H.; Thatcher, J.B. Social media in employee-selection-related decisions: A research agenda for uncharted territory. J. Manag. 2016, 42, 269–298. [Google Scholar] [CrossRef]
- Pope, D.; Griffith, J. An Analysis of Online Twitter Sentiment Surrounding the European Refugee Crisis. In Proceedings of the International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Porto, Portugal, 12–14 November 2016; pp. 299–306. [Google Scholar]
- Shaikh, S.; Feldman, L.B.; Barach, E.; Marzouki, Y. Tweet sentiment analysis with pronoun choice reveals online community dynamics in response to crisis events. In Advances in Cross-cultural Decision Making; Springer: Berlin/Heidelberg, Germany, 2017; pp. 345–356. [Google Scholar]
- Öztürk, N.; Ayvaz, S. Sentiment analysis on Twitter: A text mining approach to the Syrian refugee crisis. Telemat. Inform. 2018, 35, 136–147. [Google Scholar] [CrossRef]
- Agostino, D.; Arena, M.; Catalano, G.; Erbacci, A. Public engagement through social media: The spending review experience. Public Money Manag. 2017, 37, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Bollen, J.; Mao, H.; Zeng, X. Twitter mood predicts the stock market. J. Comput. Sci. 2011, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, N.; Cortez, P.; Areal, N. The impact of microblogging data for stock market prediction: Using Twitter to predict returns, volatility, trading volume and survey sentiment indices. Expert Syst. Appl. 2017, 73, 125–144. [Google Scholar] [CrossRef] [Green Version]
- Bank, S.; Yazar, E.E.; Sivri, U. Can social media marketing lead to abnormal portfolio returns? Eur. Res. Manag. Bus. Econ. 2019, 25, 54–62. [Google Scholar] [CrossRef]
- Saleemi, J. An Empirical Analysis of Cost-Based Market Liquidity Measures for US & Norwegian Banks. Master’s Thesis, Universitetet i Nordland, Bodø, Norway, 2014. [Google Scholar]
- PricewaterhouseCoopers. Global Financial Markets Liquidity Study. Technical Report, PwC. 2015. Available online: https://www.pwc.se/sv/pdf-reports/global-financial-markets-liquidity-study.pdf (accessed on 1 November 2019).
- Kunitsyna, N.; Britchenko, I.; Kunitsyn, I. Reputational risks, value of losses and financial sustainability of commercial banks. Entrep. Sustain. Issues 2018, 5, 943–955. [Google Scholar] [CrossRef]
- Akerlof, G.A. The market for lemons: Quality uncertainty and the market mechanism. Q. J. Econ. 1970, 84, 488–500. [Google Scholar] [CrossRef]
- Bagehot, W. The only game in town. Financ. Anal. J. 1971, 27, 12–14. [Google Scholar] [CrossRef]
- Glosten, L.R.; Milgrom, P.R. Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. J. Financ. Econ. 1985, 14, 71–100. [Google Scholar] [CrossRef] [Green Version]
- Easley, D.; O’hara, M. Price, trade size, and information in securities markets. J. Financ. Econ. 1987, 19, 69–90. [Google Scholar] [CrossRef]
- Oviedo-García, M.; Muñoz-Expósito, M.; Castellanos-Verdugo, M.; Sancho-Mejías, M. Metric proposal for customer engagement in Facebook. J. Res. Interact. Mark. 2014, 8, 327–344. [Google Scholar] [CrossRef]
- Li, Z.; Li, C. Tweet or “re-tweet”? An experiment of message strategy and interactivity on Twitter. Internet Res. 2014, 24, 648–667. [Google Scholar] [CrossRef]
- Kelly, L.; Kerr, G.; Drennan, J. Avoidance of advertising in social networking sites: The teenage perspective. J. Interact. Advert. 2010, 10, 16–27. [Google Scholar] [CrossRef]
- Sawhney, M.; Verona, G.; Prandelli, E. Collaborating to create: The Internet as a platform for customer engagement in product innovation. J. Interact. Mark. 2005, 19, 4–17. [Google Scholar] [CrossRef]
- Michaelidou, N.; Siamagka, N.T.; Christodoulides, G. Usage, barriers and measurement of social media marketing: An exploratory investigation of small and medium B2B brands. Ind. Mark. Manag. 2011, 40, 1153–1159. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, T.O.; Tumasjan, A.; Sandner, P.G.; Welpe, I.M. Tweets and trades: The information content of stock microblogs. Eur. Financ. Manag. 2014, 20, 926–957. [Google Scholar] [CrossRef]
- Larsson, A.O.; Moe, H. Studying political microblogging: Twitter users in the 2010 Swedish election campaign. New Media Soc. 2012, 14, 729–747. [Google Scholar] [CrossRef]
- Hong, S.; Kim, S.H. Political polarization on twitter: Implications for the use of social media in digital governments. Gov. Inf. Q. 2016, 33, 777–782. [Google Scholar] [CrossRef]
- Holmberg, K.; Thelwall, M. Disciplinary differences in Twitter scholarly communication. Scientometrics 2014, 101, 1027–1042. [Google Scholar] [CrossRef]
- Vidya, N.A.; Fanany, M.I.; Budi, I. Twitter sentiment to analyze net brand reputation of mobile phone providers. Procedia Comput. Sci. 2015, 72, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Tetlock, P.C. Giving content to investor sentiment: The role of media in the stock market. J. Financ. 2007, 62, 1139–1168. [Google Scholar] [CrossRef]
- Fang, L.; Peress, J. Media coverage and the cross-section of stock returns. J. Financ. 2009, 64, 2023–2052. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, J.; Duan, W. Social media and firm equity value. Inf. Syst. Res. 2013, 24, 146–163. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; De, P.; Hu, Y.J.; Hwang, B.H. Wisdom of crowds: The value of stock opinions transmitted through social media. Rev. Financ. Stud. 2014, 27, 1367–1403. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Wang, J.; Chen, Y.; Chen, H. Web media and stock markets: A survey and future directions from a big data perspective. IEEE Trans. Knowl. Data Eng. 2017, 30, 381–399. [Google Scholar] [CrossRef]
- Nofsinger, J.R. Social mood and financial economics. J. Behav. Financ. 2005, 6, 144–160. [Google Scholar] [CrossRef]
- Zhao, S.; Tong, Y.; Liu, X.; Tan, S. Correlating Twitter with the stock market through non-Gaussian SVAR. In Proceedings of the 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI), Chiang Mai, Thailand, 14–16 February 2016; pp. 257–264. [Google Scholar]
- Sul, H.; Dennis, A.R.; Yuan, L.I. Trading on twitter: The financial information content of emotion in social media. In Proceedings of the 2014 47th Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 6–9 January 2014; pp. 806–815. [Google Scholar]
- Ruan, Y.; Alfantoukh, L.; Durresi, A. Exploring stock market using twitter trust network. In Proceedings of the 2015 IEEE 29th International Conference on Advanced Information Networking and Applications, Gwangju, Korea, 25–27 March 2015; pp. 428–433. [Google Scholar]
- Rakowski, D.A.; Shirley, S.; Stark, J. TwitTer Activity, Investor Attention, and the Diffusion Of Information. 2018. Available online: https://ssrn.com/abstract=3010915 (accessed on 1 November 2019).
- Agrawal, S.; Azar, P.D.; Lo, A.W.; Singh, T. Momentum, Mean-Reversion, and Social Media: Evidence from StockTwits and Twitter. J. Portf. Manag. 2018, 44, 85–95. [Google Scholar] [CrossRef]
- Liew, J.K.S.; Wang, G.Z. Twitter sentiment and IPO performance: A cross-sectional examination. J. Portf. Manag. 2016, 42, 129–135. [Google Scholar] [CrossRef]
- Blankespoor, E.; Miller, G.S.; White, H.D. The role of dissemination in market liquidity: Evidence from firms’ use of Twitter™. Account. Rev. 2013, 89, 79–112. [Google Scholar] [CrossRef]
- Renault, T. Market Manipulation and Suspicious Stock Recommendations on Social Media. 2017. Available online: https://ssrn.com/abstract=3010850 (accessed on 1 November 2019).
- Al Guindy, M. Is Corporate Tweeting Informative or Is It Just Hype? Evidence from the SEC Social Media Regulation. 2016. Available online: https://ssrn.com/abstract=2824668 (accessed on 1 November 2019).
- Ranco, G.; Aleksovski, D.; Caldarelli, G.; Grčar, M.; Mozetič, I. The effects of Twitter sentiment on stock price returns. PLoS ONE 2015, 10, e0138441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smailović, J.; Grčar, M.; Lavrač, N.; Žnidaršič, M. Predictive sentiment analysis of tweets: A stock market application. In International Workshop on Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data; Springer: Berlin/Heidelberg, Germany, 2013; pp. 77–88. [Google Scholar]
- Zheludev, I.; Smith, R.; Aste, T. When can social media lead financial markets? Sci. Rep. 2014, 4, 4213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasbrouck, J.; Seppi, D.J. Common factors in prices, order flows, and liquidity. J. Financ. Econ. 2001, 59, 383–411. [Google Scholar] [CrossRef] [Green Version]
- Amihud, Y.; Mendelson, H. Asset pricing and the bid–ask spread. J. Financ. Econ. 1986, 17, 223–249. [Google Scholar] [CrossRef]
- Huang, R.D.; Stoll, H.R. The components of the bid–ask spread: A general approach. Rev. Financ. Stud. 1997, 10, 995–1034. [Google Scholar] [CrossRef]
- Corwin, S.A.; Schultz, P. A simple way to estimate bid–ask spreads from daily high and low prices. J. Financ. 2012, 67, 719–760. [Google Scholar] [CrossRef]
- Mancini, L.; Ranaldo, A.; Wrampelmeyer, J. Liquidity in the foreign exchange market: Measurement, commonality, and risk premiums. J. Financ. 2013, 68, 1805–1841. [Google Scholar] [CrossRef] [Green Version]
- Demsetz, H. The cost of transacting. Q. J. Econ. 1968, 82, 33–53. [Google Scholar] [CrossRef]
- Ho, T.; Stoll, H.R. Optimal dealer pricing under transactions and return uncertainty. J. Financ. Econ. 1981, 9, 47–73. [Google Scholar] [CrossRef]
- Ho, T.S.; Stoll, H.R. The dynamics of dealer markets under competition. J. Financ. 1983, 38, 1053–1074. [Google Scholar] [CrossRef]
- Brock, W.A.; Kleidon, A.W. Periodic market closure and trading volume: A model of intraday bids and asks. J. Econ. Dyn. Control 1992, 16, 451–489. [Google Scholar] [CrossRef]
- Gorton, G.; Metrick, A. Haircuts. Fed. Reserve Bank St. Louis Rev. 2009, 92, 507–519. [Google Scholar]
- Madrigal, V. Non-fundamental speculation. J. Financ. 1996, 51, 553–578. [Google Scholar] [CrossRef]
- Brunnermeier, M.K.; Pedersen, L.H. Predatory trading. J. Financ. 2005, 60, 1825–1863. [Google Scholar] [CrossRef]
- Copeland, T.E.; Galai, D. Information effects on the bid–ask spread. J. Financ. 1983, 38, 1457–1469. [Google Scholar] [CrossRef]
- Roll, R. A simple implicit measure of the effective bid–ask spread in an efficient market. J. Financ. 1984, 39, 1127–1139. [Google Scholar] [CrossRef]
- Będowska-Sójka, B.; Echaust, K. Commonality in Liquidity Indices: The Emerging European Stock Markets. Systems 2019, 7, 24. [Google Scholar] [CrossRef] [Green Version]
S | |||||
---|---|---|---|---|---|
Min | 9.030 | 4.520 | 0.002997 | 0.000040 | |
Median | 22.77 | 11.39 | 0.007764 | 0.004452 | 44.70 |
Mean | 27.69 | 13.84 | 0.009410 | 0.005359 | 42.32 |
Max | 92.04 | 46.02 | 0.031950 | 0.023520 | 101.6 |
Std. Dev. | 17.21 | 8.600 | 0.005982 | 0.004918 | 21.53 |
Skewness | 1.729 | 1.729 | 1.766 | 1.382 | 0.125 |
Kurtosis | 5.966 | 5.966 | 6.143 | 5.173 | 3.396 |
S | ||||
---|---|---|---|---|
S | 1.000 | 1.000 | 0.999 | 0.790 |
1.000 | 1.000 | 0.999 | 0.790 | |
0.999 | 0.999 | 1.000 | 0.791 | |
0.790 | 0.790 | 0.791 | 1.000 |
Estimate | p-Value | ||
---|---|---|---|
18.676 | 0.001 ** | ||
S (1) | 0.005 | 0.960 | |
0.329 | 0.015 * | ||
9.338 | 0.001 ** | ||
(2) | 0.002 | 0.960 | |
0.329 | 0.015 * | ||
0.006 | 0.002 ** | ||
(3) | 0.000 | 0.976 | |
0.342 | 0.011 * | ||
0.003 | 0.042 * | ||
(4) | 0.000 | 0.212 | |
0.115 | 0.419 |
Estimate | p-Value | ||
---|---|---|---|
6.119 | 0.114 | ||
S (1) | 0.044 | 0.479 | |
0.715 | 0.000 *** | ||
3.059 | 0.114 | ||
(2) | 0.022 | 0.479 | |
0.715 | 0.000 *** | ||
0.002 | 0.129 | ||
(3) | 0.000 | 0.484 | |
0.723 | 0.000 *** | ||
0.001 | 0.404 | ||
(4) | 0.000 | 0.047 * | |
0.515 | 0.000 *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guijarro, F.; Moya-Clemente, I.; Saleemi, J. Liquidity Risk and Investors’ Mood: Linking the Financial Market Liquidity to Sentiment Analysis through Twitter in the S&P500 Index. Sustainability 2019, 11, 7048. https://doi.org/10.3390/su11247048
Guijarro F, Moya-Clemente I, Saleemi J. Liquidity Risk and Investors’ Mood: Linking the Financial Market Liquidity to Sentiment Analysis through Twitter in the S&P500 Index. Sustainability. 2019; 11(24):7048. https://doi.org/10.3390/su11247048
Chicago/Turabian StyleGuijarro, Francisco, Ismael Moya-Clemente, and Jawad Saleemi. 2019. "Liquidity Risk and Investors’ Mood: Linking the Financial Market Liquidity to Sentiment Analysis through Twitter in the S&P500 Index" Sustainability 11, no. 24: 7048. https://doi.org/10.3390/su11247048
APA StyleGuijarro, F., Moya-Clemente, I., & Saleemi, J. (2019). Liquidity Risk and Investors’ Mood: Linking the Financial Market Liquidity to Sentiment Analysis through Twitter in the S&P500 Index. Sustainability, 11(24), 7048. https://doi.org/10.3390/su11247048