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Abstract: As an effective indicator of urbanization, impervious surfaces play a significant role in urban
planning and ecological protection. It is, therefore, important to characterize impervious surfaces in
urban geographical studies. As a key city in East China, Xuzhou has experienced rapid urbanization
in recent decades and is now becoming an environmentally friendly city. To better understand the
spatiotemporal heterogeneity of Xuzhou’s urban development, we extracted its impervious surfaces
from Landsat images of 1995, 2003, 2010, and 2018 by a linear spectral mixture analysis. Then, a range
of complementary methods including landscape indices, profile lines, median centers, standard
deviational ellipses, and spatial autocorrelation were adopted to analyze the landscape pattern and
expansion of impervious surfaces on both city and district scales. Results show that (1) there was a
constant impervious surface expansion, originating in downtown Xuzhou; (2) promoting ecological
protection in urban areas fragmented impervious surfaces with increasing heterogeneity and diversity
overall; and (3) expansion directions and rates of impervious surfaces varied with district and town,
and the central urban area expanded towards east and southeast, which could be related to their own
resources and governmental policies. Findings from this study provide useful insights into urban
planning of this economically prospective region.

Keywords: impervious surface; landscape pattern; expansion direction; expansion rate;
Xuzhou, China

1. Introduction

As population continues to increase, urbanization has become a universal and important
phenomenon in the world. Urban expansion is one of the basic characteristics of urbanization,
impacting urban ecosystem and changing urban land use structure and landscape pattern [1]. As such,
appropriate methods are needed to accurately reflect the spatiotemporal variation of urban expansion,
to understand the dynamics of regional urbanization.

A number of methods for mapping urban expansion exist, such as lognormal regression model [2],
self-organizing map approach [3], landscape index [4,5], and (un-)supervised classification [6–11].
As the major component of land cover in urban areas, impervious surface (IS), i.e., artificial materials
which water cannot penetrate, provides a key piece information on urban ecosystems and urban
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growth [12]; therefore, is mostly used as a proxy for urban expansion [6,13,14]. Commonly used
methods for mapping impervious surfaces include spectral indices [15,16], supervised classification [17]
or a linear spectral mixture analysis (LSMA) [13,14,18–20], but the latter is preferable to the former as
it is more physically meaningful.

LSMA models an image pixel as a linear mixture of materials present in an image [19]. It has been
widely used including model parameter estimation [21,22], land use classification [23,24], estimation
of agricultural yield [25], estimation of forest carbon density [26], identification and analysis of specific
land type, such as coffee crops [27], lava flows [28], and impervious surfaces [29,30]. When the LSMA
is used for mapping impervious surfaces to characterize urban expansion, it is often combined with
the vegetation–impervious surface–soil (VIS) model [31,32], which considers urban surfaces as a
combination of vegetation, soil, high-, and low-albedo impervious surfaces with water masked out.
Examples include the study by Kuang et al. (2014) [13] that compared the urban expansion patterns
and rates of three Chinese metropolises (Beijing, Shanghai, and Guangzhou) and three USA ones
(New York, Los Angeles, and Chicago), the study by Peng et al. (2016) [14] that estimated Beijing’s
impervious surfaces from 2001 to 2009 and identified NE as the dominant urban expansion direction,
and the study by Anindita et al. (2017) [20] that monitored the growth rate of impervious surfaces of
NOIDA city from 2001 to 2014 and analyzed its effect on urban hydrological components.

Monitoring the dynamics of impervious surfaces in rapidly urbanizing areas on a regional [33,34]
or urban [35,36] scale reflects the overall expansion trend, but this usually ignores the different roles
that each part of the city plays and their interaction in the urbanization process, thus, leading to a
poor understanding of the complexity of urban expansion. In addition, various methods have been
adopted to characterize the urban land use change, including transects [37], bands [38], standard
deviational ellipses [39], concentric rings [35], and landscape indices [40]. While each of them helps to
understand one aspect of urban dynamics, such as direction and pattern, separately performing these
analyses would not provide a full picture of the spatiotemporal heterogeneity of impervious surfaces
in a complex urban context over a span of multiple decades. As a result, it would be important to
investigate the expansion of urban impervious surfaces on different scales using combined approaches.

China has experienced unprecedented rapid urbanization since 1978, particularly as of the 1990s.
As the central city of the Huaihai Economic Zone in East China’s Jiangsu province, Xuzhou has
experienced rapid urbanization and been increasingly highlighted for environmental friendliness
in recent decades [41]. It is, therefore, important to map and characterize the evolution of urban
impervious surfaces of Xuzhou, to better understand its urban process and guide its sustainable
development. In this study, we selected Xuzhou as the study area and adopted a variety of methods
to perform a spatiotemporal analysis of its impervious surfaces on different scales during a 23-year
period (1995 to 2018). Specific objectives are as follows: (1) to map impervious surfaces by the VIS
model and LSMA, and characterize the district-specific change of the impervious surfaces over the
two decades; (2) to unravel the landscape pattern of impervious surfaces via the landscape indices;
(3) to identify the expansion direction of impervious surfaces using profile lines, median centers and
standard deviational ellipses on the city and district scales; and (4) to examine the spatial difference in
the expansion rate of impervious surfaces by spatial autocorrelation analysis.

2. Study Area and Data

2.1. Study Area

Xuzhou (33◦43′–34◦58′N, 116◦22′–118◦40′E) is located in the northwest of Jiangsu province,
East China. Due to its location at the boundary of Jiangsu, Shandong, Henan, and Anhui provinces,
Xuzhou has become a key traffic hub in China, linking the economic development between North
and South China [42]. With an altitude ranging from 30 m to 50 m a.s.l., Xuzhou has flat terrain
despite a few hills in the east and middle. Xuzhou features natural resource wealth, especially coals.
It was once a mining city running a large number of coal mines, such as the Pangzhuang mine in the
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NW Quanshan district, the Dahuangshan mine in east Gulou district, and the Qishan mine in south
Jiawang district, which contributed to the regional economic development. However, these mines
were largely closed over the recent two decades, and Xuzhou has successfully shifted the focus of
urban development from urbanization to eco–environmental conservation.

Economically, Xuzhou has grown rapidly, with its gross domestic product (GDP) increasing
from 55.57 billion RMB in 1995 to 6605.95 billion RMB in 2017. In addition to being Jiangsu’s second
largest city, Xuzhou has developed into the central city of the Huaihai Economic Zone consisting of
20 prefectural cities from Jiangsu, Shandong, Henan, and Anhui provinces. Xuzhou’s population has
seen a rapid increase, from 8.51 million people in 1995 to 10.39 million in 2017. Meanwhile, the change
of its urban development focus and years of consequential effort have earned Xuzhou titles, such as
the National Garden City in 2016, the China Habitat Award in 2017, and the United Nations Habitat
Award in 2018. Therefore, Xuzhou is an ideal study area for examining urban dynamics during the
past two decades. Although Xuzhou consists of five districts (Yunlong, Gulou, Quanshan, Jiawang,
and Tongshan), three counties (Fengxian, Peixian, and Suining), and two county-level cities (Pizhou
and Xinyi), only the five administrative districts of Xuzhou were selected for this study as they are
more urbanized than the three counties and two county-level cities (Figure 1). Note that the districts of
Yunlong, Quanshan, and Gulou, and some towns in Tongshan district compose the central urban area
(CUA) according to the Xuzhou General Urban Planning (2007–2020).
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Tongshan district illustrates the division of this district used in Section 3.4. 

Table 1. Towns of the five districts in Xuzhou. 

District Town 

Yunlong 
Cuipingshan (CPS), Daguozhuang (DGZ), Dalonghu (DLH), Huaihaishipincheng 
(HHa), Huangshan (HS), Luotuoshan (LTS), Pengcheng (PC), Pantang (PT), Zifang 
(ZF), 

Quanshan 
Duanzhuang (DZ), Hubin (HB), Huohua (HHb), Heping (HP), Jinshan (JS), Kuishan 
(KS), Pangzhuang (PZ), Qiligou (QLG), Sushan (SS), Taishan (TSa), Taoyuan (TY), 
Yong’an (YA), Wangling (WL), Zhaishan (ZS), 

Gulou 
Donghuan (DH), Dahuangshan (DHS), Damiao (DM), Fengcai (FCa), Huancheng 
(HC), Huanglou (HL), Jiuli (JL), Jinshanqiao (JSQ), Pailou (PL), Pipa (PP), Tongpei 
(TP), 

Jiawang 
Biantang (BT), Daquan (DQ), Dawu (DW), Gongyeyuanqu (GY), Jiangzhuang (JZ), 
Laokuang (LK), Pan’anhu (PAH), Qingshanquan (QSQ), Tashan (TSb), Zizhuang 
(ZZ), 

Figure 1. Study area: (a) study area in Jiangsu province; (b) study area consisting of 68 towns
(full names tabulated in Table 1), nine in Yunlong, ten in Jiawang, 11 in Gulou, 14 in Quanshan, and 24
in Tongshan district. The purple lines indicate the profile lines used in Section 3.3. The orange line in
Tongshan district illustrates the division of this district used in Section 3.4.

2.2. Remote Sensing Images

Mapping impervious surface change of the study area provides a basis for understanding the
pattern of urban development. Considering the rapid socioeconomic development of Xuzhou over the
past decades, and the image quality and time interval of satellite remote sensing data, multi-temporal
satellite image data from Landsat 5 TM (Thematic Mapper), Landsat 7 ETM+ (Enhanced Thematic
Mapper Plus), and Landsat 8 OLI (Operational Land Imager), acquired in 1995, 2003, 2010, and 2018
(Table 2), were used to extract impervious surfaces and to identify the pattern, direction, and rate of
impervious surface expansion.
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Table 1. Towns of the five districts in Xuzhou.

District Town

Yunlong Cuipingshan (CPS), Daguozhuang (DGZ), Dalonghu (DLH), Huaihaishipincheng (HHa),
Huangshan (HS), Luotuoshan (LTS), Pengcheng (PC), Pantang (PT), Zifang (ZF),

Quanshan
Duanzhuang (DZ), Hubin (HB), Huohua (HHb), Heping (HP), Jinshan (JS), Kuishan (KS),
Pangzhuang (PZ), Qiligou (QLG), Sushan (SS), Taishan (TSa), Taoyuan (TY), Yong’an (YA),
Wangling (WL), Zhaishan (ZS),

Gulou Donghuan (DH), Dahuangshan (DHS), Damiao (DM), Fengcai (FCa), Huancheng (HC),
Huanglou (HL), Jiuli (JL), Jinshanqiao (JSQ), Pailou (PL), Pipa (PP), Tongpei (TP),

Jiawang Biantang (BT), Daquan (DQ), Dawu (DW), Gongyeyuanqu (GY), Jiangzhuang (JZ),
Laokuang (LK), Pan’anhu (PAH), Qingshanquan (QSQ), Tashan (TSb), Zizhuang (ZZ),

Tongshan

Tongshan North: Dapeng (DP), Huangji (HJ), Heqiao (HQ), Hanwang (HW), Liguo (LG),
Liuji (LJ), Liuquan (LQ), Liuxin (LX), Maocun (MC), Mapo (MP), Sanhejian (SHJ), Shitun
(ST), Yanhu (YH), Zhengji (ZJa),
Tongshan South: Daxu (DX), Fangcun (FCb), Sanbao (SB), Shanji (SJ), Tongshan (TSc),
Tangzhang (TZ), Xinqu (XQ), Xuzhuang (XZ), Yizhuang (YZ), Zhangji (ZJb).

Table 2. Landsat image data used in the study.

Year Sensor Acquisition Date (Path/Row)

1995 TM 1995-03-10 (121/36), 1995-03-17 (122/36)
2003 ETM+ 2003-04-09 (121/36), 2003-04-16 (122/36)
2010 TM 2010-03-19 (121/36), 2010-03-26 (122/36)
2018 OLI 2018-03-09 (121/36), 2018-03-16 (122/36)

Due to its large geographical size, the study area was imaged in two scenes (path 121/row 36,
path 122/row 36). For each of the four years, it would be ideal if these two images were acquired
at the same date and time. This is, however, difficult to achieve given image availability and image
quality. As such, for each year, we collected two images whose acquisition data difference was within
one week. This ensures that the difference was limited and would not have a significant impact on
the results. In addition, as lush vegetation in summer and bare land in winter may interfere with the
extraction of impervious surfaces, we considered images acquired in spring (March and April) more
suitable for the study. All the remote sensing data were freely downloaded from the United States
Geological Survey website (USGS, https://earthexplorer.usgs.gov/).

Prior to mapping impervious surfaces, preprocessing operations, such as atmospheric correction
(FLAASH), geo-referencing (image to image), and seamless mosaic (in which a seamline network is
formed by seamlines using area Voronoi diagrams with overlaps [43]) was applied to these images.
Then, the study area was extracted from the mosaicked images using the vector data representing the
extent of the study area.

3. Methods

3.1. Linear Spectral Mixture Analysis

The linear spectral mixture analysis (LSMA) was used to map impervious surface fractions
from multi-temporal Landsat images. In this method, it is assumed that a pixel’s spectral signal
is a linear combination of the endmember spectral signals of each component [18]. The fraction of
each endmember can be obtained by applying the least square model according to their own spectral
characteristics [18]. In a fully contained linear spectral mixture analysis, two conditions must be
met: (1) The sum of the fractions of all endmembers in each pixel is 1, and (2) the fraction of each
endmember is non-negative. This is given as follows [18,28]:

Rb = ∑
i

fiRi,b + eb (1)

https://earthexplorer.usgs.gov/
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∑
i

fi = 1, fi ≥ 0 (2)

where Rb is the reflectance for each band b in a pixel; fi is the fraction of endmember i in a pixel;
Ri,b is the reflectance of endmember i in band b for that pixel; and eb is the residual. The fitness of
the fully constrained LSMA is assessed by the root mean square (RMS), which is calculated from eb.
The formula for RMS is as follow [18]:

RMS =

(
∑b eb

n

)0.5
(3)

where n is the number of bands used in the LSMA.
Water bodies should first be removed from the images to avoid noise as it would reduce unmixing

errors caused by low-albedo impervious surfaces [44]. Existing methods of extracting water include
principal component analysis (PCA) [45], spectral indices [46], and (un-)supervised classification [44].
Due to its simplification and accuracy, the modified normalized difference water index (MNDWI) [46],
a widely used spectral index, was adopted to obtain and mask water body from the remote sensing
data. Then, we adopted brightness normalization to decrease intra-class variability [18,19,30], and the
minimum noise fraction (MNF) was adopted to separate the noise in the data and improve the
quality of the endmember selection [18]. Endmember selection is critical to the accuracy of the
model, and usually, three to four endmembers are appropriate [47]. Based on the VIS model [31],
four endmembers were selected from the images by trial and error, namely vegetation, bare soil,
high- and low-albedo impervious surfaces [18]. For each year, four fraction maps and one RMS map
were produced through the LSMA, among which the high- and low-albedo impervious surface fraction
maps were added together to generate an impervious surface fraction map.

The LSMA fitness was first assessed by RMS. If RMS is within 0.02, the LSMA results would
be considered satisfactory [18]. To further assess the accuracy of impervious surface mapping, it is
necessary to investigate the agreement between the mapped and real impervious surface fractions.
Although the confusion matrix and Kappa coefficient are the commonly used accuracy assessment
approaches [48,49], they are suitable for categorical variables, such as land cover classes from image
classification. Impervious surface fractions are, however, continuous variables, and it would be
more interesting to compare the mapped impervious surface fractions with real ones which were
obtained from image digitalization and evaluate how close they would be [50,51]. In this study, a total
of 80 validation samples, each sample containing 3 × 3 pixels (i.e., 90 m × 90 m), were randomly
generated on the non-water area on the 2018 Landsat 8 image of the study area. Then, all the validation
samples were overlaid on the high-resolution satellite images of 2018 in Google Earth Pro. The area of
the digitized impervious surface in a given sample was divided by the area of the sample (i.e., 8100 m2)
as the true impervious surface proportion in the sample. The linear goodness of fit (R2) between the
impervious surface fraction in the LSMA and the true impervious surface proportion and the RMSE
(root mean square error) for the 2018 LSMA were computed and assessed. It would be ideal if we
could perform independent accuracy assessments for the modelled impervious surface fractions of
each period. However, constrained by the poor image quality of historical Google Earth images and
consequently, difficulty in digitalizing or visually interpreting them, we did not assess the extracted
impervious surface fractions of 1995, 2003, and 2010. However, as all the images were Landsat data and
processed with the same procedures, we assumed that similar accuracies were obtained for the LSMA
results of 1995, 2003, and 2010. A similar assumption was also made by Cui et al. (2018) when they
assessed their multi-temporal image classification results obtained from a supervised classifier [52].

3.2. Landscape Indices

Landscape indices are important indicators for quantitatively characterizing the composition
and spatial distribution of the landscape pattern, which can reveal the structural changes in land use
practices [53,54]. They might be flawed by spatial resolutions; thus, a proper selection of landscape
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indices is important for landscape studies [55]. Although there are some new measures of landscape
fragmentation providing a good free-of-pixel size solution [56], we decided here to adopt more
commonly used landscape indices for a detailed analysis (Table 3). They are able to detect changes at
both class and landscape levels, not only the density, shape, and area of the patches (Patch density (PD),
landscape shape index (LSI), largest patch index (LPI)) but their contagion, connectivity, and diversity
(Aggregation index (AI), patch cohesion index (COHESION), Shannon’s diversity index (SHDI),
Shannon’s evenness index (SHEI)). Diversity metrics (SHDI, SHEI) were used to reflect the diversity
and heterogeneity of the landscape. The majority of these indices were also used in previous similar
studies, such as Sha and Tian (2010) [57]. Note that these indices were calculated in Fragstats 4.2 based
on the grading of impervious surface fractions (Section 4.1).

Table 3. Landscape indices used in this study [58].

Level Landscape Index Description

Class metrics

Patch density (PD)
It expresses number of patches on a per unit area basis. It is a
simple measure of the extent of subdivision or fragmentation of
the patch type

Landscape shape index (LSI)
It provides a standardized measure of total edge or edge density
that adjusts for the size of the landscape

Aggregation index (AI)
It equals the number of like adjacencies involving the
corresponding class, divided by the maximum possible number
of like adjacencies involving the corresponding class

Patch cohesion index (COHESION)
It measures the physical connectedness of the corresponding
patch type

Largest patch index (LPI)
It quantifies the percentage of total landscape area comprised of
the largest patch. It is a simple measure of dominance

Landscape metrics

Shannon’s diversity index (SHDI)
It is a popular measure of diversity in community ecology,
applied here to landscapes

Shannon’s evenness index (SHEI)
It is expressed such that an even distribution of area among
patch types results in maximum evenness. Evenness is the
complement of dominance

3.3. Profile Line Analysis

Profile line analysis was performed to analyze the directional and spatial variation of impervious
surface fractions along these lines. As Pengcheng Square is in downtown Xuzhou as well as one of the
most famous landmarks of Xuzhou, four profile lines in different directions—west–east, north–south,
northwest–southeast, and southwest–northeast (Figure 1b), all through Pengcheng Square, were,
therefore, adopted to measure the spatial difference of the impervious surface in different directions.

3.4. Median Center and Standard Deviational Ellipse

To further measure the direction of urban expansion, the median center and standard deviational
ellipse (SDE) methods were used in this study. The median center is a measure of the central
tendency, identifying the location where all other features are the least distanced in the data set [14].
The calculated median centers and their tracks on different scales reveal in which direction impervious
surfaces expand.

The standard deviational ellipse is used to summarize spatial characteristics, such as central
trends, dispersion, and directional trends, of all geographical features [39]. The semi-long axis and
the semi-short axis of the ellipse indicate the direction and range of data distribution, respectively.
Their ratio reflects the clustering or dispersion of impervious surfaces in a particular spatial direction.
The greater the ratio is the more obvious the directionality of the data is, and vice versa. A long–short
axis ratio equaling one indicates no directional characteristics of the data [39]. The rotation angle
is the measure of the rotation of the semi-long axis, reflecting the change direction of impervious
surfaces. If the features are densely centered and less dense toward the periphery, the SDE would
encompass approximately 68% of the features. Identifying the positional variation of the SDEs of
impervious surfaces allows one to see if the spatial distribution of impervious surfaces is elongated and



Sustainability 2019, 11, 1224 7 of 22

shows a particular direction of impervious surface expansion, which can enhance the understanding
of spatiotemporal characteristics of urban development.

Based on the impervious surface fraction maps, impervious surface binary maps (i.e., classifying
the impervious surface fraction maps into impervious and pervious surfaces) were produced following
the method described by Jia et al. [59]. Then, the median centers and standard deviational ellipses on
different scales were calculated for each year.

It is worth noting that Tongshan district would be divided into two parts for median center
and standard deviational ellipse analyses as it is by far larger than the other districts (Section 4.2.3).
Based on the border of the CUA (Section 2.1), Tongshan district was divided into Tongshan North and
Tongshan South (see the division line in Figure 1b) in this study for computing the median centers and
SDEs of impervious surfaces.

3.5. Spatial Autocorrelation Analyses

Spatial autocorrelation refers to the interdependence between the attribute values of spatial
units and the same attribute values of adjacent spatial units. It includes global and local
spatial autocorrelation. Global spatial autocorrelation describes the average degree of association,
spatial distribution patterns, and their significance among all geographic units in the study area,
while local spatial autocorrelation can identify the aggregation and differentiation characteristics of
local spatial features [52]. Moran’s I and local Moran’s I were used to describe the global and local
spatial autocorrelation, given by [52]:

I =
n ∑i ∑j wi,j(xi − x)

(
xj − x

)
∑i ∑j wi,j ∑i(xi − x)2 (i 6= j) (4)

Ii =
n2

∑i ∑j wi,j
×

(xi − x)∑j wi,j
(
xj − x

)
∑j

(
xj − x

)2 (5)

where n is the total number of geographic units in the study area; xi and xj are the geographic units i
and j, respectively (where i 6= j); x is the average value of all the geographic units; and wij is the spatial
weight matrix assigned to the pair of geographic units i and j (when i and j are topologically adjacent
with a common point or a common edge, wij is defined as 1, otherwise wij is 0).

A positive Moran’s I value indicates a positive spatial autocorrelation (shown as spatial clusters,
i.e., high–high clustering or low–low clustering), while a negative one indicates a negative spatial
autocorrelation (shown as spatial outliers, i.e., the juxtaposition of high values next to low values).
A zero value means that the variable obeys a stochastic spatial distribution [52]. The larger the
absolute value, the stronger the spatial autocorrelation, and vice versa. Based on the Moran’s I values,
all geographic units are shown in a Moran’s I scatter plot which has four quadrants [52]: high–high
(HH), low–low (LL), high–low (HL), and low–high (LH). Corresponding to the Moran’s I scatter plot,
four types of geographic units, high–high, low–low, high–low, and low–high, are included in the LISA
(local indicators of spatial association) cluster map, which only shows the geographic units that passed
the significance test.

In this study, the spatial autocorrelation of impervious surface expansion in the study area was
measured by the expansion speed index (ESI) to explore its spatial differences. Based on the impervious
surface binary maps, ESI is defined as the ratio of the increased area of impervious surfaces to the
original total impervious surface area within a given study area during a study period. It is given as
follows [60]:

ESI =
∆Sij

Si·∆t
× 100% (6)
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where ∆Sij is the increased area of impervious surfaces in a geographical unit from period i to period j;
Si is the total area of impervious surfaces in the geographical unit during period i; and ∆t is the period
of time.

4. Results

4.1. Impervious Surface Mapping

The average RMS over the images of LSMA was 0.017 for 1995, 0.019 for 2003, 0.020 for 2010,
and 0.018 for 2018, all within 0.02. The accuracy assessment based on Google Earth samples for the
2018 LSMA result shows the linear goodness of fit (R2) was 0.86 and the RMSE was 0.115. As such,
we considered our LSMA results for 2018 as well as 1995, 2003, and 2010 were reliable and could be
used for further analyses.

The impervious surface fraction maps obtained from the LSMA for different years are shown
in Figure 2. It is clear that impervious surface fractions increased significantly from 1995 to 2018.
Growing impervious surface fractions were observed in the downtown area and later, also in the area
around it. However, impervious surface fractions of Tongshan district in the southeast and Jiawang
district in the northeast remained relatively low.
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Although used to be a mining city, Xuzhou has successfully transformed from rapid urbanization
to environmental friendliness, which could be revealed by its vegetation cover changes. The mean
vegetation fraction was 35.05% for 1995, 27.76% for 2003, 29.49% for 2010, and 43.04% for 2018
respectively, showing a significant rise after an early decline.

To further analyze the spatiotemporal pattern of urban impervious surfaces, impervious surface
fractions were divided into five levels: 0–0.2 for low-density impervious surfaces, 0.2–0.4 for
medium–low-density, 0.4–0.6 for medium-density, 0.6–0.8 for medium–high-density, and 0.8–1 for
high-density. The levels of the impervious surface fractions for the four years are shown in Figure 3.
The number of pixels decreased remarkably for the low-density impervious surfaces over time but
increased gradually for the other levels.
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4.2. Spatiotemporal Dynamic Analysis of Impervious Surfaces

4.2.1. Based on Landscape Indices

Based on the five levels of impervious surface fractions (Section 4.1), landscape indices
characterizing impervious surfaces were calculated in Fragstats 4.2 using the method described
in Section 3.2. Results are shown in Figure 4.

The PD values gradually increased for all the IS fraction levels except for that for the
medium–low-density level (0.2–0.4) which remained the highest with the medium-density level
(0.4–0.6) levels (Figure 4a). The LSI values also showed a rising trend for all IS fraction levels except for
the low-density level (0–0.2) which saw a gentle decline in 2018 (Figure 4b). Both AI and COHESION
values showed similar changes over time (Figure 4c,d). The values for the low-density (0–0.2) and
medium–low-density (0.2–0.4) levels decreased gradually while those for the other IS fraction levels
rose before going down. The LPI values for the low-density level (0–0.2) decreased remarkably while
little change was observed for the other levels (Figure 4e). Regarding the values of landscape-level
SHDI and SHEI, both of them increased steadily over the periods (Figure 4f).
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(c) AI. (d) COHESION. (e) LPI. (f). SHDI.

4.2.2. Based on Profile Line Analysis

Analyses in Section 4.1 show that impervious surface expansion varies within the study area.
This might be further revealed through profile lines analysis. Along the four profile lines through
Pengcheng Square (Figure 1b), we extracted impervious surface fractions for each year (Figure 5).

Along the W–E profile line traveling from Dapeng town and ending with Daxu town in Tongshan
district through Quanshan, Gulou, Yunlong, and Gulou district (Figure 5a), impervious surface
fractions were lower in the east than those in west. The N–S profile line also started and ended in
the Tongshan district through the districts of Gulou, Yunlong, and Quanshan (Figure 5b) reveals
that the impervious surface fractions of the CUA were higher than the other areas along the line.
The NW–SE profile line that travels from Huangji town to Fangcun town (Figure 5c) also shows the
highest impervious surface fractions were focused in Yunlong and Gulou districts, and the lowest in
the southeast of Tongshan district. Regarding the SW–NE profile line going through Hanwang town of
Tongshan district, Quanshan, Gulou, Tongshan, and Jiawang districts (Figure 5d), impervious surface
fractions were clearly higher the CUA than the other areas. From a spatial perspective, the CUAs
were constantly observed with the highest impervious surface fractions; from a temporal perspective,
impervious surface fractions increased in general over the 23 years, though differently.
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Figure 5. Variation of impervious surface fractions in different years along different profile lines. Colors
of the curves refer to the impervious surfaces of different years (blue for 1995, green for 2003, red for
2010, and violet for 2018). The break part in (d) in Quanshan district is the Yunlong Lake which was
masked out.

4.2.3. Based on Median Centers and Standard Deviational Ellipses

Following the method described in Section 3.4, the median centers of impervious surfaces were
computed, and their tracks were illustrated for both the entire study area (Figure 6) and individual
districts (Figure 7). On the city scale, the median centers of the impervious surfaces were located at
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117.264◦ E–117.309◦ E, 34.311◦ N–34.316◦ N during the 23-year period (Table 4), and shifted nearly
horizontally over time. During the 2003 to 2010 period, the annual average movement to the east
accelerated. However, the overall moving distance from 1995 to 2018 was relatively small for the entire
area (Figure 6), and the overall expansion direction is not significant. On the district scale, however,
the median centers of the impervious surfaces in Gulou, Yunlong, and Quanshan districts showed
obvious expansion directions, towards the east (Figure 7b), southeast (Figure 7c), and northwest
(Figure 7f). Tongshan district shows internal differences, with the expansion directions and distances
in Tongshan North were different from those in Tongshan South (Figure 7, Table 4).

Sustainability 12 of 23 

that the impervious surface fractions of the CUA were higher than the other areas along the line. The 
NW–SE profile line that travels from Huangji town to Fangcun town (Figure 5c) also shows the 
highest impervious surface fractions were focused in Yunlong and Gulou districts, and the lowest in 
the southeast of Tongshan district. Regarding the SW–NE profile line going through Hanwang town 
of Tongshan district, Quanshan, Gulou, Tongshan, and Jiawang districts (Figure 5d), impervious 
surface fractions were clearly higher the CUA than the other areas. From a spatial perspective, the 
CUAs were constantly observed with the highest impervious surface fractions; from a temporal 
perspective, impervious surface fractions increased in general over the 23 years, though differently. 

4.2.3. Based on Median Centers and Standard Deviational Ellipses 

Following the method described in Section 3.4, the median centers of impervious surfaces were 
computed, and their tracks were illustrated for both the entire study area (Figure 6) and individual 
districts (Figure 7). On the city scale, the median centers of the impervious surfaces were located at 
117.264° E–117.309° E, 34.311° N–34.316° N during the 23-year period (Table 4), and shifted nearly 
horizontally over time. During the 2003 to 2010 period, the annual average movement to the east 
accelerated. However, the overall moving distance from 1995 to 2018 was relatively small for the 
entire area (Figure 6), and the overall expansion direction is not significant. On the district scale, 
however, the median centers of the impervious surfaces in Gulou, Yunlong, and Quanshan districts 
showed obvious expansion directions, towards the east (Figure 7b), southeast (Figure 7c), and 
northwest (Figure 7f). Tongshan district shows internal differences, with the expansion directions 
and distances in Tongshan North were different from those in Tongshan South (Figure 7, Table 4). 

 
Figure 6. IS median centers for the entire study area from 1995 to 2018. Figure 6. IS median centers for the entire study area from 1995 to 2018.

Sustainability 13 of 23 

 

Figure 7. IS median centers for each district from 1995 to 2018. 

Table 4. Changes in impervious surface (IS) median centers from 1995 to 2018. 

 Year Longitude Latitude Direction Distance 
(m) 

Rate 
(m/Year) 

Entire 
study area 

1995 117.309 34.312    
2003 117.264 34.311 South by West 87.614° 4142.326 517.791 
2010 117.319 34.316 North by East 83.962° 5052.360 721.766 
2018 117.288 34.315 South by West 89.203° 2810.981 351.373 

Yunlong 1995 117.252 34.227    
2003 117.259 34.219 South by East 34.917° 1139.959 142.495 
2010 117.269 34.211 South by East 46.503° 1309.504 187.072 
2018 117.270 34.208 South by East 12.693° 345.311 43.164 

Quanshan 1995 117.144 34.261    
2003 117.128 34.274 North by West 46.015° 2018.026 252.253 
2010 117.128 34.271 South by West 13.069° 311.475 44.496 
2018 117.127 34.272 North by West 16.858° 124.548 15.569 

Gulou 1995 117.264 34.299    
2003 117.285 34.298 South by East 84.954° 1929.492 241.187 
2010 117.294 34.296 South by East 77.417° 846.692 120.956 
2018 117.290 34.296 South by West 82.108° 376.160 47.020 

Jiawang 1995 117.487 34.377    
2003 117.445 34.384 North by West 79.222° 3930.147 491.268 
2010 117.522 34.386 North by East 87.636° 7069.117 1009.874 
2018 117.481 34.388 North by West 86.840° 3760.815 470.102 

Tongshan 
North 

1995 117.127 34.406    
2003 117.117 34.404 South by West 77.015° 935.967 116.996 
2010 117.129 34.410 North by East 61.813° 1282.801 183.257 
2018 117.103 34.416 North by West 72.782° 2511.314 313.914 

Tongshan 
South 

1995 117.440 34.176    
2003 117.386 34.157 South by West 66.463° 5426.369 678.296 
2010 117.416 34.175 North by East 54.034° 3481.849 497.407 
2018 117.422 34.173 South by East 74.055° 555.488 69.436 

Figure 7. IS median centers for each district from 1995 to 2018.



Sustainability 2019, 11, 1224 13 of 22

Table 4. Changes in impervious surface (IS) median centers from 1995 to 2018.

Year Longitude Latitude Direction Distance (m) Rate (m/Year)

Entire study area

1995 117.309 34.312
2003 117.264 34.311 South by West 87.614◦ 4142.326 517.791
2010 117.319 34.316 North by East 83.962◦ 5052.360 721.766
2018 117.288 34.315 South by West 89.203◦ 2810.981 351.373

Yunlong

1995 117.252 34.227
2003 117.259 34.219 South by East 34.917◦ 1139.959 142.495
2010 117.269 34.211 South by East 46.503◦ 1309.504 187.072
2018 117.270 34.208 South by East 12.693◦ 345.311 43.164

Quanshan

1995 117.144 34.261
2003 117.128 34.274 North by West 46.015◦ 2018.026 252.253
2010 117.128 34.271 South by West 13.069◦ 311.475 44.496
2018 117.127 34.272 North by West 16.858◦ 124.548 15.569

Gulou

1995 117.264 34.299
2003 117.285 34.298 South by East 84.954◦ 1929.492 241.187
2010 117.294 34.296 South by East 77.417◦ 846.692 120.956
2018 117.290 34.296 South by West 82.108◦ 376.160 47.020

Jiawang

1995 117.487 34.377
2003 117.445 34.384 North by West 79.222◦ 3930.147 491.268
2010 117.522 34.386 North by East 87.636◦ 7069.117 1009.874
2018 117.481 34.388 North by West 86.840◦ 3760.815 470.102

Tongshan North

1995 117.127 34.406
2003 117.117 34.404 South by West 77.015◦ 935.967 116.996
2010 117.129 34.410 North by East 61.813◦ 1282.801 183.257
2018 117.103 34.416 North by West 72.782◦ 2511.314 313.914

Tongshan South

1995 117.440 34.176
2003 117.386 34.157 South by West 66.463◦ 5426.369 678.296
2010 117.416 34.175 North by East 54.034◦ 3481.849 497.407
2018 117.422 34.173 South by East 74.055◦ 555.488 69.436

The standard deviational ellipses (SDEs) are shown in Figure 8. For the entire study area,
the rotation angles ranged from 96.539◦ to 109.964◦, and the long–short axis ratios were all close to
one during the 1995 to 2018 period (Table 5), indicating that the impervious surfaces had no clear
expansion direction. The SDEs on the district scale were different from those on the city scale (Figure 8).
The long–short axis ratio of each district was significantly larger than that of the entire study area
(Table 5), reflecting the obvious expansion direction on the district scale. As the major components of
the CUA, Gulou, Yunlong, and Quanshan districts presented expansion towards the east (Figure 8b),
southeast (Figure 8c), and northwest (Figure 8f). Such observations on both the city and district scales
were consistent with those of the median centers in Figure 7 and Table 4.
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Table 5. Standard deviational ellipse (SDE) parameters of impervious surfaces from 1995 to 2018.

Year Long Axis (m) Short Axis (m) Rotation
Angle (◦)

Long–Short
Axis Ratio

Entire study area

1995 49,554.821 35,044.991 96.881 1.414
2003 48,531.016 36,450.925 109.964 1.331
2010 52,697.685 38,485.566 96.539 1.369
2018 54,209.752 37,594.564 108.895 1.442

Yunlong

1995 13,017.390 5793.510 138.022 2.247
2003 12,887.834 6033.898 138.903 2.136
2010 12,320.285 6322.815 146.077 1.949
2018 12,066.116 6579.798 147.634 1.834

Quanshan

1995 15,301.653 5207.599 142.609 2.938
2003 16,360.322 5451.560 143.717 3.001
2010 17,252.284 5450.035 146.524 3.166
2018 16,248.859 5422.818 144.478 2.996

Gulou

1995 19,318.182 7949.150 94.287 2.430
2003 19,881.054 8537.040 100.230 2.329
2010 19,591.029 9552.415 101.992 2.051
2018 19,955.805 9482.594 101.522 2.104

Jiawang

1995 26,553.175 12,181.719 85.191 2.180
2003 26,829.005 12,848.135 89.737 2.088
2010 29,754.558 14,083.920 94.854 2.113
2018 27,960.891 14,735.358 92.248 1.900

Tongshan North

1995 33,932.906 22,492.496 45.089 1.509
2003 34,789.711 23,312.088 43.967 1.492
2010 37,540.409 24,377.139 48.524 1.540
2018 34,285.429 25,266.912 54.840 1.357

Tongshan South

1995 40,803.393 21,606.868 71.195 1.880
2003 40,314.726 20,182.057 74.447 1.998
2010 44,295.083 20,182.057 69.779 2.137
2018 41,993.619 20,489.428 69.395 2.050

4.2.4. Based on Spatial Autocorrelation Analyses

The expansion speed indices (ESIs) of the impervious surfaces of the entire study area during the
1995–2003, 2003–2010, and 2010–2018 periods were calculated according to Formula (6). Then both
global and local spatial autocorrelation analyses were performed to explore their spatial correlations.

The Moran’s I of ESIs was 0.2748, 0.4461, and 0.6748 in 1995–2003, 2003–2010, and 2010–2015,
respectively (Figure 9), showing that there were positive autocorrelations in the expansion rates of
impervious surfaces. In addition, the Moran’s I gradually increased over time (Figure 9). The towns of
ESIs in the three periods were mainly distributed in the HH and LL quadrants, indicating that spatial
homogeneity and aggregation pattern of expansion rate were significant. In addition, the towns in the
LL quadrants is aggregate, while the towns in the HH quadrants are scattered.

In addition, the LISA cluster maps (Figure 10) were also generated to show the type of towns
which passed the significance test. We observed that the HH and LL clustering dominated in the
three periods. In the 1995 to 2003 period (Figure 10a), the HH and LH clustering occurred around
Pengcheng Square and the LL clustering in Jiawang and Tongshan districts. However, there seemed
an opposite trend that LL and HL clustering are distributed around Pengcheng Square for the 2003
to 2010 period (Figure 10b). In the 2010 to 2018 period (Figure 10c), both the HH and LL clustering
expanded compared to the previous period.
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Figure 9. Moran’s I scatter plots of expansion speed indices (ESI) for each town in the different periods:
(a) 1995–2003; (b) 2003–2010; and (c) 2010–2018. Green, yellow, rose, lilac and blue represent the towns
of Yunlong, Quanshan, Gulou, Jiawang, and Tongshan districts, respectively.

Sustainability 16 of 23 

In addition, the LISA cluster maps (Figure 10) were also generated to show the type of towns 
which passed the significance test. We observed that the HH and LL clustering dominated in the 
three periods. In the 1995 to 2003 period (Figure 10a), the HH and LH clustering occurred around 
Pengcheng Square and the LL clustering in Jiawang and Tongshan districts. However, there seemed 
an opposite trend that LL and HL clustering are distributed around Pengcheng Square for the 2003 
to 2010 period (Figure 10b). In the 2010 to 2018 period (Figure 10c), both the HH and LL clustering 
expanded compared to the previous period. 

 
Figure 10. Local indicators of spatial association (LISA) cluster maps of ESI for each town in the 
different periods: (a) 1995–2003; (b) 2003–2010; and (c) 2010–2018. 

5. Interpretation and Discussion 

In this study, we first mapped urban impervious surfaces of Xuzhou by the LSMA from multi-
temporal Landsat image data of 1995, 2003, 2010, and 2018. As urban expansion is a complex process 
involving landscape pattern, expansion direction, and rate difference, various methods including 
landscape indices, profile lines, median centers, standard deviational ellipses, and spatial 
autocorrelation were adopted to characterize the above aspects and comprehensively reflect urban 
dynamics. The interpretation of the results and their implications are detailed below. 

5.1. Overall Dynamics 

Impervious surfaces of Xuzhou rose dramatically with rapid urbanization in the recent two 
decades, as there exists a strong relationship between impervious surface fractions and urban 
development [61]. The downtown area has always had relatively high impervious surface fractions 
due to its high socioeconomic level and building density (Figure 2). The rapid development of the 
CUA has been driving the development of the whole city over time [62] and shows a positive impact 

Figure 10. Local indicators of spatial association (LISA) cluster maps of ESI for each town in the
different periods: (a) 1995–2003; (b) 2003–2010; and (c) 2010–2018.



Sustainability 2019, 11, 1224 16 of 22

5. Interpretation and Discussion

In this study, we first mapped urban impervious surfaces of Xuzhou by the LSMA from
multi-temporal Landsat image data of 1995, 2003, 2010, and 2018. As urban expansion is a complex
process involving landscape pattern, expansion direction, and rate difference, various methods
including landscape indices, profile lines, median centers, standard deviational ellipses, and spatial
autocorrelation were adopted to characterize the above aspects and comprehensively reflect urban
dynamics. The interpretation of the results and their implications are detailed below.

5.1. Overall Dynamics

Impervious surfaces of Xuzhou rose dramatically with rapid urbanization in the recent two
decades, as there exists a strong relationship between impervious surface fractions and urban
development [61]. The downtown area has always had relatively high impervious surface fractions
due to its high socioeconomic level and building density (Figure 2). The rapid development of the
CUA has been driving the development of the whole city over time [62] and shows a positive impact
on its neighboring towns (Figure 2), a pattern observed in other cities in Asia, such as Tokyo [63]
and Shanghai [64]. The transformation of impervious surfaces from low density to high density is a
typical feature of rapid urbanization (Figure 3) [65]. In addition, the development of the new urban
area (SE Yunlong district) and the construction of transportation facilities in Xuzhou, such as the
subway, further promote the overall urbanization, leading to increased impervious surface fractions
and a complicated and fragmented trend in the spatial pattern [54], showing the agglomeration effect
of urban impervious surfaces. This is because of the implementation of urban renewal projects in
Xuzhou—scattered and chaotic buildings have been mostly replaced with continuous residential,
commercial, and industrial facilities, leading to increased impervious surface fractions. As there
is a negative correlation between impervious surfaces and vegetation [31], low impervious surface
fractions were observed in the southeast of the study area where Lvliang Hill Scenic spots was located
with abundant vegetation. Balanced development of impervious surface expansion and ecological
environment protection contributes to an increased landscape diversity.

Along with urban expansion, vegetation has also flourished in recent years. In the early period,
vegetated land was converted to built-up land for constructing residential and commercial buildings.
As ecological protection consensus started to emerge, efforts, such as afforestation and ecological
restoration for coal mining subsidence areas, have brought more greenness back to Xuzhou in recent
years. These measures were also proven effective in other cities [66].

5.2. Landscape Pattern

An increase in PD indicates increasing landscape heterogeneity of impervious surfaces (Figure 4a).
The advancement of urbanization has made impervious surfaces expand outside with a large number
of residential areas scattered in the suburbs, leading to an increasing fragmentation trend of impervious
surfaces. The increase in the LSI (Figure 4b) also indicates that the spatial pattern of impervious surfaces
is irregular and complicated. In addition, the establishment of industrial zones, the development of
the new urban areas (SE Yunlong district) and the construction of transportation facilities in Xuzhou,
such as subways, further promoted the overall urbanization, making the original landscape pattern
more complex and fragmented [54,65]. The changes in AI and COHESION (Figure 4c,d) indicate that
the low- and medium–low-density impervious surfaces exhibited a dispersive expansion and the
connectivity was reduced. This is because the promotion of eco–environmental protection, such as the
construction of scenic spots, made the impervious surfaces with low density become fragmented and
irregular. While the impervious surfaces with high density showed a filled expansion and enhanced
connectivity, which is closely related to the transformation of the old city in Xuzhou, the LPI of the
low-density impervious surface dramatically reduced (Figure 4e), indicating that urbanization made
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its dominance significantly reduce, and part of it was gradually occupied by high-density [65], which is
the inevitable result of urban expansion.

At the landscape level, gradually increased SHDI and SHEI (Figure 4f), suggest enhanced
heterogeneity and landscape diversity. This is because urbanization has reduced the dominance
of agricultural land and vegetation by converting part of them into impervious surfaces. Meanwhile,
there are some open green spaces in the study area, such as Yunlong Mountain scenic area, Quanshan
forest park, and Jiulihu wetland park, and large-area water landscapes, such as Yunlong Lake and
Dalong Lake. These permeable landscapes are important for maintaining the original components and
the quality of urban ecological environment [67,68]. Coordinated development of impervious surface
expansion and eco–environment protection means the landscape types are in a relatively balanced
state and increases landscape diversity.

5.3. Expansion Direction

Profile lines, median centers, and SDEs are widely used to characterize urban
expansion [14,39]. While Xu et al. (2018) [39] found that the expansion direction of Guangzhou was
significantly contrasting on the whole and local region scale, we found Xuzhou featured different
expansion directions than Guangzhou.

In this study, the impervious surfaces did not exhibit an obvious expansion direction on the city
scale (Figures 6 and 8). The annual average rate of expansion to the east has increased during the
2003 to 2010 period (Table 4) probably resulted from a governmental policy—the Xuzhou Eleventh
Five-Year Plan (2006–2010) had clearly stated Xuzhou would expand eastward. However, this was not
significant for the entire study area from 1995 to 2018. On the district scale (Figures 5–8), Quanshan,
Gulou, and Yunlong districts, the major components of the CUA, have increasingly high impervious
surface fractions, which is related to their urbanization that started early and developed rapidly.
The impervious surfaces of Quanshan district expanded towards the northwest before the Pangzhuang
mine was closed in Pangzhuang town in the NW Quanshan district. While coal mining related
subsidence was a serious issue in Pangzhuang town, the government encouraged the expansion of
the CUA towards east and southeast, e.g., building a key high-speed railway station in east Gulou
district and creating the Xuzhou national economic development zone covering east CUA, relocating
government offices to the new urban area in SE Yunlong district. These expansion directions are
consistent with the requirements of the Xuzhou General Urban Planning (2007-2020) that built-up land
in the CUA should be developed in the east and southeast, be controlled in the northwest, and strictly
restricted in the southwest [69].

5.4. Expansion Rate

The expansion rates of impervious surfaces during the two decades were shown to have significant
spatial autocorrelation, and the spatial agglomeration gradually increased with the advancement of
urbanization (Figure 9). HH and LL clustering of impervious surface expansion dominated in Xuzhou,
the central city of the Huaihai Economic Zone (Figure 9), as urban development in economic regions
tends to be homogeneous [70].

The urbanization of the downtown area started early, showing HH and LH clustering around
Pengcheng Square in the 1995 to 2003 period (Figure 10a). Note that the clustering only implies a
relative change, rather than an absolute value difference [14]. LH clustering does not necessarily
mean that the towns in this type have a low expansion rate, but tells us that their neighboring
towns’ impervious surfaces expand faster. In the periods of 2003 to 2010 and 2010 to 2018, opposite
spatial distributions were observed with the LL and LH clustering occurring in the downtown area
(Figure 10b,c), which is due to the fact that the development of downtown area slowed down relatively
after approaching saturation. Likewise, the town shown as HL clustering expanded relatively faster
because of their proximity to the saturated downtown area (Figure 10b). In addition, Tongshan and
Jiawang, which are not included in the CUA, developed late, but their urbanization has accelerated in
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recent years (Figure 10b,c). Tongshan district developed rapidly, upgrading from a rural county to an
urban district. This explains why LL clustering appeared in the downtown area, and HH clustering
were in the suburbs. However, because of unevenly natural resource distribution [71] and the effect of
government policies, expansion rate varied in the towns largely within Tongshan district (Table 4),
with the HH clustering in different locations (Figure 10c).

5.5. Innovation and Limitation

Studies of the spatiotemporal dynamics of impervious surfaces on either region or city scale
are important for understanding the overall pattern and development model [33–36]. However,
these may fail to notice the variation among the areas of lower administrative levels in regional
development [72–74]. A better characterization of the spatiotemporal dynamics of impervious surfaces
entails perspectives on different scales in the case study of Xuzhou. In addition, although a single
method may unravel a certain aspect of urban development [39,41], this is overshadowed by the
complexity of urban development [75]. The combination of many different methods together with
analyses on different scales, as demonstrated in our case study, provides a new perspective for
comprehensive quantification of urban expansion.

However, we here would like to raise the issue of discriminating endmembers in the process of
endmember selection in this study. While vegetation is most detectable and low-albedo impervious
surfaces exist in large amounts in urban areas, it is challenging to identify high-albedo impervious
surfaces, and bare soil endmembers as both of them are usually uncommon in cities. Moreover,
because they are quite similar in spectral characteristics, high-albedo impervious surfaces could be
easily confused with bare soil. As such, an increased resolution of image data and a more advanced
endmember extraction procedure would improve the accuracy of mapping impervious surfaces.

6. Conclusions

This study characterizes and analyzes the spatiotemporal dynamics of impervious surfaces of
Xuzhou from 1995 to 2018 on different scales using various and complementary methods. The key
findings and main conclusions are summarized as follows:

• Impervious surfaces increased obviously in the context of rapid urbanization, which changed
urban landscape patterns. Impervious surfaces with high fractions were mainly concentrated in
the downtown area, showing an expansion starting from the downtown area. Impervious surfaces
were generally fragmented and irregular. Meanwhile, vegetation also flourished in recent years.
Scientific urban planning promotes the balanced development of impervious surface expansion
and ecological environmental protection, increasing the diversity of landscape.

• Significant differences in the expansion direction of impervious surfaces existed in the entire
study area and each district. The expansion direction of the study area was not obvious, while the
districts within the CUA shows clear expansion directions towards the east and southeast,
which is consistent with the general urban planning. Therefore, more importance should be
placed on the urban planning and policy guidance to stimulate and regulate the overall orderly
urban development.

• Expansion rates of impervious surfaces showed a significant spatial agglomeration,
which increased gradually and varied with the town. The urbanization of the downtown area
started early and has gradually become saturated, while the non-CUA accelerated its development
with the large internal differences. This suggests that resource distribution and government
policies affect urban expansion rates.

Findings from this study will be helpful to understand the tempo–spatial variation in urban
expansion, providing a basis for analyzing its environmental effects and exploring its driving
mechanism. Moreover, this will contribute to decision-makers in formulating urban planning policies
and provides a reference for similar studies.
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