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Abstract: Activity-based micro-scale simulation models for transport modelling provide better
evaluations of public transport accessibility, enabling researchers to overcome the shortage of reliable
real-world data. Current simulation systems face simplifications of personal behaviour, zonal patterns,
non-optimisation of public transport trips (choice of the fastest option only), and do not work with
real targets and their characteristics. The new TRAMsim system uses a Monte Carlo approach, which
evaluates all possible public transport and walking origin–destination (O–D) trips for k-nearest stops
within a given time interval, and selects appropriate variants according to the expected scenarios and
parameters derived from local surveys. For the city of Ostrava, Czechia, two commuting models were
compared based on simulated movements to reach (a) randomly selected large employers and (b)
proportionally selected employers using an appropriate distance–decay impedance function derived
from various combinations of conditions. The validation of these models confirms the relevance of
the proportional gravity-based model. Multidimensional evaluation of the potential accessibility of
employers elucidates issues in several localities, including a high number of transfers, high total
commuting time, low variety of accessible employers and high pedestrian mode usage. The transport
accessibility evaluation based on synthetic trips offers an improved understanding of local situations
and helps to assess the impact of planned changes.

Keywords: journey to work; public transport; simulation; gravity modelling; accessibility; trip
distribution

1. Introduction

Increasing traffic is an inherent symptom of vigorous urban development and its prosperity, but
is concurrently one of the main factors that contribute to the deterioration of the urban environment
and the endangerment of the sustainability of urban development. Public transport (PT) represents
the main sustainable mode of urban mobility [1] and improves social equity and cohesion. In many
countries, PT continues to represent an important share of transport, especially in cities.

Local governments aim to improve PT’s utilisation and attractiveness to decrease the volume
of individual car transport and to motivate people to shift their transport modes towards more
environmentally friendly means. Many empirical studies (e.g., [2–7]) help to discern which local
factors influence PT usage and which advantages and impedances shape the behaviour of commuters.
Ingrained habits and social perceptions play a larger role than economic reasons, and a coherent urban
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transport policy must be applied to achieve increased PT usage [8]. Moreover, increasing usage of PT is
determined by the improvement of PT performance and quality, as well as by increasing opportunities
around PT infrastructure [8].

Transport modelling not only enables an understanding of current transport flow and a prediction
of the impact of envisaged changes, but also plays an essential role in accessibility modelling as
part of more complex analyses. Corresponding to an increased interest in person-based accessibility
modelling [9] and the development of intelligent transport systems, a paradigmatic shift from
aggregated models, with the Four-Step Model (FSM) as the most prominent example [10,11], to
activity-based and micro-scale models, can be observed [12].

Micro-scale models require fine-grained spatial interaction data. These may be obtained from
zonal models using disaggregation methods, or from individual-level models based on activity–travel
data [7,13,14]. Among many frameworks supporting disaggregated modelling for traffic planning,
the following examples can be found: RAMBLAS [15], ALBATROSS [16], ILUTE [17], ILUMASS [18],
SUMO [19]), TRANSIMS [20], SACSIM [21] and MATSIM [19].

Zonal aggregated models usually fail to accurately evaluate short-distance inter-zonal commutes
and conditions for non-frequent groups of commuters [10,22], while individual models suffer from a
lack of data ([23,24]). Benenson et al. [25] call for high-resolution analysis of PT accessibility, due to the
high variability of accessibility results in the majority of Traffic Analysis Zones (TAZ), usually as a
result of the penalizing effects of walking and waiting time on transit ridership.

The journey to work represents one of the most important day-to-day movements of economically
active persons. Additionally, some authors consider the accessibility of jobs as a general measure of
urban opportunity (accessibility of a destination of interest) [26,27]. To analyse personal commuting
conditions, the ideal situation includes knowing the exact locations of one’s residence and regular
workplace (or workplaces), and one’s relevant personal characteristics. However, such address-specific
data are rarely available. The Social Statistics Data Warehouse of Statistics, Finland, offers dwelling
coordinates and workplace coordinates for citizens, along with information on a variety of demographic
features. The workplace coordinate coverage was 91% of all inhabitants in 2011 [28]. In Ireland,
POWCAR data were collected as a part of the 2006 Irish Census, where almost all workplace locations
for employed persons were geocoded [22]. Unfortunately, in Czechia, as well as in the majority of
countries, there is no such available administrative evidence of workplaces for any given worker.
Generally, in such cases, approximate data are used for the analysis, mainly Volunteered Geographical
Information (VGI), mobile operator data, traffic smart card records (e.g., [29]), and surveys. Although
such sources provide important knowledge, they are also limited by some technical issues, which are
exemplified in the following paragraphs.

VGI [30–32] provides a good opportunity to collect a huge volume of individual routes with a series
of space and time coordinates [33]. The collection consists of data from human sensors, where three key
conditions must be met: technical ability (ownership of smart phones, smart watches, tablets or other
wearables equipped with GPS receivers and appropriate software), knowledge (people acquainted
with this technology), and motivation (people willing to upload and share these data, due to altruism,
benefits etc. [34]). The satisfaction of these requirements generates a selectivity issue, because all social
strata fail to be penetrated equally. In the dataset, the share of elderly and low-income persons, and
persons unfamiliar with modern information and communication technologies may be underestimated.
Additionally, a reduction in this selectivity bias is critical, due to the increased importance of PT for
low-income groups [35,36]. Simultaneously, income shortages within these groups may impede the
availability of the latest communications equipment, thus causing the selectivity issue to be that much
more important for PT accessibility analysis than it is for other applications of VGI [37].

Another popular data source for mobility studies is datasets from mobile operators [38–41]. These
datasets are usually based on Call Detail Records (CDRs), which contain the user’s ID, ID of the Base
Transceiver Station (BTS), and date and time of active usage of a mobile phone. However, they are
typically not provided in the form of individual route records due to privacy protection, but as the
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sum of CDRs aggregated into cells of certain points in time. The strengths of such data lie in their
quantity and fine temporal resolution; nevertheless, the main issue for commuting analyses is the
missing link between the individual properties of phone carriers and the purpose of their mobility.
Mobility motivation is generally judged only from temporal behaviour, and therefore lacks clarity.
Furthermore, the following constraints should be taken into account: missing information about the
full route, limited data availability due to high costs and other restrictions, real data from one mobile
operator and estimated data from other operators, only currently active SIM cards being recorded,
difficulties eliminating robots and non-authorised access to mobile phones, limited spatial resolution
due to the size of cells, and cell balancing.

On the other hand, questionnaires and interviews where socio-demographic characteristics,
including travel behaviour and travel purposes, are recorded may provide a more comprehensive
dataset. They offer a deep understanding by means of thorough characterisation of individual social and
economic status, car ownership, income, preferences, family conditions, pro-environmental behaviour,
etc. Travel behaviour is also influenced by a person’s system of values, e.g., postmodernist values,
their relationship to environmental awareness (including perception of congestion, and perception of
pollution), and how these are reflected in pro-environmental behaviour [42]. City-wide or regional
interviews typically produce small datasets, vis-à-vis representative samples for each individual group
of people. Thus, it is difficult to make inferences for small localities and assess the local transport
situation using these data.

The evaluation of PT conditions is more complicated than the evaluation of individual car transport
(ICT). Under ordinary conditions (e.g., no congestion), various metrics of ICT (e.g., travel time, distance,
cost, fuel) are highly correlated; therefore, it may be enough to use any one of them to analyse
commuting conditions [43]. The situation for PT is different and requires person-based accessibility
measures to address the many person-related constraints and preferences [44]. There are many factors
that can act as substantive impedances for PT usage, namely travel time, cost, walking distance, and
waiting time, and usually they are not correlated simply. Furthermore, PT travel conditions may differ
significantly on the outbound and return trips and thus require evaluation as a round trip [45].

To summarise, many difficulties are faced in obtaining and utilising large, unbiased representative
datasets on human movements. We can substitute such datasets by utilising simulations of human
behaviour following certain models with an appropriate stochastic component, which implements
the variability and uncertainty of conditions including, but not always, the rational behaviour of
real commuters.

To overcome these issues, a new, micro-scale, Monte Carlo simulation-based model for evaluation
of local commuting conditions and potential accessibility is introduced. The aim of this paper is
to highlight some specific features of the system, such as the utilisation of personal characteristics,
activity-driven modelling (i.e., chaining of activities with fixed and soft temporal intervals or starts),
and optimised PT trips selected from the full set of possibilities within the given time interval and
k-nearest stops according to several criteria, as well as a discrete choice of targets, and implementation
into the distributed client-server software enabling large computations.

The paper is organised as follows: the first section gives an overview of related works, underlining
some existing limitations. The second section summarises the outputs of the travel survey in Ostrava.
The third section presents the design of the simulation model. The fourth section describes the
implementation of the modelling system and settings for alternative models. The fifth section provides
a validation of the models. The sixth section presents the results of potential accessibility modelling in
Ostrava. The discussion and conclusions summarise the main features of the introduced modelling
approach and provide a comparison to existing systems.
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2. State-of-the-Art

2.1. Microsimulation Modelling

Stochastic microsimulations of activity patterns can be based on different principles, and are
currently dominated by agent-based modelling (ABM). ABM controls the behaviour of agents with a set
of rules, the status of agents and external stimuli, which enables their coordination and interaction, which
is useful for the integration of social behaviour and building dynamic systems. The disadvantages of
ABM lie in the complexity of the systems and subjective choices, but also in performance limitations [46]
and dealing with space [47]. Microsimulation modelling may reach the level of individual persons and
vehicles. Usually, ABM is focused on individual vehicle modelling, while PT modelling remains a
minor topic. The following examples demonstrate the development of this type of modelling and the
level reached, and also comment on their simplifications and accompanying issues.

One of the first microsimulation models was RAMBLAS [15], which simulated daily activity
patterns for regional planning in the Eindhoven region (NL). A synthetic population based on Monte
Carlo simulations and activity agendas randomly drawn from the national distribution were used [44].
It was focused only on individual vehicle transport.

The ILUMASS project [18] integrated an activity-based simulation model of urban traffic flows,
and a microscale ABM of household and firm development, to obtain the resulting changes in land
and housing markets and the environmental impacts. Sub-models were connected via files that caused
excessive computing times and limited operational usage [48].

Lovelace et al. [49] used a microsimulation of individual commutes to the nearest employment
centre. The model was optimised to minimise differences between simulation results and census data.
Simulated origin–destination (O–D) pairs were aggregated to display travel patterns and evaluate
distances to employment centres, as well as to identify important destinations, etc. However, only
driving and walking transport modes were modelled.

Greulich et al. [50] developed a multimodal ABM with a flexible framework where individual
agents could reschedule their trips when unexpected events occurred. Another multimodal transport
model was developed by Dobler and Lämmel [51]. Their hybrid approach enabled the combination
of macro-scaled demand models with micro-scaled, force-based, and agent-based models, where the
latter was meant to represent active modes of transport (walking, cycling) [12].

One of the most rapidly developing projects, MATSim, provides a modular framework to
implement large-scale, agent-based transport simulations. MATSim includes demand modelling,
agent-based mobility simulations, iterative processing to reach an optimum model, and methods to
analyse the outputs [19]. MATSim was implemented in numerous studies [52], i.e., for an accessibility
evaluation in the Metropolitan area of Zurich [53], travel behaviour under the condition of limited
available survey data in China [54], transport energy demand modelling in Croatia [55], and cordon
toll policy using mobile phone records in Barcelona [41]. While, at the beginning, the microsimulation
was focused on the driving mode, recent development has enabled PT modelling (detection of frequent
transfer locations in Seoul [56], PT accessibility for Singapore [57], locating transport facilities [58], and
a comparison of fixed and flexible PT [59]) and new modes such as carsharing (e.g., the impact of
parking price policy on free-floating carsharing in Zurich [60]) or autonomous vehicles (e.g., transport
policy optimisation for autonomous vehicles in Zug [61]). Accessibility studies using MATSim vary in
employed datasets, travel modes and focus. For the evaluation of PT, typically no time restrictions or
temporal variability were taken into account. The missing temporal changes and neglected variability
in schedules were also criticised by Zhang et al. [62].

Liu and Zhou [63] applied ABM for modelling capacity-constrained transit service, though no
personal preferences or social behaviour were utilised in this model.

Social behaviour (e.g., job competition) was included in the ABM model by Huang [44]. Another
advantage of his model was the integration of schedules with anticipated delays. Nevertheless, he
simplified the model to include only job opportunities within a fixed Euclidean walking distance of 1
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km, and neither real employers nor residential locations were taken into account. Personal behaviour
was deduced from the national census data using a one-size-fits-all approach.

ABM is not the only approach to microsimulation modelling. Hybrid models represent a
combination of aggregated and disaggregated models. The IRPUD model [48] is a dynamic simulation
model of intraregional locations and mobility decisions in an urban region where the travel behaviour
of individual households is modelled at a zonal level. It was used to simulate scenarios of fuel price
increases and different combinations of activities and policies. As part of the solution, they modelled
job accessibility in the Dortmund region, but only for individual transport.

2.2. Zonal Model Considerations

The classic modelling concept is usually based on four-step modelling (FSM) [11]. In FSM, zonal
tessellation (usually TAZ) of the area is applied, and the simulated trips are distributed equally over
the whole study area. A comprehensive overview of different transport models and approaches
was provided by Ortúzar and Willumsen [10]. If the origin–destination matrices are built for zones
and not for locations, it can provide only general spatial information [12], which limits the usage of
address-based specific information, but, conversely, makes it simpler to model spatial interactions
using, e.g., gravity models. Except for gravity models, discrete-choice models play an important role
in the improved utilisation of observed individual choices. These models interpret more influential
variables than gravity models, enabling better adaptation [64]. However, discrete-choice models are
unable to integrate different sizes and attractiveness of individual targets, as opposed to what is
available with gravity models using generalised distance–decay functions (e.g., [27]), sometimes also
combined with a Huff model ([65–67]). Both models are based on zones, typically TAZ ([7,68]). A
common shortcoming of zonal models is that they cannot fully utilise individual point-based targets
and their properties, such as location, capacity, and time window and constraints, to improve the
accuracy of transport modelling.

3. Survey Results in Ostrava

3.1. Study Area

The model was tested and evaluated for Ostrava, the centre of the Moravian–Silesian region
situated in northeastern Czechia. The Ostrava XXL PT zone (Ostrava PT greater zone) has 401,000
inhabitants (2015) and an area of 530 km2. The urban PT network consists of 531 stops and 81 routes
(bus, tram, and trolleybus) operating around 7150 trips on any given weekday.

In 2014, a questionnaire was conducted by a group of university researchers, including the authors
of this paper, in order to understand the travel behaviour of respondents and their travel diaries.
The respondents were asked to describe their usual daily trips based on starting and ending points,
trip duration, means of transport used, purpose, and frequency. The total number of questionnaires
completed was 534 (0.2% of the population, which is not high, and makes it difficult to draw firm
conclusions). The Pencil And Paper Interview (PAPI) method was applied, and the sampling quota of
respondents was stratified according to gender, age and education level [69]. The city was divided
into 13 zones to ensure an even territorial distribution of respondents. The main class of respondents
was full-time workers (46%), followed by retirees (20%), students (17%), self-employed (7%), persons
on parental leave (6%) and unemployed (5%). The composition of the sample corresponded to the
distribution of the general population by gender (male 48%), age (14% in 15–24, 67% in 25–64, 19% in
65+), and highest achieved level of education (tertiary 23%, secondary with graduation 39% and 28%
without graduation, primary 10%). The deviation from the required stratification was below 1% for
gender and age categories. The places of residence, origins, and destinations of all trips on weekdays
and weekends (a total of 9959 points) were geocoded using Google Geocoding API [70].

The survey results were aggregated according to the following population groups: retired,
employed, self-employed, unemployed, and students. The frequency analysis of recorded trips
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provided a quantitative assessment of group priorities for travel purpose, destination, time, and
transport mode.

A reconstruction of all day trips enabled the discovery of typical scenarios (Day Activity Pattern
according to [10]), daily movements (Figure 1) and the temporal distribution of activities (Figure 2). The
evaluation of these distributions is necessary to draw random samples during Monte Carlo stochastic
simulations of trips, similar to, for example, the Portland model in [71]. Noticeably, the patterns reflect
differences in working and non-working days, and in population groups (Figure 1). According to
the survey results, three quarters of daily movements are simple return trips to one destination. This
figure corresponds well to the 70% found in Auckland [10]. Almost 90% of workers’ daily activities on
weekdays (WD) are related to work, including 11% of trip chains connecting working and shopping.
Pensioners declared shopping as the most prominent activity both for weekdays and weekends (WK)
(40–50%). Different activities on WD and on WK were reported by students. They declared almost
90% of daily activities to be linked with studies and only a small portion were combined with sport or
shopping, while, on WK, they engaged mainly in sport, work or shopping. Visiting family and friends
is a specific weekend activity for all groups, except for students.
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Figure 1. The most frequent scenarios for the selected population groups in Ostrava. Abbreviations:
WD weekday, WK weekend; HWH denotes Home–Work–Home and the same scheme is used for other
scenarios, where individual letters stand for: H = home, W = work, B = shopping, A = accompaniment,
S = studying, P = sport, C = culture, V = visit.

The temporal distribution of the beginning of travel activities for employees (Figure 2) shows
the dominant peak of commuting to work early in the morning on weekdays and the multimodal
distribution of commuting to work during weekends, where work shifts are more noticeably imprinted
in the pattern (13:00 h for the second shift and 21:00 h for the third shift). Bimodal distribution is
typical for escorting family members, usually children, on weekdays. Sport is typically an afternoon
activity, while shopping is indicated by a secondary small peak in the morning hours for employees on
non-working days, rather than before work.
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3.2. Distance–Decay Impedance Functions

A profound understanding of trip distribution and the calibration of gravity models requires a
distance–decay function (DDF) evaluation. These functions are represented by the relative distribution
functions of travel distance and travel time constructed in the case of sufficient sample size for each
combination of transport mode, purpose, personal economic activity, type of day and urban category
(Figure 3a,b).
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Figure 3. Relative distribution functions for commuting to work on working days according to (a)
main transport modes and (b) main land cover categories for urban public transport.

Differences between transport modes are clearly visible (Figure 3a). As expected, walking is
limited to short distances and 90% of walks are shorter than 2 km. The cumulative distribution of
urban PT trips continuously increases up to 8 km, which corresponds to the longest distances between
borders of dense peripheral settlements and the city centre. Beyond this limit, distances grow rapidly,
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but such trips rarely occur. Driving is used for longer trips; the median is 6.4 km and the 9th decile is
13.7 km. The longest recorded car trip corresponds to the diameter of the study area.

Density of urbanisation (Figure 3b) also indicates a significant influence on the expected length of
trip. Urban land cover categories include dense urbanised (city centre or compact settlement) and
sparse urbanised (family houses, and mixed residential, commercial and industrial zones) settlements.
However, few observations for sparse urbanised areas were recorded. It is clear that trip distances in
dense urbanised areas are noticeably shorter (by approximately a third) than those for sparse urbanised
areas, where suburbs are also included.

For all groups, various regression functions (i.e., exponential, power, Weibull, gamma, lognormal,
and Box–Cox) were tested. Discussion on the behaviour and testing of such functions can be found
in, e.g., [72–74]. In the majority of groups analysed, the best approximation was reached using the
Weibull function [75] (Equation (1)):

F(x) = 1− e−a∗xb
(1)

where x stands for distance, and a and b are parameters for optimisation, with the approximate
interpretation that a is more related to the scale of trips, while b corresponds to the shape of the
function and variability of trip length. This function was used for approximation of all group DDFs;
the differences lie only in the a and b parameters. DDFs characterise groups’ different perceptions
of distance and willingness to travel. This same characterisation was applied in order to modify
functions for travel time instead of distance. For the sake of simplicity, we did not adopt the name of
the impedance function for, e.g., the temporal–decay function.

4. TRAMsim Simulation System

4.1. Concept of Modelling

The TRAMsim simulation system is based on the concept outlined in Figure 4 and is explained
below. The simulation system is controlled by a set of parameters that should be fitted to the expected
behaviour of the commuting community. The process of modelling is subdivided into the main
four phases.
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Figure 4. The scheme of simulation modelling.

First, a population of interest is selected. It may represent a current resident population, population
prediction or a selected category of person. The population choice influences the important parameter
settings for simulations, including the number of simulations, maximal walking distance, number of
proximal stops, description of chaining activities and related time settings (e.g., earliest time to leave
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home, latest time to return home, time tolerance, time interval requested before or after the activity,
time distribution of activities). Important aspects of activities and behaviour have been explained
in previous work ([10], p. 482). Within our concept, activities can be described as soft activities
with unknown targets and unknown requested times, where only an activity type is known, or fixed
activities where the target and/or requested time is known. For both soft and fixed activities, the
potential set of targets is known, and each target is characterised by a precise location, size or capacity,
and temporal restrictions.

After the population selection, the scenario is selected. The scenario consists of a chain of activities
with a defined order. Each activity has an indicated minimal duration and may also have a fixed time
plan (e.g., required starting time), which is suitable for work shifts, cultural and sporting events, etc.

Simulations for each origin begin with the search and evaluation of all possible transport
connections within one hour (before and after) the planned activity to all destinations of the given type.
The multithreading computing searches for connections between the specified number of stops closest
to the origin and the destination. The search respects the parameters for the given type of simulation,
scenario and personal features. If no connection is found, the time interval is extended sequentially by
one hour.

Walking to and from stops is included as an obligatory part of each PT trip (similar to [25]).
Furthermore, walking directly (hereafter referred to as pedestrian mode) between the origin and the
destination is evaluated, which is important for shorter trips.

All found connections (D1a–Dnz) are compared, and, according to the personal/purpose travel
optimality criterion (fastest, shortest, with minimum changes, random, latest, earliest), the most
suitable trip from the given origin to each destination is selected (D1–Dz). In this way, the set of
potential trips is reduced to one optimal trip from the given origin to each destination.

Next, the gravity value for each destination from the given origin is calculated. The gravity model
utilises the size of the target, trip duration (including walking and waiting time) and the appropriate
distance–decay impedance function. The DDF for modelling is selected according to the mode of
transport, target categories, economic activities of the respective person, type of day, and category of
the location. The resulting gravity value is obtained by multiplying the attractiveness by the target
weight (Equation (2)):

Gij = Aij * f (tij), (2)

where Gij stands for the gravity value, Aij is the attractiveness of the j-target from the i-origin, f() is the
appropriate distance–decay impedance function, and tij is the travel time between i and j locations.

The attractiveness of a j-target is directly proportional to the size of the target, analogous to the
Huff probability model [65,76]) for shopping gravity models, where the size of a target is typically
expressed as the area of the given shop. It is calculated for the given type of person from the trip
duration transformed by the DDF. The target size is a parameter that directly influences the size of the
interaction; in the case of commuting to work, the number of employees is used [77].

The system currently implements three regimes of selection for the destination from the given
origin from the full set of targets—fully random, maximal gravity and proportional gravity. Fully
random selection utilises a uniform distribution, where each destination possesses the same probability
of selection using a Monte Carlo drawing. Such an option may be a relevant alternative for small
settlements where differences in distance can be neglected. The maximal gravity mode selects the
target with the maximal gravity function value. This option is related to distance–decay utility
maximisation [78] and assumes that everyone selects one’s job purely according to minimal travel
impedance and maximal size of employer. Correspondingly, during simulations, the appropriate
employer for each given origin is always selected. The proportional gravity mode intends to select
targets proportionally to the distribution of the gravity value for all targets. It is implemented using
a Monte Carlo drawing from the sum of the gravity values. All procedures are fully described in
Appendix A.
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By employing one of these selection options, one destination for the given origin is selected
and one simulated trip is finished. Trip characteristics are recorded, including start time, finish time,
travel time, total travel time (including walking), distance, number of changes, price, walking distance
to/from the stop, and transport mode (public transport/walking). The simulations are repeated until
the required number is reached, yielding large trip tables of person-commuting values.

The process can be iterated by selecting another possible scenario for the given population, or
restarted by selecting another population (typically another person category).

4.2. TRAMsim Implementation

Simulations are performed in a system called TRAMsim. As was mentioned previously, the most
frequent variants of simulation machines are ABM models. However, generally ABM models are not
considered to be designed for extensive simulations [79]. In this case study, procedural modelling
was preferred because of the massive extent of searching for PT connections and the requirements
for parallel and distributed processing. The procedural modelling was based on the execution of a
sequence of activities undertaken by the population. The simulation of behaviour for more persons or
variants of individual behaviour, reflecting different conditions (changed randomly or systematically),
are performed by repeated executions of the model, as is done with ABM. The heterogeneity of the
environment is also implemented in a similar way to ABM.

Achieving results within a reasonable timeframe requires massive parallel data processing. A
new parallel processing with an automatic extendable client–server system using a Microsoft SQL
Server (MS SQL Server) was developed. The MS SQL Server is a relational database server developed
by Microsoft and is used for the storage and maintenance of travel data and the programming of
the application with a Transact-SQL language [80]. The three-layer model includes a central server,
auxiliary local SQL servers and client PCs (Figure 5). Generation of the travel requirements is done
using the local copy of the underlying data to eliminate any overloads of the central server. During the
subsequent receipt of the results, the local server writes the results onto both servers. This method
significantly reduces the load on the central server, which allows for an increase in the number of
clients by a factor greater than 100. The programming code is stored in the supplementary file S1.

A database application generates random transport requests, according to the expected behaviours
and parameters of the system. The transport requests are processed by the subsystem for the searching,
evaluation and optimisation of PT connections. This subsystem utilises a DLL (Dynamic-link) library
provided by CHAPS Ltd., the administrator of the National Information System on Regular Public
Passenger Transport Timetables, to search for all possible PT connections in the PT time schedules.
This enables a selection from the full set of trips based on different priorities in order to minimise travel
time, distance, cost, number of transfers and waiting time within the given time period. The system
distributes requests among a large number of clients and stores the results in the database server.

Currently, the system does not implement the uncertainty of transport timetables, due to congestion,
for example. This is a result of the first implementation being done in Ostrava, where delays in PT are
usually minimal and timetables are well respected (93% within a 3 min tolerance [81]).
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4.3. TRAMsim Testing

For testing and validation, the simple Home–Workplace–Home scenario was implemented and
analysed. Multipurpose trips were not included in the case study; however, the same model can
be implemented to analyse trips of that nature. In TRAMsim, origin locations can be simulated,
but currently they are substituted by fixed centres of small urban polygons. This corresponds to
an intermediate approach in activity-based models [10]. The locations of residents (Home) were
represented by 280 median centres of Basic Settlement Units (BSUs). The median centres were calculated
using the distribution of address points in the given BSU representing a residential centre of the
settlement unit.

Presently, the demand from any given origin was fixed to establish the same population demand
for all localities, in order to not mirror the current population situation (number, structure), but,
instead, a potential of accessibility. The number of demands from each location equals the number of
simulations done for that location.

Instead of synthesising workplace locations inside a destination zone, current opportunities were
mapped in sufficient detail and destinations were selected from the real set of localised targets using
one of the destination-selection criteria (typically proportional gravity).
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Contrary to other studies, (e.g., [7,44]), we mapped all significant workplaces (generally 50+

employees) in the pilot area (Ostrava + 20 km buffer), identified their locations as potential destinations,
and estimated the number of employees as a basis for the evaluation of attractiveness. Various
registries of employers and companies were explored for this purpose. The final set of workplaces was
derived from the registry of the local labour office and was complemented by evidence from other
sources (mainly the register of companies) and downscaled to cover all premises according to their
relative size based on experts’ estimations. Such estimated values are obviously sources of uncertainty;
nevertheless, they are used to calculate gravity values and do not represent constraints to limit the
number of workers commuting to a given employer (no double constrained gravity model is applied).
Optionally, work regimes (i.e., the start and end of a shift) can be recorded, similarly to other types of
targets, where temporal constraints are recorded.

According to [82], the three stops nearest to the origin and the destination (nine combinations in
total) were selected to search for various transport connections. In the following example, 977,760 O–D
transport requests were processed and, for each request, about 25 connection variants were evaluated
to find an optimal transport connection. Additionally, a pedestrian-mode trip between each origin and
destination was evaluated.

4.4. Two Alternative Models for Testing

The number of PT stop combinations indicates a demanding computation, similar to other studies
([44,83,84]). The question is, is it necessary, or is it possible, to obtain similar results with substantially
lower computational effort? Two alternative models were built, and their results were analysed. The
two commuting models were designed based on simulated movements to (1) one hundred randomly
selected large employers with more than 100 employees (the random-above-limit model, e.g., [85])
and (2) one hundred proportional gravity-selected employers. The first model is implemented much
more simply than the second, because it does not require frequency analysis, optimisation of the
DDF, or estimation of the weight of the target. It was assumed that elimination of the distance–decay
effect within a city would have a negligible impact. In both models, the same settings were applied:
departure from home after 16:15 h, 15 min anticipated preparatory time before work, eight hours work,
and return home before 22:00 h. The latest travel connection before the requested arrival time was
preferred in order to minimise waiting time. This meant that, if working hours started at 08:00 h, the
connection prior to and closest to the optimal arrival time of 07:45 h was selected. The beginning of
working hours was randomised from the most probable interval between 06:00 and 08:00 h, according
to the survey results (Figure 2). The maximal walking distance to a PT stop was 5 km, so as not to
strictly limit accessibility in peripheral villages.

Results of the models differ substantially from one another, including in the related accessibility
evaluations. Differences in the distribution of individual values can be seen both in centrally situated
BSUs, as well as in those in a peripheral position (Velka Polom in Figures 6 and 7). The proportional
gravity model provides a much lower mean and median, as well as a more homogeneous distribution
and fewer outliers than the random-above-limit model for both BSUs (Figure 6). This is verified in the
maps (Figure 7), where the random-above-limit model often selects quite distant targets, contrary to
more compact selection in the proportional gravity model. It is necessary to validate both models and
decide if the differences are significant.

4.5. Model Validation

The validation of both models is challenging because comprehensive information is necessary for
the simulation of individual activities and is almost never available with a sufficient range [49]. Such
models cannot conceptually be fully validated against data, due to mismatching in the granularity,
and abundance of simulation outputs and traffic count data [86,87]. Wegener and Spiekermann [48]
recommend combining the statistical calibration of models with expert judgement and plausibility
analysis. In this case, the validation of models was based on the comparison between the simulation
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outputs and frequencies of each travel time reported in travel diaries aggregated by distribution
functions. The only modification of the survey data was to exclude reported trips where targets were
outside of Ostrava. For validation, both graphic and statistical tools were applied. The results (Figure 8)
clearly show a significant deviation from the random-above-limit model, where the share of large trips
is much higher than the distribution of time from the travel survey (notice the rounding of time values
by respondents). On the other hand, the results of the proportional gravity model seem to coincide
with the original data quite well (Figure 9).
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A good correlation between the survey results and simulation outputs from the proportional
gravity model was verified via statistical testing. Both datasets did not originate from the normal
distribution (Kolmogorov–Smirnov and Shapiro–Wilk tests, p < 0.001). According to the results of
the non-parametric tests, as well as the t-test (Table 1), the two distributions are equal and there is no
significant difference. This confirms that the simulations based on the described proportional gravity
model are realistic.
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Table 1. Results for the independence test between the survey and proportional gravity
simulation results.

Test Kruskal–Wallis Test Median Test Jonckheere–Terpstra Test Mann–Whitney Test T-Test

Criterion name Kruskal–Wallis H Chi-Square Std. J–T Statistic z-score t-value
Criterion value 1.177 0.082 −0.085 −1.085 1.057

Asymp. Sig. 0.278 0.774 0.278 0.278 0.292

We can conclude, based on the random-above-limit model analysis, that the simplification of a
simulation based only on a selection of large employers is not appropriate, even within a city.

5. Potential Accessibility Evaluation in Ostrava

The proportional gravity model was applied to evaluate potential accessibility in Ostrava using
PT and walking for the granularity of BSUs. This analysis demonstrated the variability of outputs
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from microsimulation modelling, as well as their usefulness for understanding the underlying factors
and thoroughly explaining observed differences in accessibility results.

Without the availability of an individual vehicle, it is possible to commute to some of the
employers from every origin, but under highly variable conditions. During simulations, 94% of
available employers were used as destinations for simulated commutes. This means that the remaining
6% of employers may be less accessible via PT, or they may be located in the “shadow” of a competing
large employer located within very close proximity. The share of accessible workplaces from each
origin exhibits significant differences in the supply of workplaces (Figure 10a). The locations with
the richest variety of available employers (>70%) are in the centre of Ostrava, as well as in some
fragmented zones around it. A comparison between the share of accessible workplaces and employers’
locations (black dots) shows clear differences in the pattern, indicating the importance of attractiveness
and PT conditions within the evaluation. Peripheral parts of the city show an obviously lower supply
of accessible employers, but again the situation is heterogeneous. A low supply of employers is
recognised in Jistebnik (SW corner, 39%), in several municipalities on the west border (less than 60%,
Zbyslavice, Čavisov, Horní Lhota) and in the northeast corner around Bohumín (less than 60%). The
underlying reasons for this can be understood using Figures 10 and 11.

Sustainability 2019, 11, x FOR PEER REVIEW 16 of 24 

show an obviously lower supply of accessible employers, but again the situation is heterogeneous. A 
low supply of employers is recognised in Jistebnik (SW corner, 39%), in several municipalities on the 
west border (less than 60%, Zbyslavice, Čavisov, Horní Lhota) and in the northeast corner around 
Bohumín (less than 60%). The underlying reasons for this can be understood using Figures 10 and 11. 

 
Figure 10. (a) Available employers and (b) pedestrian mode usage. 

 
Figure 11. (a) Average total commuting time per day and (b) average number of changes per day. 

Jistebnik has a low number of employers within the municipality and in nearby accessible 
surroundings, thus the local labour market does not create a sufficient labour demand. During 
simulations, due to poor PT conditions (e.g., many transfers, low frequency, long walking distance 
to a stop), local employers within walkable distance were frequently selected (confirmed by the high 
share of pedestrian mode trips—more than 20% in Figure 10b) or workers commuted to more distant 
employers under poor conditions (reference the extreme number of changes per day in Figure 11b). 
Surprisingly, in Jistebnik, the total travel time per day was not worse than in the majority of other 
BSUs, which is explained by a smoothing effect of the mean between results for local commuting 
(including the dominating pedestrian mode) and distant commuting. 

Bohumín shows some similarities, such as the low variety of employers connected with a very 
high share of pedestrian mode use; however, it boasts good travel times and a low number of changes 
(Figure 11). These attributes reveal a very close commuting network (built with local urban PT and 

Figure 10. (a) Available employers and (b) pedestrian mode usage.

Sustainability 2019, 11, x FOR PEER REVIEW 16 of 24 

show an obviously lower supply of accessible employers, but again the situation is heterogeneous. A 
low supply of employers is recognised in Jistebnik (SW corner, 39%), in several municipalities on the 
west border (less than 60%, Zbyslavice, Čavisov, Horní Lhota) and in the northeast corner around 
Bohumín (less than 60%). The underlying reasons for this can be understood using Figures 10 and 11. 

 
Figure 10. (a) Available employers and (b) pedestrian mode usage. 

 
Figure 11. (a) Average total commuting time per day and (b) average number of changes per day. 

Jistebnik has a low number of employers within the municipality and in nearby accessible 
surroundings, thus the local labour market does not create a sufficient labour demand. During 
simulations, due to poor PT conditions (e.g., many transfers, low frequency, long walking distance 
to a stop), local employers within walkable distance were frequently selected (confirmed by the high 
share of pedestrian mode trips—more than 20% in Figure 10b) or workers commuted to more distant 
employers under poor conditions (reference the extreme number of changes per day in Figure 11b). 
Surprisingly, in Jistebnik, the total travel time per day was not worse than in the majority of other 
BSUs, which is explained by a smoothing effect of the mean between results for local commuting 
(including the dominating pedestrian mode) and distant commuting. 

Bohumín shows some similarities, such as the low variety of employers connected with a very 
high share of pedestrian mode use; however, it boasts good travel times and a low number of changes 
(Figure 11). These attributes reveal a very close commuting network (built with local urban PT and 

Figure 11. (a) Average total commuting time per day and (b) average number of changes per day.



Sustainability 2019, 11, 7098 17 of 25

Jistebnik has a low number of employers within the municipality and in nearby accessible
surroundings, thus the local labour market does not create a sufficient labour demand. During
simulations, due to poor PT conditions (e.g., many transfers, low frequency, long walking distance to
a stop), local employers within walkable distance were frequently selected (confirmed by the high
share of pedestrian mode trips—more than 20% in Figure 10b) or workers commuted to more distant
employers under poor conditions (reference the extreme number of changes per day in Figure 11b).
Surprisingly, in Jistebnik, the total travel time per day was not worse than in the majority of other BSUs,
which is explained by a smoothing effect of the mean between results for local commuting (including
the dominating pedestrian mode) and distant commuting.

Bohumín shows some similarities, such as the low variety of employers connected with a very
high share of pedestrian mode use; however, it boasts good travel times and a low number of changes
(Figure 11). These attributes reveal a very close commuting network (built with local urban PT
and pedestrian modes), in which Bohumín creates its own sufficient labour market with minimal
requirements for commuting to other parts of the Ostrava XXL zone.

Finally, municipalities on the western border of Ostrava XXL show a low usage of the pedestrian
mode, which indicates the absence of local employers. However, PT conditions are good (comparable
to other geographically similar locations), especially when considering an acceptable average number
of changes.

It is possible to analyse the situation in other municipal areas (BSUs) by employing the same
technique. A high incidence of pedestrian mode usage is not only found in the centre of Ostrava, where
the high supply of local employers and slower PT in the densely urbanised area leads to a preference
for walking, but also in the eastern BSUs, close to external employers in the nearby city of Havířov.

Several BSUs (e.g., Vřesina) offer a good variety of employers, but exhibit a poor average travel
time and high number of changes. According to average travel time, a poor commute of more than 90
mins per day exists in some locations, including in several isolated zones (14 BSUs), mainly on the
borders, which represent only 1% of the population. More surprisingly, however, the second worst
category (60–90 min commute) covers not only the majority of suburban areas, but also some internal
parts of the municipality of Ostrava. These areas include 54% of BSUs, with 51% of the population
(almost 190,000 people). This reveals some troublesome commuting durations using PT, which can
generally be attributed to more than one change per trip.

The results indicate locations within Ostrava with a potential for improvement in PT service.
Results were not influenced by adaptation strategies of residents, including relocation for better access
to employers and other facilities, using individual transport or some shared modes of transport,
changes in employer due to poor accessibility, etc.

6. Discussion and Conclusions

Stochastic microscale simulation-based modelling offers a more thorough and detailed
understanding of local commuting conditions and PT issues. Usually, studies in this area are based
on schemes of evaluation of respondents’ opinions on travel conditions (e.g., the multidimensional
Rasch model in [88]). Even though this represents a direct way to evaluate customer satisfaction, there
are questions about how to reach objectively comparable commuting conditions. Synthetic data can
substitute or supplement existing real-world data, respecting existing PT conditions, targets’ property
constraints, and personal and opportunity factors. For accessibility studies, trip simulation provides
the benefit of a multidimensional evaluation of local PT conditions, including an assessment of total
travel time per day, number of changes, walking distance, waiting time, and the frequency of utilised
stops or links [89].

This paper introduces a new approach to activity-based microsimulation modelling using stochastic
Monte Carlo simulations to generate synthetic trips, and its implementation using the TRAMsim
system. Three main outputs are presented: (1) a new concept of modelling and its implementation in
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TRAMsim, (2) the results of the testing and validation of two commuting models and (3) a potential
accessibility evaluation of workplaces in Ostrava.

A key decision for modelling is the choice of a population of interest. It is possible to focus on
specific groups within the population, and to analyse and predict accessibility specifically for them
(e.g., [67] for children, youth and seniors). Personal characteristics are described in more detail than in
other studies, where usually only income level and car ownership are documented. Characteristics
are derived from a local travel survey. The population must be described in terms of location (spatial
distribution), socioeconomic status, travel preferences and behaviour. Similar to discrete-choice
models [10], observation of individuals is recommended. Specific outputs include a description of
all important scenarios (daily activity patterns) with identified activities, the temporal distribution
of these activities and optimised distance–decay impedance functions, corresponding to different
purposes. The scenarios may consist of more than one activity, respect the opening hours of businesses,
and consider the temporal variability of the attractiveness of the destination.

Activities are linked with a set of real-world targets equipped with real properties, i.e., the
locations (coordinates) of all premises, temporal constraints and preferences, and sizes or capacities.
Trip destinations are selected only from this set of targets, which enables the provision of a more accurate
evaluation of travel. The selection of targets is managed by one of three options, the proportional
gravity model being the validated model for Ostrava. In this system, PT trips always include walking,
as complete door-to-door trips are evaluated.

All public transport connections are searched for not only for the closest stop from the origin
or destination (a common setting in many other studies) but also for the predefined set of nearest
stops, where all stop–stop combinations are evaluated. This is a commonly overlooked issue, even
though, especially in dense urban environments, walking distances to various stops frequently differ
only slightly, but the performance (transport frequencies, and available modes and links) may differ
significantly. For example, Ivan [90] confirmed that only about 50% of transit users in our region use
the closest stop.

As well as this, several options for the method of travel are available. Even though the majority
of studies use only the fastest connection from the given departure time (e.g., [25]), this option is
not preferred for all people and all purposes. Our model deals with a specified time interval and
finds not just the fastest connection within this interval, but also the latest, the earliest, the shortest, a
random and a “comfort” option. The “comfort” option is appropriate for travellers with disabilities,
accompanying other persons, with luggage or shopping bags, etc. The last option should be preferred
by passengers aiming to minimise waiting time before a fixed-start event. These variants enable a
better simulation of passenger behaviour, based on their personal properties and purposes.

The model is implemented in TRAMsim, a database application with an automatic extensible
client-server system suitable for massive parallel processing. TRAMsim simulates the selection of
targets, searches for optimal transport connections and generates synthetic sets of probable trips, using
both PT and pedestrian mode, optimised according to personal characteristics and detailed mapping
of opportunities for activities.

Within the Ostrava case study, two models for commuting to work were tested. Comparison
of the test results for these two models (random selection of a large employer, and proportional
gravity selection from all employers) proved that the computational load during simulations cannot be
decreased by the simplification of the model based on a random-above-limit approach, even within a
city, and shows a good correspondence of the proportional gravity model to the survey results. This is
a significantly positive result, as some other microsimulation studies have not succeeded in validation
of their models (e.g., in [7], both gravity and discrete-choice models failed in validation).

The successfully validated proportional gravity model was used for simulations. Synthetic trips
were employed for the mapping and evaluation of potential workplace accessibility in Ostrava.

Accessibility was evaluated with a set of selected indicators suitable for PT, including the share of
accessible employers, pedestrian mode usage, total commuting time, and number of changes. The
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accessibility was evaluated for the Home–Work–Home scenario representing a full daily tour, including
walking to/from stops and pedestrian mode. Thus, the total travel time includes all travel time, walking
time and waiting time. The evaluation of such a daily travel time budget eliminates a common issue
in PT accessibility studies, where outbound and return trips differ significantly. The low variety of
employers found in simulations indicates a limited offer, usually related to restricted transport options,
where only some requested targets are accessible. The pedestrian mode usage, combined with other
indicators, is able to distinguish relatively closed local catchments with limited accessibility of distant
destinations. A high number of changes indicates higher discomfort for travelers, which may impede
PT usage for some groups of people. Such multidimensional evaluations enable a better rendering
of the local situation, identify specific issues in some localities, and evaluate the impact of planned
transport changes.

In this case study, potential accessibility was evaluated with a monotone demand and does
not reflect the current local population. The reason for this is that models with a synthetic current
population (e.g., [15,44]) evaluate the current accessibility conditions, but they conserve the existing
population and results are influenced by a different structure of residents. For example, zones populated
mainly by retirees may exhibit good accessibility, due to pensioners’ prioritised commuting needs,
such as shops, when, in reality, that same zone may have inadequate accessibility to employers or other
types of destinations. Another issue with this kind of modelling is how to properly evaluate sparsely
populated areas or locations under development. In such situations, it is possible to synthesise a
standardised or target population. Using the same standardised population for all tested locations
would enable the mapping of potential accessibility unbiased by the current population and its profile.
The main disadvantage of simulation modelling can be seen in the great requirement for fine-grade local
data and computation loads. This a common weakness [48,83,84], which still impedes the operational
usage of such tools. Spiekermann and Wegener [91,92] described theoretical, empirical, practical and
ethical limits for increasing the resolution of these models. In the TRAMsim case study, the model does
not try to capture the full complexity of relationships between the population, land use and transport
to simulate traffic flows in the real world. The focus of the simulation is on accessibility studies with
partly fixed conditions, which decreases the uncertainty of the modelling and the computational load.

Potential weaknesses of the TRAMsim model can be seen in several instances. TRAMsim is
unable to model social interaction. No activity across household members nor redistribution of
activities among members can be implemented in an automatic manner. The social behaviour of
the synthetic persons is not included, because the current focus of the system is on the potential
accessibility evaluation and, therefore, no interactivity of the current population is modelled, similar
to job competition in multiagent systems in [44]. Also, the gravity potential is evaluated for each
target independently, and no synergic effect (sojourns) for clusters or chains of targets can be utilised.
Additionally, no travel time uncertainty or schedules (e.g., congestion) are implemented. For the
presented case study, this is a marginal problem, due to the positive fact that PT in Ostrava currently
exhibits only small delays in scheduled times.

TRAMsim offers inspiration for improvements in PT modelling, which may also be applied in
other simulation systems to reach more accurate modelling results. Improved understanding of local
PT issues helps to adapt PT policy, to decrease real inconveniences impeding the wider usage of PT,
and to decrease transport stress in modern cities.
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Appendix A. Explanation of the Regimes of Selection for the Destination from the Given Origin

Let O be a set of origins and D be a set of destinations:

O =
{

o1, o2, o3, . . . , om
}
, (A1)

D =
{

d1, d2, d3, . . . , dn
}
. (A2)

For each element oi of the set, O exists as an ordered set Di of destination elements that is ordered
by the value of gravity function g.

Di =
{
di ∈ D

∣∣∣∣ g
(
oi, di, j

)
≤ g

(
oi, di, j+1

)}
, (A3)

The g function returns the gravitational value, which represents the gravity between origin oi and
destination di, j. The g function is defined by:

g
(
oi, di, j

)
= a

(
oi, di, j

)
∗ f

(
t
(
oi, di, j

))
, (A4)

where function a returns the attraction of destination di, j from origin oi, function f is the appropriate
distance–decay impedance (temporal-decay) function, and function t returns the travel time between
oi and di, j locations.

For each element oi of the set O, there also exists an ordered subset Bi ⊆ Di of elements of set Di
where the gravitation ratio is greater than the randomly determined level. Set Bi is defined by:

Bi =

{
bi ∈ Di|

j∑
k=1

g
(
oi, di,k

)
≥ r·

n∑
k=1

g
(
oi, di,k

) }
, (A5)

where r is the random number r ∈
〈
0, 1) from a uniform distribution from interval

〈
0, 1) , n is the

number of elements in set Di, and j is the index of element di, j of ordered set Di.
For random choice of destination di, j from origin oi:

qi := di, j; j = round(nr), (A6)

where n is the number of set elements Di, and r is the random number r ∈
〈
0, 1) from a uniform

distribution from interval
〈
0, 1) .

For maximal gravity choice of destination di, j from origin oi:

qi := di, j; j = n, (A7)

where n is the number of set elements Di.
For proportional gravity choice of destination di, j from origin oi:

qi := bi, j; j = 1. (A8)
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