Local Perception of Drivers of Land-Use and Land-Cover Change Dynamics across Dedza District, Central Malawi Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.3. Image Classsification and Land-Use and Land-Cover Dynamics
2.4. Primary and Secondary Data-Collection Tools
2.4.1. Household Surveys
2.4.2. Focus-Group Discussions and Key Informant Interviews
2.5. Other Datasets
2.6. Statistical Analysis
3. Results
3.1. Accuracy Assessment
3.2. Land-Use and Land-Cover Change Dynamics
3.3. Land-Use and Land-Cover Change (Transition) Matrix
3.4. Socioeconomic and Demographic Characteristics of Sampled Households
3.5. Local-Community Perceptions on Observed Trends of LULC Changes and Proximity to Infrastructure
3.6. Ranked Drivers of LULC Changes
3.7. Household-Level Logistic Regression of Perceived Drivers of LULC Changes
4. Discussion
4.1. Land-Use and Land-Cover Change Dynamics
4.2. Drivers of LULC Changes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Household Questionnaire
Male | Female |
Single | Divorced | ||
Married | Widowed | ||
Separated | Refused to answer |
Male | Female |
Age group | Male | Female | Total |
≤17 | |||
18–30 | |||
31–50 | |||
>50 |
Farmer | Construction | Other (Specify) | ||
Business | Craft work | |||
Housewife | Student | |||
Professional | Domestic work |
No formal education | Primary | Secondary | Postsecondary | Tertiary | Other (specify) |
Chewa | Ngoni | Yao | Lomwe | Others (Specify) |
<10 years | 11–20 years | >20 years |
Farming | Marriage | Employment | Others (Specify) |
Source | Tick | Degree of Importance | Estimated income |
Farming (crop and animals) | |||
Full-time private/government employment | |||
Selling of forest produce (e.g. charcoal, firewood, timber, poles) | |||
Piece-work (occasional jobs) | |||
Self-employed (business, trade, handicraft) | |||
Renting out land | |||
Village saving loans/bank Mkhonde | |||
Other (specify) |
Three-stone open fire | Charcoal stove | Chitetezo Mbaula | Kerosene Stove | Other (specify) |
Charcoal | Fuelwood | Paraffin (kerosene) | Crop residues | Briquettes | Other (specify) |
Electricity | Candles | Paraffin (kerosene) | Fuelwood | Solar panel | Other (specify) |
Charcoal | Fuelwood | Paraffin (kerosene) | Solar | Electricity | Other (specify) |
Convenient | Cheap | Easily accessible | No choice | Other (specify) |
Fuelwood (no. of head loads collected) | ………………………………………... |
Electricity (MK) | ………………………………………... |
Charcoal (no. of 50 kg bags) | ………………………………………... |
Crop residues (kg) | ………………………………………... |
Paraffin (liters) | ………………………………………... |
Other (specify) | ………………………………………... |
Yes | No |
High fertility | Immigration | Both high fertility and immigration | Other (Specify) |
Yes | No |
0.5 acres | 1 acre | 2 acres | > 2 acres | Don’t know |
Forest | Fallow land | Grazing land | Other (specify) |
Farm land | Size (acres) | Purpose/Use (consumption, sale, or both) | Distance from home |
Farm 1 | |||
Farm 2 | |||
Farm 3 | |||
Farm 4 | |||
Farm 5 | |||
Total |
Declined | Increased | Stayed the same | No idea |
Soil infertility | Unreliable rainfall | Pests and diseases | Limited land | ||||
Lack of improved seed | Lack of agricultural inputs | Lack of knowledge and skills | inadequate labor | ||||
Fluctuating markets/prices | Lack of money for inputs | Other |
Yes | No | Name them:__________ |
Natural | Man-made | Both |
Increased | Declined | No change |
Access to nearest | Decreased | Increased | Constant (unchanged) |
Markets | |||
Health centers | |||
Schools | |||
Portable drinking water | |||
Water sources (e.g. river/stream) | |||
Main Roads | |||
Bus stop | |||
Town |
Proximate cause | Rank | ||||
1 | 2 | 3 | 4 | 5 | |
Firewood | |||||
Charcoal production | |||||
Timber | |||||
Construction | |||||
Agriculture expansion | |||||
Bush fires | |||||
Settlements | |||||
Firewood | |||||
Others (Specify) | |||||
Rank | |||||
Underlying Causes | 1 | 2 | 3 | 4 | 5 |
Poverty | |||||
Population growth | |||||
Lack of financial resources | |||||
Lack of law enforcement | |||||
Demand for timber | |||||
Appendix B. Example of Load Shedding by ESCOM in Malawi
References
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA. 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, R.E.; Townsend, P.A.; Gross, J.E.; Cohen, W.B.; Bolstad, P.; Wang, Y. Adams, Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sens. Environ. 2009, 113, 1382–1396. [Google Scholar] [CrossRef]
- Altaweel, M.R.; Alessa, L.N.; Kliskey, A.D.; Bone, C.E. Monitoring land use: Capturing change through an information fusion approach. Sustainability 2010, 2, 1182–1203. [Google Scholar] [CrossRef]
- Malhi, Y.; Roberts, J.T.; Betts, R.A.; Killeen, T.J.; Li, W.; Nobre, C.A. Climate change, deforestation, and the fate of the Amazon. Science 2008, 319, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Zhu, F.; He, B.; Ferratm, M.; Liu, Q.; Cao, X.; Cui, X. Synthesis of China’s land use in the past 300 years. Glob. Environ. Chang. 2013, 100, 224–233. [Google Scholar] [CrossRef]
- Burka, A. Land Use /Land Cover Dynamics in Prosopis juliflora invaded area of Metehara and the Surrounding Districts Using Remote Sensing and GIS Techniques. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Lamichhane, B.B. Dynamics and Driving Forces of Land Use/Forest Cover Change and Indication of Climate Change in a Mountain Sub-watershed of Gorkha. Master’s Thesis, Tribhuvan University, Institute of Forestry, Kirtipur, Nepal, 2008. [Google Scholar]
- Geist, H.J.; Lambin, E.F. Proximate causes and underlying driving forces of tropical deforestation. Bioscience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischerh, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Falcucci, A.; Maiorano, L.; Ciucci, P.; Garton, E.O.; Boitani, L. Land-cover change and the future of the Apennine brown bear: A perspective from the past. J. Mammal. 2008, 89, 1502–1511. [Google Scholar] [CrossRef]
- Li, X.Y.; Ma, Y.J.; Xu, H.Y.; Wang, J.H.; Zhang, D.S. Impact of land use and land cover change on environmental degradation in Lake Qinghai watershed, northeast of Qinghai-Tibet Plateau. Land Degrad. Dev. 2009, 20, 69–83. [Google Scholar] [CrossRef]
- Maitima, J.M.; Olson, J.M.; Mugatha, S.M.; Mugisha, S.; Mutie, T. Land use changes, impacts and options for sustaining productivity and livelihoods in the basin of lake Victoria. J. Sustain. Dev. Afr. 2010, 12, 3. [Google Scholar]
- Kamwi, J.M.; Chirwa, P.W.C.; Manda, S.O.M.; Graz, F.P.; Katsch, C. Livelihoods, land use and land cover change in the Zambezi Region, Namibia. Popul. Environ. 2015, 36, 1–24. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, T.; Knoke, T. Drivers of land use/land cover changes in Munessa-Shashemene landscape of the south-central highlands of Ethiopia. Environ. Monit. Assess. 2015, 187, 452. [Google Scholar] [CrossRef] [PubMed]
- Mdemu, M.; Kashaigili, J.J.; Lupala, J.; Levira, P.; Liwenga, E.; Nduganda, A.; Mwakapuja, F. Dynamics of land use and land cover changes in the Pugu and Kazimzumbwi Forest Reserves. In Proceedings of the 1st Climate Change Impacts, Mitigation and Adaptation Programme Scientific Conference, Dar es Salaam, Tanzania, 2–3 January 2012; pp. 54–77. [Google Scholar]
- Hamandawana, H.; Nkambwe, M.; Chanda, R.; Eckardt, F. Population driven changes in land use in Zimbabwe’s district of Masvingo province: Some lessons from recent history. Appl. Geogr. 2005, 25, 248–270. [Google Scholar] [CrossRef]
- Gashaw, T.; Bantider, A.; Mahari, A. Population dynamics and land use/land cover changes in Dera District, Ethiopia. Glob. J. Biol. Agric. Health Sci. 2014, 3, 137–140. [Google Scholar]
- Mekuyie, M.; Jordaan, A.; Melka, J. Land-use and land-cover changes and their drivers in rangeland-dependent pastoral communities in the southern Afar Region of Ethiopia. Afr. J. Range Forage Sci. 2018, 35, 33–43. [Google Scholar] [CrossRef]
- Bassett, T.J.; Zueli, K.B. Environmental discourses and the Ivorian Savanna. Ann. Am. Assoc. Geogr. 2000, 90, 67–95. [Google Scholar] [CrossRef]
- SADC National Vulnerability Assessment Committee (NVAC). SADC Regional Vulnerability Assessment and Analysis Synthesis Report 2016: State of Food Insecurity and Vulnerability in the Southern African Development Community. In Proceedings of the Regional Vulnerability Assessment and Analysis (RVAA) Annual Dissemination Forum, Pretoria, Africa, 6–10 June 2016; Available online: https://www.sadc.int/files/4514/5750/7502/2015_SADC_Regional_Vulnerability_Assessment_Report_-_compressed.pdf (accessed on 23 August 2018).
- Fisher, M. Household welfare and forest dependence in Southern Malawi. Environ. Dev. Econ. 2004, 9, 135–154. [Google Scholar] [CrossRef]
- Jumbe, C.B.; Angelsen, A. Forest dependence and participation in CPR management: Empirical evidence from forest co-management in Malawi. Ecol. Econ. 2007, 62, 661–672. [Google Scholar] [CrossRef]
- Kambewa, P.; Utila, H. Malawi’s Green Gold: Challenges and Opportunities for Small and Medium Forest Enterprises in Reducing Poverty; IIED Small and Medium Forestry Enterprise Series no. 24; Chancellor College, Forest Research Institute of Malawi and International Institute for Environment and Development: London, UK, 2008. [Google Scholar]
- Yaron, G.; Mangani, R.; Mlava, J.; Kambewa, P.; Makungwa, S.; Mtethiwa, A.; Munthali, S.; Magoola, W.; Kazembe, J. Economic Analysis of Sustainable Natural Resource Use in Malawi; Ministry of Finance and Development Planning: Lilongwe, Malawi, 2011.
- Kalaba, K.F.; Chirwa, P.; Syampungani, S.; Ajayi, C.O. Contribution of agroforestry to biodiversity and livelihoods improvement in rural communities of southern African regions. In Tropical Rainforests and Agroforests under Global Change; Springer: Berlin/Heidelberg, Germany, 2010; pp. 461–476. [Google Scholar]
- Mauambeta, D.D.C.; Chitedze, D.; Mumba, R.; Gama, S. Status of Forests and Tree Management in Malawi; A Position Paper Prepared for the Coordination Union for Rehabilitation of the Environment (CURE): Blantyre, Malawi, 2010. [Google Scholar]
- Haack, B.; Mahabir, R.; Kerkering, J. Remote sensing-derived national land cover land use maps: A comparison for Malawi. Geocarto Int. 2014, 30, 270–292. [Google Scholar] [CrossRef]
- Palamuleni, L.G.; Annegarn, H.J.; Landmann, T. Land cover mapping in the Upper Shire River catchment in Malawi using Landsat satellite data. Geocarto Int. 2010, 25, 503–523. [Google Scholar] [CrossRef]
- Munthali, K.G.; Murayama, Y. Land use/cover change detection and analysis for Dzalanyama forest reserve, Lilongwe, Malawi. Procedia-Soc. Behav. Sci. 2011, 21, 203–211. [Google Scholar] [CrossRef]
- Munthali, K.G.; Murayama, Y. Modeling Deforestation in Dzalanyama Forest Reserve, Lilongwe, Malawi: A Multi-Agent Simulation Approach. GeoJournal 2014, 80, 1–15. [Google Scholar] [CrossRef]
- Jagger, P.; Perez-Heydrich, C. Land use and household energy dynamics in Malawi. Environ. Res. Lett. 2016, 11, 125004. [Google Scholar] [CrossRef] [PubMed]
- Pullanikkatil, D.; Palamuleni, L.G.; Ruhiiga, T.M. Land use/land cover change and implications for ecosystems services in the Likangala River Catchment, Malawi. Phys. Chem. Earth 2016, 93, 96–103. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. What Drives Tropical Deforestation? A Meta-Analysis of Proximate and nderlying Causes of Deforestation Based on Subnational Case Study Evidence; LUCC Report Series no. 4; LUCC International Project Office: Louvain-la-Neuve, Belgium, 2001. [Google Scholar]
- Chowdhury, R.R. Household land management and biodiversity: Secondary succession in a forest-agriculture mosaic in southern Mexico. Ecol. Soc. 2007, 12, 2. [Google Scholar]
- Beilin, R.; Lindborg, R.; Stenseke, M.; Pereira, H.M.; Llausàs, A.; Slätmo, E.; Cerqueira, Y.; Navarro, L.; Rodrigues, P.; Reichelt, N.; et al. Analysing how drivers of agricultural land abandonment affect biodiversity and cultural landscapes using case studies from Scandinavia, Iberia and Oceania. Land Use Policy 2014, 36, 60–72. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Li, J.; Lei, B. Physical and socioeconomic driving forces of land-use and land-cover changes: A case study of Wuhan City, China. Discret. Dyn. Nat. Soc. 2016. [Google Scholar] [CrossRef]
- Bewket, W. Land cover dynamics since the 1950s in Chemoga watershed, Blue Nile Basin, Ethiopia. Mt. Res. Dev. 2002, 22, 263–269. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- DeFries, R.; Eshleman, K.N. Land-use change and hydrologic processes: A major focus for the future. Hydrol. Process. 2004, 18, 2183–2186. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Using Remote Sensing and GIS to Detect and Monitor and Use and Land Cover Change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environ. Monit. Assess. 2009, 150, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Serneels, S.; Lambin, E.F. Proximate causes of land-use change in Narok district, Kenya: A spatial statistical model. Agric. Ecosyst. Environ. 2001, 85, 65–81. [Google Scholar] [CrossRef]
- Wondie, M.; Schneider, W.; Melesse, A.M.; Teketay, D. Spatial and temporal land cover changes in the Simen Mountains National Park, a world heritage site in north western Ethiopia. Remote Sens. 2011, 3, 752–766. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Land use/land cover change analysis using object-based classification approach in Munessa-Shashemene landscape of the Ethiopian highlands. Remote Sens. 2013, 5, 2411–2435. [Google Scholar] [CrossRef]
- Gatrell, J.D.; Jensen, R.R. Sociospatial applications of remote sensing in urban environments. Geogr. Compass 2008, 2, 728–743. [Google Scholar] [CrossRef]
- Perz, S.G. Household demographic factors as life cycle determinants of land use in the Amazon. Popul. Res. Policy Rev. 2001, 20, 159–186. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land use and land-cover change in tropical regions. Annu. Rev. Energy Environ. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Browder, J.O.; Pedlowski, M.; Summers, P.M. Land use patterns in the Brazilian Amazon: Comparative farm-level evidence from Rondônia. Hum. Ecol. 2004, 32, 197–224. [Google Scholar] [CrossRef]
- Government of Malawi. Population and Housing Census 2008; National Statistics Office: Zomba, Malawi, 2008.
- Government of Malawi. Dedza District Socio Economic Profile: 2013–2018; A Report by Dedza District Council: Dedza, Malawi, 2013.
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Government of Malawi. Dedza District State of Environment and Outlook; A Report by Dedza District Council: Dedza, Malawi, 2010.
- Government of Malawi. Dedza Social—Economic Profile; A Report by Dedza District Council: Blantyre, Malawi, 1999.
- Government of Malawi. Dedza Town Assemble Urban Social Economic Profile; Ministry of Local Government, Capital Hill: Lilongwe, Malawi, 2012.
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global Land Cover Classification at 1 km Spatial Resolution Using a Classification Tree Approach. Int. J. Remote. Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ. 2005, 98, 317–328. [Google Scholar] [CrossRef]
- Manandhar, R.; Odeh, I.O.A.; Ancev, T. Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data using Post-classification Enhancement. Remote. Sens. 2009, 1, 330–344. [Google Scholar] [CrossRef]
- Prakasam, C. Land use and land cover change detection through remote sensing approach: A case study of Kodaikanal Taluk, Tamil Nadu. Int. J. Geomat. Geosci. 2010, 1, 150–158. [Google Scholar]
- Rawat, J.S.; Biswas, V.; Kumar, M. Changes in land use/land cover using geospatial techniques: A case study of Ramnagar town area, district Nainital Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2013, 16, 111–117. [Google Scholar] [CrossRef]
- Liu, C.; Frazier, P.; Kumar, L. Comparative assessment of the measures of thematic classification accuracy. Remote Sens. Environ. 2007, 107, 606–616. [Google Scholar] [CrossRef]
- Congalton, R.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; Taylor and Francis Group: Abingdon, UK, 2009. [Google Scholar]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data: Geological Survey Professional Paper 964; US Government Printing Office: Washington, DC, USA, 1976.
- Kamusoko, C.; Aniya, M. Land use/cover change and landscape fragmentation analysis in the Bindura District, Zimbabwe: Land Degradation and Development. Land Degrad. Dev. 2007, 18, 221–233. [Google Scholar] [CrossRef]
- Puyravaud, J.P. Standardizing the Calculation of the Annual Rate of Deforestation. Forest. Ecol. Mana. 2003, 177, 593–596. [Google Scholar] [CrossRef]
- Teferi, E.; Bewket, W.; Uhlenbrook, S.; Wenninger, J. Understanding recent land use and land cover dynamics in the source region of the Upper Blue Nile, Ethiopia: Spatially explicit statistical modeling of systematic transitions. Agric. Ecosyst. Environ. 2013, 165, 98–117. [Google Scholar] [CrossRef]
- Batar, A.K.; Watanabe, T.; Kumar, A. Assessment of Land-Use/Land-Cover Change and Forest Fragmentation in the Garhwal Himalayan Region of India. Environment 2017, 4, 34. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Verburg, P.H.; Staal, S.J. Statistical Methods for Analysing the Spatial Dimension of Changes in Land Use and Farming Systems; International Livestock Research Institute: Nairobi, Wageningen, 2005; p. 80. [Google Scholar]
- Hennink, M.M. International Focus Group Research. In A Handbook for the Health and Social Sciences. Cambridge; Cambridge University Press: Cambridge, UK, 2007; Volume 103. [Google Scholar]
- Musa, L.; Peters, K.; Ahmed, M. On farm characterization of Butana and Kenana cattle breed production systems in Sudan. Livest. Res. Rural Dev. 2006, 18, 1277–1288. [Google Scholar]
- Solomon, N.; Birhane, E.; Tadesse, T.; Treydte, A.C.; Meles, K. Carbon stocks and sequestration potential of dry forests under community management in Tigray, Ethiopia. Ecol. Process. 2017, 6, 20. [Google Scholar] [CrossRef]
- Hsieh, H.; Shannon, S.E. Three approaches to qualitative content analysis. Qual. Res. 2005, 15, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Abera, D.; Kibret, K.; Beyene, S. Tempo-spatial land use/cover change in Zeway, Ketar and Bulbula sub-basins, Central Rift Valley of Ethiopia. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2018, 1–17. [Google Scholar] [CrossRef]
- Meneses, B.M.; Reis, E.; Pereira, S.; Vale, M.J.; Reis, R. Understanding Driving Forces and Implications Associated with the Land Use and Land Cover Changes in Portugal. Sustainability 2017, 9, 351. [Google Scholar] [CrossRef]
- Bone, R.A.; Parks, K.E.; Malcolm, D.H.; Tsirinzeni, M.; Willcock, S. Deforestation since independence: A quantitative assessment of four decades of land-cover change in Malawi. South. For. J. For. Sci. 2017, 79, 269–275. [Google Scholar] [CrossRef]
- Kidane, Y.; Stahlmann, R.; Beierkuhnlein, C. Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia. Environ. Monit. Assess. 2012, 184, 7473–7489. [Google Scholar] [CrossRef] [PubMed]
- Gamula, G.E.T.; Hui, L.; Peng, W. An Overview of the Energy Sector in Malawi. Energy Power Eng. 2013, 5, 8–17. [Google Scholar] [CrossRef]
- Haller, T.; Galvin, M.; Meroka, P.; Alka, J.; Alvarez, A. Who Gains from Community Conservation? Intended and Unintended Costs and Benefits of Participative Approaches in Peru and Tanzania. J. Environ. Dev. 2008, 17, 118–144. [Google Scholar] [CrossRef]
- Ariti, A.T.; van Vliet, J.; Verburg, P.H. Land-use and land-cover changes in the Central Rift Valley of Ethiopia: Assessment of perception and adaptation of stakeholders. Appl. Geogr. 2015, 65, 28–37. [Google Scholar]
Satellite | Sensor | Path/Row | Spatial Resolution (m) | Spectral Bands | Date of Acquisition | Source |
---|---|---|---|---|---|---|
Landsat 5 | TM | 168/070 | 30 | 1, 2, 3, 4, 5, and 7 | 16/09/1991 | USGS |
Landsat 7 | ETM+ | 168/070 | 30 | 1, 2, 3, 4, 5, and 7 | 19/09/2001 | USGS |
Landsat 8 | OLI | 168/070 | 30 | 2, 3, 4, 5, 6, and 7 | 18/09/2015 | USGS |
LULC Class | Description |
---|---|
Water bodies | Rivers, permanent open water, lakes, ponds, reservoirs. |
Wetland | Permanent and seasonal grasslands along lake, river, and streams, marshy land and swamps. |
Agricultural land | All cultivated and uncultivated agricultural lands areas, such as farmlands, crop fields including fallow lands/plots, and horticultural lands. |
Forest | Protected forests, plantations, deciduous forests, mixed forest lands, and forests on customary land. |
Built-up areas | Residential, commercial and service, industrial, socioeconomic infrastructure, and mixed urban and other urban, transportation, roads, and airports. |
Barren land | Areas around and within forest-protected areas with no or very little vegetation cover, including exposed soils, stock quarry, rocks, landfill sites, and areas of active excavation. |
Referenced Data | |||||||||
---|---|---|---|---|---|---|---|---|---|
Classified image | Class | Water | Wetland | Forest | Agriculture | Barren | Built-Up | Row Total | User Accuracy (%) |
Water | 10 | 0 | 0 | 0 | 0 | 0 | 10 | 100 | |
Wetland | 0 | 9 | 1 | 0 | 0 | 0 | 10 | 90 | |
Forest | 0 | 1 | 19 | 0 | 0 | 0 | 20 | 95 | |
Agriculture | 0 | 0 | 2 | 125 | 2 | 5 | 134 | 93.3 | |
Barren | 0 | 0 | 5 | 0 | 32 | 0 | 37 | 86.5 | |
Built-up | 0 | 0 | 0 | 2 | 0 | 8 | 10 | 80 | |
Column Total | 10 | 10 | 0 | 127 | 34 | 13 | 221 | ||
Producer’s accuracy (%) | 100 | 90 | 70.4 | 98.4 | 94.1 | 61.5 |
LULC Class | 1991 | 2015 | LULC Changes (1991–2015) (%) | Annual Change Rate (1991–2015) (%) | ||
---|---|---|---|---|---|---|
Area (Ha) | % | Area (Ha) | % | |||
Water | 1380.60 | 0.37 | 899.55 | 0.24 | −0.13 | −1.78 |
Wetland | 3626.73 | 0.96 | 2680.29 | 0.71 | −0.25 | −1.26 |
Forest | 9939.15 | 2.64 | 6237.63 | 1.66 | −0.98 | −1.94 |
Agriculture | 267,977.43 | 71.3 | 260,879.31 | 69.41 | −1.89 | −0.11 |
Barren | 92,185.38 | 24.53 | 97,174.62 | 25.85 | 1.32 | 0.22 |
Built-up | 761.67 | 0.2 | 7999.56 | 2.13 | 1.93 | 9.8 |
Total area | 375,870.96 | 100 | 375,870.96 | 100 |
LULC Class | Unit | Water | Wetlands | Forest | Agriculture | Barren | Built-Up | Total 1991 |
---|---|---|---|---|---|---|---|---|
Water | (ha) | 889.02 | 5.31 | 0.00 | 484.92 | 0.00 | 1.35 | 1380.60 |
(%) | 64.39 | 0.38 | 0.00 | 35.12 | 0.00 | 0.10 | 100 | |
Wetlands | (ha) | 0.72 | 1842.48 | 30.96 | 40.14 | 1712.34 | 0.09 | 3626.73 |
(%) | 0.02 | 50.80 | 0.85 | 1.11 | 47.21 | 0.00 | 100 | |
Forest | (ha) | 1.08 | 53.28 | 3004.56 | 737.19 | 6,110.19 | 32.85 | 9939.15 |
(%) | 0.01 | 0.54 | 30.23 | 7.42 | 61.48 | 0.33 | 100 | |
Agriculture | (ha) | 8.46 | 16.38 | 397.98 | 257,349.69 | 2960.01 | 7244.91 | 267,977.43 |
(%) | 0.00 | 0.01 | 0.15 | 96.03 | 1.10 | 2.70 | 100 | |
Barren | (ha) | 0.27 | 762.84 | 2803.86 | 2162.61 | 86,391.99 | 63.81 | 92,185.38 |
(%) | 0.00 | 0.83 | 3.04 | 2.35 | 93.72 | 0.07 | 100 | |
Built-up | (ha) | 0.00 | 0.00 | 0.27 | 104.76 | 0.09 | 656.55 | 761.67 |
(%) | 0.00 | 0.00 | 0.04 | 13.75 | 0.01 | 86.20 | 100 | |
Total 2015 | 899.55 | 2680.29 | 6237.63 | 260,879.31 | 97,174.62 | 7999.56 | 375,870.96 |
Household Attribute | Value |
---|---|
Mean household age (years) | 39.2 |
Gender (female, %) | 63.3 |
Head of the family (male, %) | 71.7 |
Marital status (married, %) | 78.7 |
Education (literate, %) | 77.8 |
Occupation (Farmer, %) | 81.6 |
Mean household size (no.) | 5.6 |
Mean land holding size (acres) | 2.32 |
Ethnic group (Chewa, %) | 50.7 |
Mean income (MK/year*) | 286,843.26 |
Sources of income (farming, rank) | 1 |
Domestic stove used for cooking (three-stone open fires, %) | 88.2% |
LULC Proximate Driver | No. of Respondent Per Rank | Weight | Index | Rank | ||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||
Firewood collection | 231 | 166 | 49 | 16 | 12 | 2010 | 0.290 | 1 |
Charcoal production | 169 | 102 | 61 | 27 | 12 | 1502 | 0.217 | 2 |
Timber | 22 | 57 | 97 | 64 | 36 | 793 | 0.114 | 3 |
Construction | 28 | 67 | 69 | 35 | 13 | 698 | 0.101 | 4 |
Agriculture expansion | 25 | 39 | 47 | 42 | 31 | 537 | 0.077 | 5 |
Bush fires | 18 | 28 | 55 | 51 | 44 | 513 | 0.074 | 6 |
Settlements | 19 | 28 | 35 | 23 | 10 | 368 | 0.053 | 7 |
Traditional medicine | 9 | 6 | 10 | 25 | 30 | 179 | 0.026 | 8 |
Poles | 7 | 9 | 8 | 9 | 1 | 114 | 0.016 | 9 |
Burning bricks | 5 | 10 | 6 | 5 | 4 | 97 | 0.014 | 10 |
Tobacco farming | 5 | 10 | 7 | 10 | 7 | 113 | 0.016 | 11 |
Shifting cultivation | 0 | 1 | 1 | 2 | 0 | 11 | 0.002 | 12 |
LULC Underlying Driver | No. of Respondent Per Rank | Weight | Index | Rank | ||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||
Poverty | 126 | 81 | 9 | 2 | 4 | 989 | 0.333 | 1 |
Population growth | 127 | 74 | 15 | 4 | 3 | 987 | 0.332 | 2 |
Lack of financial resources | 25 | 24 | 10 | 4 | 4 | 263 | 0.089 | 3 |
Lack of law enforcement | 13 | 18 | 28 | 11 | 11 | 254 | 0.086 | 4 |
Demand for timber | 9 | 10 | 8 | 6 | 6 | 127 | 0.043 | 5 |
Weak government policies | 2 | 5 | 5 | 12 | 5 | 74 | 0.025 | 6 |
Poor access to alternative-energy supply | 0 | 4 | 10 | 11 | 3 | 71 | 0.024 | 7 |
High cost of agriculture inputs | 0 | 3 | 11 | 7 | 6 | 65 | 0.022 | 8 |
Weak leadership at all levels | 0 | 8 | 2 | 5 | 3 | 51 | 0.017 | 9 |
urbanization | 0 | 6 | 1 | 0 | 1 | 28 | 0.009 | 10 |
Poor marketing structures | 0 | 4 | 6 | 2 | 0 | 38 | 0.013 | 11 |
Political interferences | 1 | 1 | 0 | 0 | 8 | 23 | 0.008 | 12 |
Perceived Driver | Independent Variable | Estimate | Std. Error | Wald | p-Value | Lower Bound | Upper Bound |
---|---|---|---|---|---|---|---|
Firewood collection | Age | 0.007 | 0.006 | 1.287 | 0.257 | −0.005 | 0.020 |
Household size | −0.021 | 0.044 | 0.233 | 0.630 | −0.107 | 0.065 | |
Land holding size | −0.048 | 0.040 | 1.458 | 0.227 | −0.125 | 0.030 | |
Gender (1 = Male) | 0.465 | 0.270 | 2.956 | 0.086 | −0.065 | 0.995 | |
Education (1 = Never attended) | −1.222 | 0.431 | 8.047 | 0.005 | −2.066 | −0.378 | |
Education (2 = Primary, 1–8) | −0.856 | 0.297 | 8.280 | 0.004 | −1.439 | −0.273 | |
Charcoal production | Age | −0.009 | 0.007 | 1.652 | 0.199 | −0.023 | 0.005 |
Household size | 0.007 | 0.047 | 0.021 | 0.886 | −0.086 | 0.099 | |
Land holding size | 0.045 | 0.056 | 0.642 | 0.423 | −0.065 | 0.155 | |
Gender (1 = Male) | 0.336 | 0.309 | 1.184 | 0.277 | −0.269 | 0.941 | |
Education (1 = Never attended) | 0.322 | 0.476 | 0.456 | 0.499 | −0.612 | 1.255 | |
Education (2 = Primary, 1–8) | 0.209 | 0.325 | 0.412 | 0.521 | −0.428 | 0.845 | |
Agricultural expansion | Age | 0.015 | 0.010 | 2.221 | 0.136 | −0.005 | 0.034 |
Household size | −0.101 | 0.070 | 2.093 | 0.148 | −0.237 | 0.036 | |
Land holding size | 0.071 | 0.071 | 0.986 | 0.321 | −0.069 | 0.210 | |
Gender (1 = Male) | −0.226 | 0.435 | 0.270 | 0.603 | −1.079 | 0.627 | |
Education (1 = Never attended) | −1.839 | 0.806 | 5.208 | 0.022 | −3.418 | −0.259 | |
Education (2 = Primary, 1–8) | −2.250 | 0.649 | 12.019 | 0.001 | −3.521 | −0.978 | |
Settlements | Age | 0.003 | 0.012 | 0.079 | 0.778 | −0.020 | 0.026 |
Household size | −0.047 | 0.081 | 0.341 | 0.560 | −0.206 | 0.112 | |
Land holding size | 0.105 | 0.084 | 1.572 | 0.210 | −0.059 | 0.270 | |
Gender (1 = Male) | 0.026 | 0.440 | 0.003 | 0.954 | −0.836 | 0.887 | |
Education (1 = Never attended) | −0.408 | 0.751 | 0.295 | 0.587 | −1.881 | 1.065 | |
Education (2 = Primary, 1–8) | −0.882 | 0.490 | 3.233 | 0.072 | −1.843 | 0.079 | |
Poverty | Age | 0.006 | 0.010 | 0.430 | 0.512 | −0.013 | 0.026 |
Household size | −0.072 | 0.065 | 1.208 | 0.272 | −0.199 | 0.056 | |
Land holding size | 0.008 | 0.081 | 0.011 | 0.917 | −0.150 | 0.167 | |
Gender (1 = Male) | −0.436 | 0.465 | 0.881 | 0.348 | −1.347 | 0.475 | |
Education (1 = Never attended) | 1.600 | 0.650 | 6.050 | 0.014 | 0.325 | 2.875 | |
Education (2 = Primary, 1–8) | 0.916 | 0.397 | 5.314 | 0.021 | 0.137 | 1.695 | |
Population growth | Age | −0.008 | 0.009 | 0.663 | 0.415 | −0.026 | 0.011 |
Household size | 0.038 | 0.069 | 0.308 | 0.579 | −0.097 | 0.173 | |
Land holding size | −0.008 | 0.052 | 0.023 | 0.878 | −0.109 | 0.093 | |
Gender (1 = Male) | 0.460 | 0.458 | 1.007 | 0.316 | −0.438 | 1.358 | |
Education (1 = Never attended) | −1.410 | 0.659 | 4.575 | 0.032 | −2.703 | −0.118 | |
Education (2 = Primary, 1–8) | −0.541 | 0.431 | 1.575 | 0.209 | −1.385 | 0.304 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munthali, M.G.; Davis, N.; Adeola, A.M.; Botai, J.O.; Kamwi, J.M.; Chisale, H.L.W.; Orimoogunje, O.O.I. Local Perception of Drivers of Land-Use and Land-Cover Change Dynamics across Dedza District, Central Malawi Region. Sustainability 2019, 11, 832. https://doi.org/10.3390/su11030832
Munthali MG, Davis N, Adeola AM, Botai JO, Kamwi JM, Chisale HLW, Orimoogunje OOI. Local Perception of Drivers of Land-Use and Land-Cover Change Dynamics across Dedza District, Central Malawi Region. Sustainability. 2019; 11(3):832. https://doi.org/10.3390/su11030832
Chicago/Turabian StyleMunthali, Maggie G., Nerhene Davis, Abiodun M. Adeola, Joel O. Botai, Jonathan M. Kamwi, Harold L. W. Chisale, and Oluwagbenga O. I. Orimoogunje. 2019. "Local Perception of Drivers of Land-Use and Land-Cover Change Dynamics across Dedza District, Central Malawi Region" Sustainability 11, no. 3: 832. https://doi.org/10.3390/su11030832
APA StyleMunthali, M. G., Davis, N., Adeola, A. M., Botai, J. O., Kamwi, J. M., Chisale, H. L. W., & Orimoogunje, O. O. I. (2019). Local Perception of Drivers of Land-Use and Land-Cover Change Dynamics across Dedza District, Central Malawi Region. Sustainability, 11(3), 832. https://doi.org/10.3390/su11030832