The Response of Catchment Ecosystems in Eutrophic Agricultural Reservoirs to Water Quality Management Using DOM Fluorescence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sampling Strategy and Physico-Chemical Analyses
2.3. EEM Fluorescence Spectroscopy
3. Results
3.1. Physico-Chemical Characteristics of Reservoir Water
3.2. FRI Components of DOM
3.3. Fluorescence Characteristic Parameter
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation−Emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Song, Y.; Tu, X.; Du, E.; Liu, R.; Peng, J. Assessing removal efficiency of dissolved organic matter in wastewater treatment using fluorescence excitation emission matrices with parallel factor analysis and second derivative synchronous fluorescence. Bioresour. Technol. 2013, 144, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Song, Y.; Gao, H.; Liu, L.; Yao, L.; Peng, J. Applying fluorescence spectroscopy and multivariable analysis to characterize structural composition of dissolved organic matter and its correlation with water quality in an urban river. Environ. Earth Sci. 2015, 73, 5163–5171. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Y.; Feng, L.; Zhu, G.; Shi, Z.; Liu, X.; Zhang, Y. Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis. Water Res. 2011, 45, 5110–5122. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Ren, Z.; Song, Y.; Yu, H.; Tang, X.; Gao, H. Impact of spring flooding on DOM characterization in a small watershed of the Hun River, China. Environ. Earth Sci. 2015, 73, 5131–5140. [Google Scholar] [CrossRef]
- Mostofa, K.M.; Yoshioka, T.; Konohira, E.; Tanoue, E. Dynamics and characteristics of fluorescent dissolved organic matter in the groundwater, river and lake water. Water Air Soil Pollut. 2007, 184, 157–176. [Google Scholar] [CrossRef]
- Herzsprung, P.; von Tümpling, W.; Hertkorn, N.; Harir, M.; Büttner, O.; Bravidor, J.; Friese, K.; Schmitt-Kopplin, P. Variations of DOM quality in inflows of a drinking water reservoir: Linking of van Krevelen diagrams with EEMF spectra by rank correlation. Environ. Sci. Technol. 2012, 46, 5511–5518. [Google Scholar] [CrossRef]
- Murphy, K.R.; Hambly, A.; Singh, S.; Henderson, R.K.; Baker, A.; Stuetz, R.; Khan, S.J. Organic matter fluorescence in municipal water recycling schemes: Toward a unified PARAFAC model. Environ. Sci. Technol. 2011, 45, 2909–2916. [Google Scholar] [CrossRef]
- Goldman, J.H.; Rounds, S.A.; Needoba, J.A. Applications of fluorescence spectroscopy for predicting percent wastewater in an urban stream. Environ. Sci. Technol. 2012, 46, 4374–4381. [Google Scholar] [CrossRef]
- Mudarra, M.; Andreo, B.; Barberá, J.A.; Mudry, J. Hydrochemical dynamics of TOC and NO3− contents as natural tracers of infiltration in karst aquifers. Environ. Earth Sci. 2014, 71, 507–523. [Google Scholar] [CrossRef]
- Stepanauskas, R.; JØrgensen, N.O.; Eigaard, O.R.; Žvikas, A.; Tranvik, L.J.; Leonardson, L. Summer inputs of riverine nutrients to the Baltic Sea: Bioavailability and eutrophication relevance. Ecol. Monogr. 2002, 72, 579–597. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Q.; Zhang, Y.; Qin, B.; Zhu, G. Excitation-emission matrix fluorescence and parallel factor analyses of the effects of N and P nutrients on the extracellular polymeric substances of Microcystis aeruginosa. Limnologica 2017, 63, 18–26. [Google Scholar] [CrossRef]
- Hu, N.; Shi, X.; Liu, J.; Huang, P.; Liu, Y.; Liu, Y. Concentrations and possible sources of PAHs in sediments from Bohai Bay and adjacent shelf. Environ. Earth Sci. 2010, 60, 1771–1782. [Google Scholar] [CrossRef]
- Mladenov, N.; McKnight, D.M.; Macko, S.A.; Norris, M.; Cory, R.M.; Ramberg, L. Chemical characterization of DOM in channels of a seasonal wetland. Aquat. Sci. 2007, 69, 456–471. [Google Scholar] [CrossRef]
- Wilson, H.F.; Xenopoulos, M.A. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat. Geosci. 2009, 2, 37. [Google Scholar] [CrossRef]
- Williams, C.J.; Yamashita, Y.; Wilson, H.F.; Jaffé, R.; Xenopoulos, M.A. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol. Oceanogr. 2010, 55, 1159–1171. [Google Scholar] [CrossRef]
- Suen, J.P.; Eheart, J.W. Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, X.; Wang, D.; Liang, J.; Bai, W.; Zhang, C.; Wang, Q.; Wei, S. Dynamics of dissolved organic matter (DOM) in a typical inland lake of the Three Gorges Reservoir area: Fluorescent properties and their implications for dissolved mercury species. J. Environ. Manag. 2018, 206, 418–429. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, E.; Yin, Y.; Van Dijk, M.A.; Feng, L.; Shi, Z.; Liu, M.; Qina, B. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude. Limnol. Oceanogr. 2010, 55, 2645–2659. [Google Scholar] [CrossRef]
- SanClements, M.D.; Oelsner, G.P.; McKnight, D.M.; Stoddard, J.L.; Nelson, S.J. New insights into the source of decadal increases of dissolved organic matter in acid-sensitive lakes of the Northeastern United States. Environ. Sci. Technol. 2012, 46, 3212–3219. [Google Scholar] [CrossRef]
- Korean Rural Community Corporation. Study on Setting environmental Goals and Taking Best Management Plans Through Classification of Agricultural Reservoirs [Final]; Korean Rural Community Corporation: Naju, Korea, 2017; p. 193. [Google Scholar]
- Korean Rural Community Corporation. Development of Best Technologies for the Water Quality Management on the Classifying Agricultural Reservoirs [I]; Korean Rural Community Corporation: Naju, Korea, 2018; p. 20. [Google Scholar]
- Kazi, T.G.; Arain, M.B.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Sarfraz, R.A.; Bajg, J.A.; Shah, A.Q. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotox. Environ. Safe 2009, 72, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Holm-Hansen, O.; Lorenzen, C.J.; Holmes, R.W.; Strickland, J.D. Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 1965, 30, 3–15. [Google Scholar] [CrossRef]
- Hur, J.; Lee, D.H.; Shin, H.S. Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments. Org. Geochem. 2009, 40, 1091–1099. [Google Scholar] [CrossRef]
- Jamieson, T.; Sager, E.; Guéguen, C. Characterization of biochar-derived dissolved organic matter using UV–visible absorption and excitation–emission fluorescence spectroscopies. Chemosphere 2014, 103, 197–204. [Google Scholar] [CrossRef]
- Shafiquzzaman, M.; Ahmed, A.T.; Azam, M.S.; Razzak, A.; Askri, B.; Hassan, H.F.; Ravikumar, B.N.; Okuda, T. Identification and characterization of dissolved organic matter sources in Kushiro river impacted by a wetland. Ecol. Eng. 2014, 70, 459–464. [Google Scholar] [CrossRef]
- Zhu, G.; Yin, J.; Zhang, P.; Wang, X.; Fan, G.; Hua, B.; Ren, B.; Zheng, H.; Deng, B. DOM removal by flocculation process: Fluorescence excitation–emission matrix spectroscopy (EEMs) characterization. Desalination 2014, 346, 38–45. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Tang, S. Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Res. 2009, 43, 1533–1540. [Google Scholar] [CrossRef]
- Bilal, M.; Jaffrezic, A.; Dudal, Y.; Le Guillou, C.; Menasseri, S.; Walter, C. Discrimination of farm waste contamination by fluorescence spectroscopy coupled with multivariate analysis during a biodegradation study. J. Agric. Food Chem. 2010, 58, 3093–3100. [Google Scholar] [CrossRef]
- Cory, R.M.; Miller, M.P.; McKnight, D.M.; Guerard, J.J.; Miller, P.L. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol. Oceanogr. Methods 2010, 8, 67–78. [Google Scholar]
- Ohno, T.; Fernandez, I.J.; Hiradate, S.; Sherman, J.F. Effects of soil acidification and forest type on water soluble soil organic matter properties. Geoderma 2007, 140, 176–187. [Google Scholar] [CrossRef]
- Ohno, T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol. 2002, 36, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Parlanti, E.; Wörz, K.; Geoffroy, L.; Lamotte, M. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org Geochem 2000, 31, 1765–1781. [Google Scholar] [CrossRef]
- Birdwell, J.E.; Engel, A.S. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org Geochem 2010, 41, 270–280. [Google Scholar] [CrossRef]
- Xu, H.; Paerl, H.W.; Qin, B.; Zhu, G.; Gaoa, G. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr. 2010, 55, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Paerl, H.W.; Xu, H.; McCarthy, M.J.; Zhu, G.; Qin, B.; Li, Y.; Gardner, W.S. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N P) management strategy. Water Res. 2011, 45, 1973–1983. [Google Scholar] [CrossRef] [PubMed]
- Abell, J.M.; Özkundakci, D.; Hamilton, D.P. Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: Implications for eutrophication control. Ecosystems 2010, 13, 966–977. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Wu, H.; Chen, M. Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica 2011, 41, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Cloern, J.E. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 2001, 210, 223–253. [Google Scholar] [CrossRef]
- Bledsoe, E.L.; Phlips, E.J.; Jett, C.E.; Donnelly, K.A. The relationships among phytoplankton biomass, nutrient loading and hydrodynamics in an inner-shelf estuary. Ophelia 2004, 58, 29–47. [Google Scholar] [CrossRef]
- The Meteorological Administration. Available online: www.kma.go.kr (accessed on 31 May 2018).
- Wilson, H.F.; Xenopoulos, M.A. Ecosystem and seasonal control of stream dissolved organic carbon along a gradient of land use. Ecosystems 2008, 11, 555–568. [Google Scholar] [CrossRef]
- Huang, C.; Li, Y.; Wang, Q.; Shi, K.; Jin, X.; Wang, Y. Components optical property of CDOM in Lake Taihu based on three-dimensional excitation emission matrix fluorescence. J. Lake Sci. 2010, 22, 375–382. [Google Scholar]
- Xu, H.; Cai, H.; Yu, G.; Jiang, H. Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Res. 2013, 47, 2005–2014. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, A. Humic Substances in Terrestrial Ecosystems; Elsevier: Amsterdam, The Netherlands, 1996; pp. 101–160. [Google Scholar]
- Jiang, T.; Skyllberg, U.; Björn, E.; Green, N.W.; Tang, J.; Wang, D.; Gao, J.; Li, C. Characteristics of dissolved organic matter (DOM) and relationship with dissolved mercury in Xiaoqing River-Laizhou Bay estuary, Bohai Sea, China. Environ. Pollut. 2017, 223, 19–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalán, N.; Obrador, B.; Felip, M.; Pretus, J.L. Higher reactivity of allochthonous vs. autochthonous DOC sources in a shallow lake. Aquat. Sci. 2013, 75, 581–593. [Google Scholar] [CrossRef]
- Kothawala, D.N.; von Wachenfeldt, E.; Koehler, B.; Tranvik, L.J. Selective loss and preservation of lake water dissolved organic matter fluorescence during long-term dark incubations. Sci. Total Environ. 2012, 433, 238–246. [Google Scholar] [CrossRef]
- Nguyen, H.V.M.; Hur, J. Tracing the sources of refractory dissolved organic matter in a large artificial lake using multiple analytical tools. Chemosphere 2011, 85, 782–789. [Google Scholar] [CrossRef]
- Ghervase, L.; Ioja, C.; Cârstea, E.M.; Savastru, D.; Pavelescu, G.; Nita, M.; Niculita, L. Spectroscopic and Physico-chemical Evaluation of Lentic Ecosystems from Bucharest City. Environmental Problems and Development. 2010, pp. 272–277. Available online: www.wseas.us/e-library/conferences/2010/TimisoaraP/EELA/EELA-43.pdf (accessed on 15 December 2019).
Reservoir | Yidam (YD) | Bongrim (BR) | Hongjung (HJ) | Bongam (BA) | Nanjung (NJ) |
---|---|---|---|---|---|
Longitude and latitude | 36°51′21.6″ N | 36°43′49.7″ N | 37°24′01.7″ N | 37°55′03.7″ N | 37°47′03.0″ N |
127°52′46.9″ E | 126°39′19.4″ E | 126°44′26.9″ E | 126°59′49.6″ E | 126°13′40.8″ E | |
Pollution source | livestock | livestock | living | living | farmland |
Installation year | 1931 | 1944 | 1957 | 1979 | 2006 |
Basin area (ha) | 535 | 840 | 710 | 340 | 1884 |
Benefit area * (ha) | 133 | 230 | 127 | 112 | 889 |
Effective storage capacity (103 m3) | 644 | 1065 | 483 | 967 | 6214 |
Mean depth (m) | 2.37 | 9.33 | 3.23 | 10.72 | 2.70 |
Region | Ex (nm) | Em (nm) | Component Type |
---|---|---|---|
B | 225–290 | 300–320 | Tyrosine-like |
T | 225–290 | 320–370 | Tryptophan-like |
A | 225–290 | 370–460 | Fulvic acid-like |
D | 290–360 | 300–370 | Soluble microbial by product-like (SMB) |
C | 290–440 | 370–530 | Humic acid-like |
Reservoir | YD | BR | HJ | BA | NJ |
---|---|---|---|---|---|
Range | Range | Range | Range | Range | |
Mean (± SD) | Mean (± SD) | Mean (± SD) | Mean (± SD) | Mean (± SD) | |
Temp (°C) | 20.50–34.85 | 21.10–34.81 | 21.79–30.39 | 19.99–31.03 | 19.47–33.47 |
26.80 ± 5.63 | 28.03 ± 4.94 | 26.87 ± 3.61 | 26.35 ± 4.02 | 26.26 ± 5.89 | |
pH | 7.19–10.77 | 8.32–10.43 | 8.67–10.12 | 7.79–10.42 | 7.31–10.05 |
9.46 ± 1.57 | 9.74 ± 0.79 | 9.33 ± 0.56 | 9.43 ± 0.90 | 8.82 ± 1.12 | |
EC (mS/cm) | 0.11–0.25 | 0.14–0.16 | 0.22–0.28 | 0.18–0.23 | 0.35–0.54 |
0.18 ± 0.06 | 0.15 ± 0.01 | 0.25 ± 0.02 | 0.21 ± 0.02 | 0.45 ± 0.08 | |
TN (mg/L) | 0.46–3.40 | 1.62–2.90 | 1.59–3.15 | 0.74–1.37 | 0.85–2.29 |
2.18 ± 1.17 | 2.12 ± 0.53 | 2.53 ± 0.54 | 1.07 ± 0.27 | 1.42 ± 0.53 | |
TP (mg/L) | 0.07–0.39 | 0.04–0.06 | 0.04–0.09 | 0.03–0.07 | 0.03–0.10 |
0.16 ± 0.12 | 0.05 ± 0.01 | 0.06 ± 0.02 | 0.05 ± 0.02 | 0.05 ± 0.03 | |
Chl a (ug/L) | 16.30–188.30 | 20.50–132.70 | 16.10–116.50 | 11.40–98.90 | 6.30–175.50 |
63.02 ± 67.27 | 52.98 ± 41.15 | 37.63 ± 38.98 | 36.15 ± 33.82 | 58.68 ± 65.60 | |
DOC (mg/L) | 3.29–9.14 | 2.53–7.38 | 2.29–9.75 | 2.73–8.63 | 5.32–11.54 |
5.94 ± 2.55 | 4.90 ± 2.19 | 6.22 ± 2.84 | 5.63 ± 2.17 | 8.24 ± 2.05 |
YD | BR | ||||||||||
Fluorescence Components | B | T | A | D | C | Fluorescence Components | B | T | A | D | C |
B | 1.00 | B | 1.00 | ||||||||
T | 0.99 ** | 1.00 | T | 0.94 ** | 1.00 | ||||||
A | 0.69 | 0.70 | 1.00 | A | −0.18 | −0.20 | 1.00 | ||||
D | 0.90 * | 0.94 ** | 0.57 | 1.00 | D | 0.81 | 0.95 ** | −0.17 | 1.00 | ||
C | −0.06 | −0.04 | 0.68 | −0.13 | 1.00 | C | −0.66 | −0.68 | 0.83 * | −0.60 | 1.00 |
HJ | BA | ||||||||||
Fluorescence Components | B | T | A | D | C | Fluorescence Components | B | T | A | D | C |
B | 1.00 | B | 1.00 | ||||||||
T | 0.80 | 1.00 | T | 0.96 ** | 1.00 | ||||||
A | 0.96 ** | 0.68 | 1.00 | A | 0.61 | 0.61 | 1.00 | ||||
D | 0.67 | 0.98 ** | 0.54 | 1.00 | D | 0.95 ** | 0.99 ** | 0.57 | 1.00 | ||
C | 0.93 ** | 0.62 | 0.96** | 0.47 | 1.00 | C | 0.52 | 0.50 | 0.98 ** | 0.44 | 1.00 |
NJ | |||||||||||
Fluorescence Components | B | T | A | D | C | ||||||
B | 1.00 | ||||||||||
T | 0.85 * | 1.00 | |||||||||
A | 0.35 | 0.48 | 1.00 | ||||||||
D | 0.80 | 0.99 ** | 0.37 | 1.00 | |||||||
C | 0.22 | 0.35 | 0.99 ** | 0.25 | 1.00 |
Reservoir and Lake | FI | BIX | HIX | β:α ratio | Pollution Source | Reference |
---|---|---|---|---|---|---|
Yidam (YD) | 1.68 ~ 1.94 | 0.74 ~ 1.16 | 2.16 ~ 7.54 | 0.73 ~ 1.09 | livestock | This study |
Bongrim (BR) | 1.72 ~ 1.95 | 0.98 ~ 1.35 | 1.61 ~ 3.51 | 0.94 ~ 1.23 | livestock | ``* |
Hongjung (HJ) | 1.78 ~ 1.90 | 0.95 ~ 2.65 | 0.87 ~ 3.34 | 0.91 ~ 2.48 | living | `` |
Bongam (BA) | 1.77 ~ 1.89 | 0.91 ~ 2.26 | 1.15 ~ 3.92 | 0.87 ~ 2.15 | living | `` |
Nanjung (NJ) | 1.82 ~ 1.98 | 0.96 ~ 1.46 | 1.91 ~ 3.43 | 0.94 ~ 1.39 | farmland | `` |
Albufera des Grau | 1.39 | 0.63 | 8.93 | - | farmland and forest | [49] |
Lumpen | 1.28 | - | 0.97 | 0.41 | forest | [50] |
Paldang | 1.9 | - | 3.50 | - | farmland | [51] |
Valloxen | 1.40 | - | 0.90 | 0.62 | farmland | `` |
Morii | 1.25 | 1.10 | 2.21 | - | living | [52] |
Moghioros | 1.29 | 1.11 | 0.64 | - | living | `` |
Circului | 1.25 | 0.96 | 1.87 | - | living | `` |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, M.-Y.; Lee, J.-J.; Oh, H.-J.; Nam, G.-S.; Jeong, K.-S.; Oh, J.-M.; Chang, K.-H. The Response of Catchment Ecosystems in Eutrophic Agricultural Reservoirs to Water Quality Management Using DOM Fluorescence. Sustainability 2019, 11, 7207. https://doi.org/10.3390/su11247207
Jin M-Y, Lee J-J, Oh H-J, Nam G-S, Jeong K-S, Oh J-M, Chang K-H. The Response of Catchment Ecosystems in Eutrophic Agricultural Reservoirs to Water Quality Management Using DOM Fluorescence. Sustainability. 2019; 11(24):7207. https://doi.org/10.3390/su11247207
Chicago/Turabian StyleJin, Mei-Yan, Jong-Jun Lee, Hye-Ji Oh, Gui-Sook Nam, Kwang-Seuk Jeong, Jong-Min Oh, and Kwang-Hyeon Chang. 2019. "The Response of Catchment Ecosystems in Eutrophic Agricultural Reservoirs to Water Quality Management Using DOM Fluorescence" Sustainability 11, no. 24: 7207. https://doi.org/10.3390/su11247207
APA StyleJin, M. -Y., Lee, J. -J., Oh, H. -J., Nam, G. -S., Jeong, K. -S., Oh, J. -M., & Chang, K. -H. (2019). The Response of Catchment Ecosystems in Eutrophic Agricultural Reservoirs to Water Quality Management Using DOM Fluorescence. Sustainability, 11(24), 7207. https://doi.org/10.3390/su11247207