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Abstract: With the increasingly severe global environment and climate change, the growing social
attention toward the environmental problems has prompted local governments to make policy
adjustments. The formulation of the carbon emission right allocation scheme is important for
policy-makers. Many researchers have studied the problem of carbon emission right allocation by
using data envelopment analysis (DEA) models. However, the existing literature using traditional
models consider each Decision-Making Unit (DMU) as a “black box” without taking the internal
structure into account, but in fact, it is more accurate for formulating the scheme when considering
the inner operation of DMUs. This paper investigates the allocation plan of carbon emission right
among each province in China from 2007–2016 based on a two-stage DEA model. The results indicate
that, first, there is no space for carbon emission in the north, northeast, and northwest from 2007–2016,
while in the southern regions, it always exists. In addition, the carbon emission permits of the
southern and eastern regions are increasing, but in the southwestern regions, the carbon emission
space barely fluctuated during this decade. Second, the potential of carbon emission reduction of
each region tends to be stable after 2014, and in the north and northwest, it fluctuated greatly from
2007–2016. Besides, the northwest region has had the potential of emission reduction since 2010,
while it also exists in the northern region after 2014.

Keywords: data envelopment analysis; carbon emission allocation; two-stage network

1. Introduction

Growing social concerns about the environment with the increasingly severe global environment
and climate change are pushing the local government to make policy adjustments [1]. As one of the
largest energy consumption and CO2 emission countries [2,3], China has shown its determination
to actively deal with the problem of climate change. At the 2009 Copenhagen climate conference,
China made the commitment to reduce the carbon emission per unit of Gross Domestic Product
(GDP) by 40–45% compared with 2005 by 2020 [4,5], then in the 2014 Sino-U.S. joint statement on
climate to reduce carbon emission intensity by 60–65% compared with 2005 by 2030 [6]. At the end of
2017, the Chinese government announced the launch of a nationwide carbon trading market to achieve
energy conservation and emission reduction targets. However, in the process of policy implementation,
policymakers not only need to encourage provinces to achieve emission reduction targets, but also
have to avoid disturbing market order [7]. Therefore, under the circumstances of the fixed amount of
carbon emission right, how to formulate a reasonable and effective scheme of carbon emission right
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allocation is urgently needed based on the development and the amount of actual carbon emission of
each province.

There are many international studies on the distribution of carbon emissions. In 1990, three major
initial distribution schemes were proposed in the Amendment for the first time, namely public auction,
fixed price sale, and free distribution. Some literature, such as Cramton et al. [8] and Kampas et al. [9],
compared the characteristics of these schemes and concluded that each method has its own advantages
in different situations. In 2005, the European Union Emissions Trading Scheme (EU ETS), which is
the biggest emission trading market, was launched with the aim to achieve a given reduction target
for aggregate CO2 emissions at minimal cost [10,11]. Many scholars have investigated the carbon
emission allocation rule in the EU ETS. Martin et al. [12] concluded that EU ETS had a robust negative
impact on emission reduction, but no evidence supported the view that the EU ETS had strong
detrimental effects on economic performance in exploring whether EU ETS had an impact on the
economy. Oestreich et al. [11] and Daskalakis et al. [13] found that there exists a statistically-significant
carbon premium in the study of the impact of EU ETS on the financial performance of enterprises.
As the world’s largest carbon emitter, China faces greater pressure to reduce emissions. Therefore,
it is meaningful to investigate the Chinese provincial carbon emission rights allocation. In addition,
the experience of Chinese provincial carbon allocation research has significance to other countries in
the world because the measures adopted by the Chinese government to allocate the carbon emissions
right to each province are similar to those of the European Union Emissions Trading Scheme (EU ETS)
to participating countries.

In recent years, Data Envelopment Analysis (DEA), which is an axiomatic non-parametric
mathematical programming technique, has been increasingly used to allocate the fixed cost among
homogeneous Decision-Making Units (DMUs) [14,15]. The rationale for its popularity in solving the
fixed cost allocation problem is that it has several advantages. First, subjectivity can be avoided
because there is no need to impose weights on inputs and outputs in advance [16,17]. Second, the DEA
model has a high level of computational tractability and practicality since it is formulated and solved
by linear programming [18,19]. Third, DEA provides decision-makers the possibility of considering
the effect of feasible allocation plans on performance evaluation [20].

In China, there is a large regional imbalance between provinces. These imbalances include natural
resources and the structure of economic and energy consumption [21]. Therefore, provinces should
shoulder the burdens of carbon emission reduction jointly, but differentially [22,23]. The allocation of
carbon emission reduction responsibility is actually the allocation of carbon emission right of each
province since each province wants to take on less responsibility for emission reduction. Therefore, the
allocation of carbon emission right is equivalent to the allocation of fixed cost.

In terms of allocation principles, DEA-based fixed cost allocation models in the existing literature
can be classified into three categories. The first one is the principle of efficiency-invariance proposed by
Cook and Kress [24], which assumes that the efficiency score of each DMU should remain unchanged
after allocation. However, the method of cost allocation based on the efficiency invariance principle
may be determined entirely by the input side of DMUs, namely the amount of cost allocation is the same
for DMUs with the same inputs, but different outputs. The second one is the efficiency-maximization
approach, first proposed by Beasley [25], which assumes that all DMUs would be efficient after
the allocation under a set of common weights. However, the model is non-linear, and the gap
between the maximum value and the minimum value in the final allocation scheme is large, which
leads to difficulty in implementation. The last one is the game-based approach, first proposed by
Nakabayashi and Tone [26]. This principle combines game theory with DMUs, that is the more one
side gets, the less others get. In a recent study, Li et al. [27] developed a DEA-game cross-efficiency
approach by integrating cooperative game theory and the cross-efficiency to generate a unique and
fair allocation plan.

In previous literature, almost all literature dealing with carbon emission allocation with DEA was
based on the above three principles. Gomes and Lins [28] proposed a Zero Sum Gains DEA (ZSG-DEA)
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model based on the input-oriented radial CCR-DEA model to allocate CO2 emissions allowance among
the Annex I parties and Non-Annex I countries of the Kyoto Protocol. Lozano et al. [29] proposed
a DEA approach with three phases, i.e., maximizing aggregated desirable production, minimizing
undesirable total emissions, and minimizing the consumption of input resources, to reallocate the
emission permits. Wei et al. [30] estimated the CO2 reduction potential and marginal abatement costs
for 29 provinces over the period of 1995–2007 by using an extended Slacks-Based Measure (SBM)
model. Wang et al. [31] proposed a non-radial ZSG-DEA model for emission allowance allocation
on the provincial level for China by 2020. Miao et al. [23] also used a non-radial ZSG-DEA model
to allocate CO2 emissions between different Chinese provinces, but treating CO2 as the undesirable
output variable. Feng et al. [32] proposed a novel method that combined centralized models and
compensation schemes for carbon emission abatement allocation. Zhou et al. [33] presented a DEA
approach with multiple abatement factors based on the principles of equity and efficiency to allocate
CO2 emission quotas in 71 Chinese cities over 2005–2012. Yu et al. [34] considered the potential
collaboration between industrial decision-making units and proposed a nonlinear DEA approach to
allocate the regional industrial carbon abatement tasks.

Summarizing the related research, we find that all of the above studies considered each DMU
as a “black box” without taking into account the internal structure. However, it is more accurate for
formulating the scheme when considering the inner operation of DMUs. As a result, a new DEA
model with a network structure was introduced by Färe [35]. There are some studies in the existing
literature evaluating the efficiency of DMUs and allocating the fixed cost based on two-stage network
DEA approaches, while little work has been done on the fixed cost allocation of practical problems
by using the DEA-network model. Wanke et al. [36] adopted a network-DEA centralized efficiency
model to measure the efficiency in Brazilian banking. Li et al. [37] used a three-stage DEA model
to measure the efficiency of China’s manufacturing sector measures on green productivity growth
during the 11th Five-Year Period. In addition to efficiency evaluation, some scholars have studied
fixed cost allocation based on the two-stage DEA model in recent years. Yu et al. [38] proposed a fixed
cost allocation method based on the two-stage network DEA and the cross-efficiency to allocate the
fixed cost adequately. Zhu et al. [39] discussed the fixed cost allocation problem by using a two-stage
network DEA method and proposed three procedures to obtain a fair cost allocation plan based on
different objectives in reality. Ding et al. [40] first presented additive two-stage models to evaluate
the performance for each DMU when allocating the fixed cost, and via introducing the concepts of
satisfaction degree and fairness degree, an approach was proposed to obtain an optimal allocation
plan. However, their approach cannot guarantee a unique allocation plan. Li et al. [41] first used the
DEA model to measure the relative efficiency while taking the internal structure and possible allocated
costs into account and proposed a unique allocation plan for all DMUs and sub-stages in view of
the operation size of each DMU. Although the efficiency values of all DMUs are maximized and the
allocation plan is unique, the algorithm of Li et al. [41] is not rigorous, since they neglected the use of
the dual solution.

In this paper, we adopt the two-stage DEA-network model based on Li et al. [41] to investigate
the allocation plan of carbon emission right among each province in China, and the algorithm for
solving the unique allocation scheme is modified to make the result more accurate. To the best of
our knowledge, none of the existing literature deals with carbon allocation based on the two-stage
DEA-network model. Due to the complexity of the social economic structure in China, it is obviously
inaccurate for the allocation plan to use the traditional DEA models that only consider the initial inputs
and the final outputs of DMUs to deal with carbon emission right allocation. Nevertheless, a two-stage
DEA-network model combines two stages via the intermediate variables, which means that the output
of the first stage is the input of the second stage. The total fixed carbon emission will be allocated
to each phase to participate in the whole production process. To sum up, the contributions of this
paper are three-fold. Firstly, this paper applies the two-stage DEA-network model to investigate the
allocation plan of carbon emission right. The two-stage DEA-network model is adopted to investigate



Sustainability 2019, 11, 1369 4 of 24

the allocation plan of carbon emission right for the first time. Secondly, we point out that the algorithms
solving the unique allocation scheme of the existing literature are not rigorous since they neglect the
information of the dual solution, so the algorithms are modified in this paper to make the result more
accurate. Finally, a fair, effective, and unique allocation plan is generated by combining the two-stage
DEA-network model with the practical problem of carbon emission allocation right in China. By means
of analyzing the allocation amount in the first and second stage, as well as the carbon emission space
and emission reduction potential of each province, some guidance and suggestions can be provided
for policy-makers.

The remainder of this paper is organized as follows. In Section 2, the methodology for carbon
emission allocation is presented. In Section 3, an empirical analysis of the carbon emission allocation of
each province is analyzed based on the two-stage DEA-network models proposed above, as well as the
space and potential of carbon emission reduction of different regions in China. Then, some suggestions
are given to policy-makers based on the results. Finally, Section 4 presents the main conclusions of
the work.

2. Materials and Methods

2.1. Preliminary

DEA was first introduced by Charnes et al. [42] in 1978 and was called the CCR model, which
assumed Constant Return to Scale (CRS). Subsequently, it was extended to the BCC model by
Banker et al. [43], which assumed Variable Return to Scale (VRS), i.e., inputs and outputs cannot be
increased or decreased proportionately. We will briefly describe the classical BCC model in this section.

Suppose there is a set of homogeneous DMUs, and each DMUj(j = 1, ..., n)consumes m inputs
xij(i = 1, ..., m) to produce s outputs yrj(r = 1, ..., s). The relative efficiency score for any given DMUd
is calculated by solving the following BCC model:

θ?d = Max

s
∑

r=1
uryrd + u0

m
∑

i=1
vixid

s.t.

s
∑

r=1
uryrj + u0

m
∑

i=1
vixij

≤ 1, ∀j = 1, 2, . . . , n

ur, vi ≥ 0, ∀r = 1, 2, . . . , s; i = 1, 2, . . . , m

(1)

where ur and vi are unknown weights attached to the rth output and ith input, respectively, and the
optimal objective function θ?d is defined as the BCC efficiency score of DMUd; where u0 > 0 represents
increasing return to scale, u0 < 0 represents decreasing return to scale, and u0 = 0 represents constant
return to scale. Given u0 = 0, then the above model will be transformed to the CCR model.

Model (1) is nonlinear in a fractional programming form, and it can be transformed to a linear

model by the Cooper–Charnes transformation. Let t = 1/
m
∑

i=1
vixid, µr = tur, υi = tvi, µ0 = tu0. Then,

the model becomes:
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θ?d = Max
s

∑
r=1

µryrd + µ0

s.t.
s

∑
r=1

µryrj −
m

∑
i=1

υixij + µ0 ≥ 0, ∀j = 1, 2, . . . , n

m

∑
i=1

υixid = 1

µr, υi ≥ 0, ∀r = 1, 2, . . . , s; i = 1, 2, . . . , m

(2)

Solving Model (2), a series of weights (µ?
r , υ?i , µ?

0) and the efficiency value of each DMU are

obtained. The efficiency of DMUd is θ?d =
s
∑

r=1
µ?

r yrd + µ?
0 , which ranges from zero to one, and DMUd

is identified as DEA efficient if θ?d = 1, otherwise DEA inefficient.

2.2. Carbon Emission Right Allocation Model Based on Two-Stage Structures

2.2.1. Two-Stage Network Structure

Consider the two-stage network structure shown in Figure 1.

Stage1 Stage2
Xij,i=1, ,m Zpj,p=1, ,q Yrj,r=1, ,s

Rj

Figure 1. Two-stage network process of DMUj.

In the first stage, the inputs of DMUj are xij(i = 1, . . . , m), and the outputs are the intermediate
variables zpj(p = 1, . . . , q). In the second stage, the intermediate variables zpj are taken as inputs to
produce the final outputs yrj(r = 1, . . . , s).

Suppose that there exists a total fixed cost R to be allocated, and the amount of allocation to each
DMUj is Rj, i.e.,

n

∑
j=1

Rj = R, Rj ≥ 0, ∀j = 1, 2, . . . , n (3)

The allocation amount Rj of each DMUj is allocated to the first stage and the second stage to
participate in production activities with R1j and R2j, respectively, such that:

Rj = R1j + R2j, R1j ≥ 0, R2j ≥ 0, ∀j = 1, 2, . . . , n (4)

Based on the two-stage DEA model [41], we obtain the following model to calculate the overall
efficiency when DMUd(d = 1, . . . , n) is under evaluation:
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θ?d = Max

q
∑

p=1
ϕpzpd + ϕ0 +

s
∑

r=1
µryrd + µ0

m
∑

i=1
υixid + υm+1R1d +

q
∑

p=1
ϕpzpd + υm+1R2d

s.t. θ1j =

q
∑

p=1
ϕpzpj + ϕ0

m
∑

i=1
υixij + υm+1R1j

≤ 1, ∀j = 1, 2, . . . , n

θ2j =

s
∑

r=1
µryrd + µ0

q
∑

p=1
ϕpzpj + υm+1R2j

≤ 1, ∀j = 1, 2, . . . , n

n

∑
j=1

R1j + R2j = R, R1j, R2j ≥ 0, ∀j = 1, 2, . . . , n

µr, ϕp, υi ≥ 0, ∀r = 1, . . . , s; p = 1, . . . , q; i = 1, . . . , m

(5)

where θ1j and θ2j are the efficiency values of DMUj in the first stage and the second stage, respectively,
and θ?d is the overall efficiency of the DMUd to be evaluated. It is noteworthy that the overall efficiency
θ?d can be represented by a combination of θ1d and θ2d, namely θ?d = λ1

dθ1d + λ2
dθ2d. λ1

d and λ2
d represent

the relative importance of Sub-stages 1 and 2, respectively. It can be measured by the proportion of
inputs in each stage on the total inputs, that is,

λ1
d =

m
∑

i=1
υixid+υm+1R1d

m
∑

i=1
υixid+υm+1R1d+

q
∑

p=1
ϕpzpd+υm+1R2d

,

λ2
d =

q
∑

p=1
ϕpzpd+υm+1R2d

m
∑

i=1
υixid+υm+1R1d+

q
∑

p=1
ϕpzpd+υm+1R2d

Model (5) is fractional programming, so we need to transform it to a linear model (6)
(see Appendix A for details).

θ?d = Max(
q

∑
p=1

φpzpd + φ0 +
s

∑
r=1

uryrd + u0)

s.t.
q

∑
p=1

φpzpj + φ0 −
m

∑
i=1

vixij − r1j ≤ 0, ∀j = 1, 2, . . . , n

s

∑
r=1

uryrj + u0 −
q

∑
p=1

φpzpj − r2j ≤ 0, ∀j = 1, 2, . . . , n

m

∑
i=1

vixid + r1d +
q

∑
p=1

φpzpd + r2d = 1

n

∑
j=1

(r1j + r2j) = vm+1R, r1j, r2j ≥ 0, ∀j = 1, 2, . . . , n

ur, φp, vi ≥ 0, vm+1 > 0, ∀r = 1, . . . , s; p = 1, . . . , q; i = 1, . . . , m

(6)

For DMUd, the optimal weights of the model are (ud?
r , φd?

p , vd?
i , vd?

m+1, rd?
1j , rd?

2j , φd?
0 , ud?

0 ), and the

optimal value can be calculated by θ?d =
q
∑

p=1
φd?

p zpd + φd?
0 +

s
∑

r=1
ud?

r yrd + ud?
0 ). In addition, the fixed
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cost allocation plan from the perspective of DMUd is Rd?
j = Rd?

1j + Rd?
2j (j = 1, . . . , n), where

Rd?
1j = rd?

1j /vd?
m+1 and Rd?

2j = rd?
2j /vd?

m+1.
Li et al. [41] proved that there exists at least a set of weights to make all DMUs and their sub-stage

be simultaneously efficient. Therefore, an efficient allocation plan can be obtained as follows:

q

∑
p=1

φpzpj −
m

∑
i=1

vixij − R1j + φ0 = 0, ∀j = 1, 2, . . . , n

s

∑
r=1

uryrj −
q

∑
p=1

φpzpj − R2j + u0, ∀j = 1, 2, . . . , n

n

∑
j=1

(R1j + R2j) = R, R1j, R2j ≥ 0, ∀j = 1, 2, . . . , n

ur, φp, vi ≥ 0, ∀r = 1, 2, . . . , s; p = 1, 2, . . . , q; i = 1, 2, . . . , m

(7)

It can be seen from the efficient allocation plan (7) that the weights attached to the allocated cost
are meaningless; for simplicity, the weight is usually set to one [25]. In the efficient allocation plan (7),
there are (m + q + s + 2n + 2) variables, but only (2n + 1) equality constraints. Therefore, the solution
of (7) may not be unique.

2.2.2. Carbon Emission Right Allocation Based on the Two-Stage DEA Model

In this subsection, we obtain a unique allocation plan by taking the operation size of each DMU
into consideration. Miao et al. [23] pointed out in the study of regional carbon emission allocation in
China that the carbon emission allocation right based on per capita carbon emission would expand
the gap between provinces. Specifically, for some developed regions, such as Beijing and Shanghai,
their population is relatively less than that of underdeveloped provinces, but they produce more
carbon emission. If the allocation is carried out according to per capita carbon emission, each province
will not be efficient, and the disadvantage of allocating based on emission per unit of GDP is that it
will restrict the development of some relatively underdeveloped provinces. Similar literature include
Zhang et al. [44], Zhou et al. [7], and Kong et al. [45]. Therefore, various factors need to be taken into
account to allocate the carbon emission rights of all provinces in China equitably and effectively.

This paper formulates a unique allocation plan based on the size of DMUs; it is reasonable and
acceptable to allocate a large amount of carbon emission right to DMUs with large inputs and outputs
and a small amount to DMUs with small inputs and outputs. Suppose the size parameters of the first
stage and second stage are αj and β j, respectively. Then, the total amount of carbon emission allocation

right of DMUj will be allocated to each stage by αjR, β jR, and
n
∑

j=1
(αj + β j) = 1. The data processing

and the operation size parameters are presented in Appendix B.
In order to obtain a unique allocation plan, we need to introduce a series of deviation variables that

measure the difference between the efficient allocation R1j and R2j given in (7) and the proportionate
allocation αjR and β jR.

Let
∣∣αjR− R1j

∣∣ = Cj and
∣∣β jR− R2j

∣∣ = Dj, that is Cj represents the deviation between Rij and
αjR for the first stage and Dj represents the deviation between R2j and β jR for the second stage,
and both Cj and Dj should be minimized. To this end, we minimize the maximum combined deviation
(Cj + Dj). The model (8) is as follows:
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MinMax(Ck + Dk)

s.t.
∣∣αjR− R1j

∣∣ = Cj, ∀j = 1, 2, . . . , n∣∣β jR− R2j
∣∣ = Dj, ∀j = 1, 2, . . . , n

q

∑
p=1

φpzpj −
m

∑
i=1

vixij − R1j + φ0 = 0, ∀j = 1, 2, . . . , n

s

∑
r=1

uryrj −
q

∑
p=1

φpzpj − R2j + u0, ∀j = 1, 2, . . . , n

n

∑
j=1

(R1j + R2j) = R, R1j, R2j ≥ 0, ∀j = 1, 2, . . . , n

ur, φp, vi ≥ 0, ∀r = 1, 2, . . . , s; p = 1, 2, . . . , q; i = 1, 2, . . . , m

(8)

In Model (8), the objective function is the deviation, and the value should be as small as possible.
The first and the second constraints represent the deviation of each stage, and the subsequent
constraints are the efficient allocation set. Since the model (8) is nonlinear, we need to change it
into a linear model (9) (see Appendix C for details).

MinMax ρ

s.t. c1j + c2j + d1j + d2j − ρj = 0, ∀j = 1, 2, . . . , n

ρj − ρ ≤ 0, ∀j = 1, 2, . . . , n

αjR− R1j = c1j + c2j ∀j = 1, 2, . . . , n

β jR− R2j = d1j − d2j, ∀j = 1, 2, . . . , n
q

∑
p=1

φpzpj −
m

∑
i=1

vixij − R1j + φ0 = 0, ∀j = 1, 2, . . . , n

s

∑
r=1

uryrj −
q

∑
p=1

φpzpj − R2j + u0, ∀j = 1, 2, . . . , n

n

∑
j=1

(R1j + R2j) = R, R1j, R2j ≥ 0, ∀j = 1, 2, . . . , n

c1j, c2j, d1j, d2j ≥ 0, ∀j = 1, 2, . . . , n

ur, φp, vi ≥ 0, ∀r = 1, 2, . . . , s; p = 1, 2, . . . , q; i = 1, 2, . . . , m

(9)

2.2.3. Algorithm for Solving the Above Model

Suppose the optimal weights of the model (9) are (ρ1?, c1?
1j , c1?

2j , d1?
1j , d1?

2j , ρ1?
j , u1?

r , φ1?
p , v1?

i , R1?
1j , R1?

2j ,

φ1?
0 , u1?

0 , ∀j, r, p, i). The allocation plans can be affected if we neglect the fact that the model (9) may
have multiple optimal solutions and ignoring the information provided by the dual problem. Therefore,
we need to use the dual programming of the model (9). The duality problem is formulated below.
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max
n

∑
j=1

hjαjR +
n

∑
j=1

k jβ jR + wR

s.t.
n

∑
j=1

gj ≤ 1

f j + hj ≤ 0, ∀j = 1, 2, . . . , n

f j − hj ≤ 0, ∀j = 1, 2, . . . , n

f j + k j ≤ 0, ∀j = 1, 2, . . . , n

f j − k j ≤ 0, ∀j = 1, 2, . . . , n

f j + gj ≥ 0, ∀j = 1, 2, . . . , n
n

∑
j=1

tjyrj ≤ 0, ∀r = 1, 2, . . . , s

n

∑
j=1

ljzpj −
n

∑
j=1

tjzpj ≤ 0, ∀p = 1, 2, . . . , q

n

∑
j=1

ljxij ≥ 0, ∀i = 1, 2, . . . , m

hj − lj + w ≤ 0, ∀j = 1, 2, . . . , n

k j − tj + w ≤ 0, ∀j = 1, 2, . . . , n
n

∑
j=1

lj ≤ 0

n

∑
j=1

tj ≤ 0

f j, gj, hj, k j, lj, tj ≥ 0, ∀j = 1, 2, . . . , n

w ≥ 0

(10)

Based on duality theory, when the optimal value of a dual variable is positive, the inequality
constraints associated with this variable in the original problem will hold with equality [46]. By solving
the dual model, the DMUj that satisfies the equation ρj = ρ1? will be determined based on the sign of
the corresponding variable cj being positive. Then, all DMUs can be divided into two subsets:

Γ1 =
{

j | c1j + c2j + d1j + d2j = ρ1?
}

, Γ2 =
{

j | c1j + c2j + d1j + d2j < ρ1?
}

(11)

then minimizing the deviations of DMUs in Γ2. The process will not be terminated until the minimum
deviation has been determined for all DMUs. The algorithm flow is described as follows:

Step 1: Let t = 1, solving the model (9) to obtain the optimal weights (ρ1?, c1?
1j , c1?

2j , d1?
1j , d1?

2j , ρ1?
j ,

u1?
r , φ1?

p v1?
i , R1?

1j , R1?
2j , φ1?

0 , u1?
0 , ∀j, r, p, i). If the deviation ρj = c1j + c2j + d1j + d2j of DMUj is equal

to ρ1?, then we solve the dual model to determine whether the corresponding dual variable cj of
DMUj is positive. If cj > 0, then the DMUj is a member of set Γ1 =

{
j | c1j + c2j + d1j + d2j = ρ1?},

and the allocation plan of DMUj can be determined as R?
1j and R?

2j; otherwise, the DMUj with

other DMUj whose deviations are not equal to ρ1? will be regarded as members of set Γ2,
i.e., Γ2 =

{
j | c1j + c2j + d1j + d2j < ρ1?}. Denote the number of DMUs in Γ1 as n1.

Step 2: If n1 = m + q + s + 1 (the number of flexible variables in the efficient allocation set (7)
is (m + q + s + 1)), then the algorithm terminates, and the final allocation plan is uniquely given by
(R?

1j, R?
2j, ∀j). Otherwise, go to Step 3 if n1 < m + q + s + 1.
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Step 3: Let t = t + 1, solving the model (12) to obtain the optimal weight (ρ(t+1)?, c(t+1)?
1j , c(t+1)?

2j ,

d(t+1)?
1j , d(t+1)?

2j , ρ
(t+1)?
j , u(t+1)?

r , φ
(t+1)?
p , v(t+1)?

i , R(t+1)?
1j , R(t+1)?

2j , φ
(t+1)?
0 , u(t+1)?

0 , ∀j, r, p, i).

Min ρ

s.t. c1j + c2j + d1j + d2j − ρj = 0, ∀j = 1, 2, . . . , n

ρj = ρ1?, ∀j ∈ Γ1

...

ρj = ρ(t−1)?, ∀j ∈ Γ2t−1

ρj − ρ ≤ 0, j ∈ Γ2t

αjR− R1j = c1j + c2j ∀j = 1, 2, . . . , n

β jR− R2j = d1j − d2j, ∀j = 1, 2, . . . , n
q

∑
p=1

φpzpj −
m

∑
i=1

vixij − R1j + φ0 = 0, ∀j = 1, 2, . . . , n

s

∑
r=1

uryrj −
q

∑
p=1

φpzpj − R2j + u0, ∀j = 1, 2, . . . , n

n

∑
j=1

(R1j + R2j) = R, R1j, R2j ≥ 0, ∀j = 1, 2, . . . , n

c1j, c2j, d1j, d2j ≥ 0, ∀j = 1, 2, . . . , n

ur, φp, vi ≥ 0, ∀r = 1, 2, . . . , s; p = 1, 2, . . . , q; i = 1, 2, . . . , m

(12)

If the deviation of DMUj is equal to ρ(t+1)?, then we solve the dual programming of the model (12)
in the same way to determine whether the corresponding dual variable cj of DMUj is positive. If cj > 0,
then the DMUj is a member of set Γ2t+1, and the allocation plan of DMUj can be determined as

R(t+1)?
1j and R(t+1)?

2j ; otherwise, the DMUj with other DMUj whose deviations are not equal to ρ(t+1)?

will be regarded as members of set Γ2t+2. Then, the set Γ2t is divided into two subsets as follows:
Γ2t+1 =

{
j | c1j + c2j + d1j + d2j = ρ(t+1)?

}
, Γ2t+2 =

{
j | c1j + c2j + d1j + d2j < ρ(t+1)?

}
. Denote the

number of DMUs in Γ2t+1 as nt+1.
Step 4: If n1 + n2 + . . . + nt+1 = m + q + s + 1, then the algorithm terminates, and the final

allocation plan is determined by (R(t+1)?
1j , (R(t+1)?

2j , ∀j). Otherwise, go to Step 3 to continue.

3. Results and Discussion

The data source, allocation results, and some policy suggestions are presented in this section.

3.1. Variables and Data

By reviewing the principle of CO2 emissions quota allocation in present studies, it can be seen
that allocation principles of CO2 emissions right are often based on economic ability, historical
carbon emissions levels, and energy consumption, as well as some other indicators. For example,
Wang et al. [31] considered population, total energy consumption, and CO2 emissions as inputs and
GDP as the only output. Feng et al. [32], Miao et al. [23], and Kong et al. [45] regarded labor, capital
stock, and total energy consumption as inputs, GDP as the desirable output, and CO2 emissions
as the undesirable output. Jiang et al. [47] concluded that human economic activities in China
were the dominant effect of carbon emission, while energy intensity and population growth were
the most significant driving force. Wang et al. [48] and Ma et al. [49] indicated that the increase
of carbon emission was basically promoted by aggressive economic output and increased energy
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consumption since the Chinese economy highly depends on energy consumption, and CO2 emissions
from energy consumption mainly came from the residential consumption sector and transportation
industry. Therefore, it is reasonable to take the improvement of resident living standards in cities
and transportation into account. In this paper, two indicators of urbanization level and private car
ownership were selected as intermediate variables to measure the impact of residential consumption
and transportation on carbon emission and the economy, respectively. In addition, like most literature,
we use capital stock (K), labor force (L), and energy consumption (E) as inputs in the first stage, while
GDP as the final desirable output. The following Figure 2 shows the detailed inputs and outputs of
the system.

Stage 1 Stage 2

Capital stock 
Labor force

Energy consumption Carbon emission

Urbanization rate
Private car ownership

GDP

Carbon emission right

Figure 2. Two-stage network process for carbon emission right allocation.

Dealing with undesirable outputs is also a problem that many scholars have studied in the DEA
field. For example, the Directional Distance Function (DDF model, Chung et al. [50]) assumes that
undesirable outputs are imposed with weak disposability and DMUs follow a predetermined direction
to approach the effective frontier. The limitations of this model are that a directional vector needs to be
specified beforehand, and a different final value results from different choices of directional vectors.
The hyperbolic model (Färe et al. [51]) also assumes that the undesirable outputs are imposed with
weak disposability. Unlike the DDF model, the locus of DMUs moving to the effective frontier in
this model is hyperbolic, i.e., the inefficiency is measured by expanding the desirable outputs and
reducing undesirable outputs by the same proportion. The limitation of this model is that it is difficult
to solve since the model is nonlinear. The Seiford and Zhu model (SZ model, Seiford and Zhu [52])
assumes that undesirable outputs are imposed with strong disposability and transformed by adding a
positive scalar on original undesirable outputs after multiplying them by −1. The limitation of this
model is that the positive scalar is hard to specify since different transfer vectors will result in different
efficiency values. The Undesirable Output as the Input model (UINP model, Hailu and Veeman. [53])
treats undesirable outputs as inputs, but this model cannot accurately represent the production process.
In this paper, we adopted the approach consistent with most of the literature on fixed cost allocation
dealing with undesirable outputs for simplicity, namely regarding undesirable outputs as inputs.

As an undesirable output, we regarded CO2 emission as an input in the first stage since DMUs
are expected to minimize their input consumption, as well as undesirable outputs.

The data covered 30 provinces during the period 2007–2016. However, Tibet was excluded due
to the absence of energy consumption data. Data were collected from the China Statistical Yearbook
2007–2016. The description and processing of variables are as follows:

In terms of capital stock, this refers to all existing resources in provinces, and it is a comprehensive
index reflecting the scale, speed, and structure of social investment (Wang et al. [54]). The capital stock
is unavailable in any Statistical Yearbook. Therefore, we have to estimate this indicator via using the
following method:

Ki,t = Ii,t + (1− δt)Ki,t−1 (13)

where Ii,t, δi, and Ki,t represent gross investment, depreciation rate, and capital stock for province i at
time t, respectively. This paper adopted the method of Zhang et al. [55] to set δ = 9.6%. Furthermore,
we extended the capital stock of each province to 2016 based on 2005.

In terms of labor force, this is one of the indicators that must be considered in the production
process. This paper selected the number of employees in the urban unit as the labor force indicator,
since they are the main contributors of GDP and carbon emission.
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As for energy consumption, this is the main contribution of China’s economic development.
Besides, carbon emission is mainly generated by the burning of fossil energy. Therefore, energy
consumption was taken as an input.

For carbon emission, it needed to be estimated since it was not available in existing data sources.
At present, there are three international principles for carbon emission accounting [56]. The first one is
producer responsibility, i.e., the responsibility of carbon emission belongs to the producers; the second
principle is the consumer responsibility, which blames CO2 emission on consumption; and the third
one is a compromise between the first and the second principles, i.e., we need to consider the economic
structure of the provinces when calculating carbon emission. Although the third one is more equitable,
it was difficult for us to collect data because the China regional input-output table is investigated
every five years. Therefore, this paper attributed carbon emissions to producers and believes that the
carbon emissions of each province was mainly generated by the consumption of fossil energy in the
province [57]. These can be estimated by multiplying the total amounts of energy consumptions by
their corresponding carbon emission coefficients [54]. The carbon emission coefficients were obtained
from the Intergovernmental Panel on Climate Change 2006. The calculation formula is as follows [30]:

CO2 =
6

∑
i=1

Ei × CFi × CCi × COFi ×
44
12

(14)

where i represents different fossil energy indicators, which includes coal, gasoline, kerosene, diesel,
fuel oil, and natural gas. Ei represents the total energy consumption of type i. CFi represents the carbon
emission factor of the ith energy. CCi is the net calorific value of the ith energy source. COFi is the
carbon oxidation factor, and 44

12 is the ratio of the mass of one carbon atom combined with two oxygen
atoms to the mass of one oxygen atom. The net calorific value and carbon emission factor can be
obtained from IPCC 2006, as shown in Table 1. The carbon oxidation factor of each energy defaults
to one.

Table 1. Carbon emission coefficients.

Energy Types
The Net Calorific Value

Carbon Emission Factors
Unit Value

coal kJ/kg 20,908 25.8
gasoline kJ/kg 43,070 18.9
kerosene kJ/kg 43,070 19.5

diesel kJ/kg 42,652 20.2
fuel oil kJ/kg 41,816 21.1

natural gas kJ/m3 38,931 15.3

The urbanization level of each province can reflect people’s consumption patterns, which are
closely related to carbon emissions and GDP. The index is measured by the ratio of urban population
to total population.

With the upgrading of residents’ consumption patterns, the purchasing of private cars showed a
trend of rapid growth. The ownership of private cars not only reflects economic development and
consumption level, but also relates to carbon emission due to the change of travel mode.

This paper took GDP as the only desirable output. In case of the same input from each province, it
is believed that the higher the GDP is, the higher the efficiency value the province obtains. Descriptive
statistics of the input and output indicators for 30 provinces appear in Table 2, which contains the
average level, the standard variance, the minimum level, and the maximum level. Note in Table 2 that
the large standard deviation of each input index indicates that there is a great gap between provinces.
Therefore, the VRS DEA model was adopted in this paper.
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Table 2. Descriptive statistics of the input and output levels for 30 provinces in 2016.

Descriptive Statistics Average SD Maximum Minimum

Capital stock 91,033.16 56,517.92 237,203.21 14,362.83
Labor force 595.22 423.18 1957.57 63.09

Energy consumption 15,665.73 11,388.68 47,772.59 1393.82
Carbon emission 32,617.88 23,409.29 102,669.79 3139.03
Urbanization rate 0.59 0.11 0.88 0.44

Private car ownership 543.30 401.75 1550.65 72.96
GDP 25,963.95 19,937.99 80,854.91 2572.49

To facilitate the analysis, 30 provinces in China were divided into six regions including north,
northeast, east, south, southwest, and northwest according to their geographical division. The north
contained five provinces: Beijing, Tianjin, Hebei, Shanxi, and Inner Mongolia. The northeast included
three provinces: Liaoning, Jilin, and Heilongjiang. The east included seven provinces: Shanghai,
Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, and Shandong. The south included six provinces: Henan,
Hubei, Hunan, Guangdong, Guangxi, and Hainan. The southwest involved five provinces: Chongqing,
Sichuan, Guizhou, Yunnan, and Tibet. The northwest was comprised of five provinces: Shaanxi, Gansu,
Qinghai, Ningxia, and Xinjiang. In order to put the different indicators of different regions together to
compare the differences, this paper simultaneously reduced the asset stock, energy consumption, CO2

emission, and GDP by 100-times because of the great difference between the indicators. The differences
in input and output indicators among different regions are shown in Figure 3.00.10.20.30.40.50.60.70.802004006008001000120014001600 North Northeast East South Southwest Northwest Urbanization rateValue RegionCapital stock Labor force Energy consumptionCarbon emission Private car ownership GDPUrbanization rate

Figure 3. The differences between each region in 2016.

As shown in Figure 3, GDP was relatively large in the eastern and southern regions, while it varied
little in the northern, northeastern, and southwestern regions, and it was smallest in the northwest. At
the same time, other indicators such as labor force, private car ownership, and capital stock showed
the same trend as GDP in each region. This phenomenon was caused by the relatively developed
economy and technology in the east and south of China, while the relatively undeveloped situation
in the northwest. Energy consumption and CO2 emission in the north and east were higher, but in
the southwest and northwest, they were less since economic development in the north and northeast
mainly depends on heavy industry and energy utilization. As for the southwest and northwest, such
as Yunnan, Gansu, and Ningxia, there were less energy consumption and CO2 emissions because of
the sparse population and tourism. The urbanization rate was higher in the north, northeast, and east,
while it was lower in the south, southwest, and northwest, but they all exceeded 0.5. According to
the analysis above, the efficiency evaluation of each province needs to take all the above indicators
into account.
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3.2. Results Analysis

In order to analyze the carbon emission right allocation of each province, this paper took data
into the model (2) and the model (6), respectively, to obtain the efficiency before allocation by setting
the fixed cost allocation R = 0, and the results are shown in Table 3.

Table 3. The efficiency values of the provinces before the allocation.

Province BCC.Eff a BCC.Rank Stage1.Eff b Stage2.Eff c Overall.Eff d Overall.Rank

Beijing 1 1 1 0.7692 0.9054 4
Tianjin 1 1 0.8143 0.7657 0.7925 6
Hebei 0.9557 22 1 0.3016 0.6508 21
Shanxi 0.7910 29 0.8932 0.3478 0.6359 23

Inner Mongolia 1 1 0.7613 0.5136 0.6542 20
Liaoning 0.7551 30 0.6601 0.4358 0.5709 30

Jilin 0.9067 26 0.7202 0.5513 0.6495 22
Heilongjiang 0.8761 27 0.7374 0.5474 0.6568 19

Shanghai 1 1 0.7380 1 0.8493 5
Jiangsu 1 1 0.6786 0.6543 0.6688 17

Zhejiang 0.9399 24 0.9835 0.4487 0.7183 8
Anhui 0.9463 23 0.6825 0.4840 0.6020 27
Fujian 1 1 0.7258 0.6153 0.6793 14
Jiangxi 0.9705 20 0.6746 0.5753 0.6346 24

Shandong 1 1 0.8043 0.4748 0.6574 18
Henan 1 1 0.7119 0.4312 0.5952 28
Hubei 1 1 0.6306 0.6068 0.6214 26
Hunan 1 1 0.7738 0.5638 0.6822 13

Guangdong 1 1 0.9744 0.5853 0.7824 7
Guangxi 1 1 0.8263 0.5372 0.6955 10
Hainan 1 1 1 0.9718 1 1

Chongqing 0.9596 21 0.6763 0.6671 0.6726 15
Sichuan 1 1 0.9937 0.3962 0.6959 9
Guizhou 1 1 0.8006 0.5387 0.6841 12
Yunnan 1 1 1 0.3871 0.6936 11
Shaanxi 0.8729 28 0.6297 0.5072 0.5823 29
Gansu 1 1 0.7045 0.6200 0.6696 16

Qinghai 1 1 1 1 1 1
Ningxia 1 1 1 0.8954 0.9510 3
Xinjiang 0.9394 25 0.7067 0.5302 0.6336 25

a BCC.Eff: BCC Efficiency; b Stage 1.Eff: Stage 1 Efficiency; c Stage2.Eff: Stage 2 Efficiency; d Overall.Eff: Overall.Efficiency.

Experimental results show that when using the BCC model for efficiency evaluation, the efficiency
of 19 provinces reached one, and all provinces exceeded 0.9 except for seven provinces, including
Shanxi, Liaoning, Heilongjiang, Shaanxi, etc. While using the two-stage network model to evaluate the
efficiency of provinces, there only Hainan and Qinghai provinces reached the efficiency value of one,
followed by Ningxia, Beijing, Shanghai, Tianjin, Guangdong, Zhejiang, etc. This is because each DMU
will chose a weight that was most advantageous to itself to achieve maximum efficiency when using
the BCC model for efficiency evaluation [58], videlicet the traditional BCC model usually overestimated
the efficiency of DMUs and neglected the internal structure of DMUs via only considering the inputs
and outputs. By contrast, with some inputs as internal variables, the two-stage network model not
only reflected the efficiency of each phase, but also the actual production situation.

This paper first used the method mentioned above to analyze the carbon distribution in each
province in 2016. In 2016, the total carbon emission, namely fixed cost allocation, was 978,536.52
tons. Firstly, the model (6) was used to calculate the efficiency of the two subsystems and the overall
efficiency after allocation. The result shows that the sub-stages and overall efficiency values of each
province were one. Then, we used the model (9) to get the amount of allocation of each subsystem,
and finally, the overall allocation was obtained, as shown in Table 4.
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Table 4. Carbon emission right allocation in 2016.

Province Actual Carbon
Emissions

Stage 1
Allocation

Stage 2
Allocation

Overall
Allocation

Carbon Emission
Space

Beijing 5825.54 9220.17 11,844.07 21,064.24 15,238.69
Tianjin 10,918.08 10,014.64 10,111.02 20,125.66 9207.58
Hebei 60,150.40 47,892.50 1088.81 48,981.31 −11,169.09
Shanxi 73,066.16 23,885.34 79.16 23,964.50 −49,101.66

Inner Mongolia 75,158.71 25,141.85 7356.64 32,498.49 −42,660.23
Liaoning 40,263.77 26,521.46 6550.22 33,071.68 −7192.09

Jilin 20,477.66 13,092.27 5993.15 19,085.42 −1392.23
Heilongjiang 30,376.18 13,555.96 5683.94 19,239.90 −11,136.28

Shanghai 16,686.64 6331.69 19,833.42 26,165.10 9478.46
Jiangsu 62,239.03 54,698.20 42,451.31 97,149.51 34,910.48

Zhejiang 34,570.89 38,748.05 16,548.67 55,296.71 20,725.82
Anhui 34,802.07 24,804.37 10,418.32 35,222.69 420.61
Fujian 17,400.95 16,955.25 16,313.37 33,268.62 15,867.68
Jiangxi 17,773.41 14,345.57 8871.92 23,217.49 5444.08

Shandong 102,669.79 71,214.80 25,463.87 96,678.67 −5991.12
Henan 51,235.04 41,066.02 13,592.93 54,658.96 3423.92
Hubei 28,889.45 23,236.92 18,089.68 41,326.60 12,437.15
Hunan 27,141.81 23,832.39 16,556.78 40,389.17 13,247.37

Guangdong 44,437.55 44,489.44 39,439.08 83,928.52 39,490.97
Guangxi 15,978.49 14,217.72 8184.25 22,401.96 6423.48
Hainan 3139.03 206.16 1568.58 1774.75 −1364.29

Chongqing 13,991.02 10,921.45 9613.73 20,535.17 6544.15
Sichuan 24,729.43 29,454.77 11,626.97 41,081.74 16,352.31
Guizhou 29,718.19 11,652.60 3631.38 15,283.99 −14,434.20
Yunnan 18,010.10 16,016.66 1576.54 17,593.20 −416.90
Shaanxi 41,315.73 20,707.80 7241.73 27,949.53 −13,366.19
Gansu 14,272.06 6183.35 1847.25 8030.61 −6241.46

Qinghai 4557.27 61.23 584.19 645.42 −3911.84
Ningxia 17,931.76 3150.05 165.03 3315.07 −14,616.68
Xinjiang 40,810.31 12,048.27 2543.59 14,591.85 −26,218.45

The second column of Table 4 shows the actual carbon emissions of the provinces in 2016, among
which the top five provinces for carbon emission were Shandong, Inner Mongolia, Shanxi, Jiangsu,
and Hebei. In other words, carbon emission in the northern and eastern regions was relatively higher
due to more energy consumption in the northern area and more labor force in the eastern. Based on
the two-stage network DEA model proposed in this paper, the top five provinces with the highest
carbon allocation were Jiangsu, Shandong, Guangdong, Zhejiang, and Henan, which indicates that the
allocation plan was not only related to carbon emissions, but also related to factors such as labor force,
asset stock, urbanization rate, and private car ownership.

The last column in the Table 4 is the space of carbon emission that was attained based on the
difference between the carbon allocation and actual emission of each province. The space of carbon
emission reflects the maximum amount of CO2 that each province can emit. If the value is negative,
this indicates that the corresponding province should improve energy efficiency and reduce CO2

emission. Otherwise, it demonstrates that the province has enough carbon emission right. The results
of carbon emission permits of each province in 2016 are shown in Figure 4.
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Figure 4. Carbon emission permits and emission reduction potential of provinces in 2016.

As shown in Figure 4, provinces with negative carbon emission permit value included Hebei,
Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shandong, Hainan, Guizhou, Yunnan, Shaanxi,
Gansu, Qinghai, Ningxia, and Xinjiang. In particular, some provinces located in the northern and
western regions such as Shanxi, Inner Mongolia, Guizhou, Shaanxi, Ningxia, and Xinjiang had large
negative corresponding values.

In order to compare the carbon emission permits of each region horizontally, this paper calculated
the average space of carbon emission in six regions from 2007–2016, and the results are displayed in
Figure 5.
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Figure 5. Carbon emission space of each region.

In Figure 5, the values of carbon emission permits in north and northeast China were negative
from 2007–2016, and the phenomenon of excess emissions was most serious in 2011, 2012, and
2013. Although the situation has improved since 2014, it is still necessary to develop the production
technology level and energy utilization to reduce CO2 emissions. As for the northwest, carbon emission
permit values continued to be negative after 2010. In addition, the carbon emission permits of the
southwest were almost zero, which indicates that there was almost no difference between the actual
consumption and carbon emissions. The space of carbon emission in southern and eastern areas was
not only large, but also gradually increasing because of the economy and technology.

The indicator of carbon emission reduction potential was used to measure the emission reduction
potential of a region, which is calculated as 1-(allocation/actually emission). If the value is below zero,
i.e., the carbon allocation is greater than the actual consumption in the province, which indicates that
there is no emission reduction potential, on the contrary, the province has a large potential of emission
reduction. The carbon emission reduction potential of provinces in 2016 is shown in Figure 4.
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As can be seen from Figure 4, the northeast and northwest regions, especially Shanxi, Inner
Mongolia, Qinghai, Ningxia, and Xinjiang provinces, have huge potential for emission reduction,
while there are few in the eastern and southern regions. In order to compare the carbon emission
reduction potential of each region over time, we calculated the average potential of carbon emission
reduction of the six regions from 2007–2016, and the results are shown in Figure 6 below.

 

-140.00%
-120.00%
-100.00%
-80.00%
-60.00%
-40.00%
-20.00%

0.00%
20.00%
40.00%
60.00%
80.00%

2016 2015 2014 2013 2012 2011 2010 2009 2008 2007

Potential of Redction

North Northeast East South Southwest Northwest

Figure 6. Carbon emission reduction potential of each region.

In Figure 6, the potential of carbon emission reduction in the north, northeast, southwest, and
east was basically stable from 2007–2016. Furthermore, the carbon emission reduction potential of
the northeast and southwest remained less, while that of northern and eastern China was below zero.
The potential in regions such as the south and the northwest changed greatly, and the trend was
basically the same. In addition, the potential of carbon emission reduction in the northwest increased
significantly and gradually became stable after 2012.

To investigate the relationship between the carbon emission permits and the initial efficiency
value of provinces from 2007–2016, Figure 7 is drawn as follows.

Figure 7. The average results of provinces.

The abscissa of Figure 7 represents the average space of carbon emission of each province from
2007–2016; the ordinate represents the average efficiency value of each province; and the color bar
on the right represents the average potential of emission reduction. If the value of average emission
reduction potential is below zero, then the color is dark, and the potential of emission reduction is
less. As can be seen from Figure 7, 30 provinces were divided into four categories according to the
average efficiency value (i.e., 0.7) and the space of carbon emission (i.e., zero). The provinces with
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an efficiency value greater than 0.7 and carbon emission permits greater than zero included Qinghai,
Hainan, Beijing, Tianjin, Guangdong, Shanghai, and Jiangsu. The provinces with an efficiency value
greater than 0.7 and the carbon emission permit less than zero included Ningxia and Inner Mongolia.
The provinces with an efficiency value less than 0.7 and carbon emission space less than zero involved
Shanxi, Hebei, Guizhou, Shandong, Yunnan, Gansu, Jilin, Xinjiang, Heilongjiang, Henan., and Shaanxi,
while provinces with an efficiency value less than 0.7 and carbon emission permit greater than 0
were Liaoning, Anhui, Chongqing, Jiangxi, Hubei, Guangxi, Sichuan, Hunan, Fujian, and Zhejiang.
Shanxi, Inner Mongolia, Ningxia, Guizhou, and other provinces have great potential for emission
reduction. In addition, coastal areas had high efficiency values and carbon emission permits, but the
efficiency value of the eastern, central, and southern regions were low, while northern regions had
high efficiency values.

From Figure 8, Beijing and Hainan have no potential for emissions reduction, followed by Tianjin,
Guangdong, Fujian, Shanghai, and other coastal regions. Additionally, some provinces such as Qinghai,
Zhejiang, Guangxi, Jiangsu, Jiangxi, Hunan, Chongqing, Sichuan, and Hubei almost have no potential
to reduce emissions, while Anhui, Liaoning, Jilin, Shandong, Henan, Yunnan, Shaanxi, Gansu, Hebei,
and Heilongjiang have emissions reduction potential, and the potential of emission reduction in
Xinjiang, Ningxia, Guizhou, Inner Mongolia, and Shanxi is the largest.  

Figure 8. The average potential of emission reduction.

3.3. Policy Suggestions

Based on the above analysis, we draw the following conclusions. Firstly, there was no space for
carbon emission in the north, northeast, and northwest from 2007–2016, particularly in the north and
northwest where the carbon emission space was seriously insufficient. In southern regions, the space
for carbon emission always existed during this period. In addition, the carbon emission permits of
southern and eastern regions were increasing year by year. The actual carbon emission in southwestern
regions was equivalent to the carbon emission allocation right, i.e., the carbon emission space barely
fluctuated during this decade. Secondly, the potential of carbon emission reduction of each region
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tended to be stable after 2014, and in the north and northwest, it fluctuated greatly from 2007–2016.
Besides, the northwest region had the potential of emission reduction since 2010, while this also existed
in the north region after 2014.

Based on the above conclusions, this paper puts forward some policy suggestions of energy
saving and emission reduction in provinces of China under the background of a low-carbon economy.

First, we need to define the scope of key regions and evaluate their emission reduction potential.
During 2007–2016, the emission reduction potential of provinces such as Shanxi, Inner Mongolia,
Guizhou, Heilongjiang, Hebei, Ningxia, Xinjiang, Gansu, Shaanxi, Yunnan, and Henan was higher.
Shandong, Jilin, Liaoning, and Anhui had a certain potential to reduce emissions, and the emission
reduction potential of other developed areas such as Guangdong, Beijing, and Tianjin was very low. It
is worth noting that Hainan and Qinghai had significantly increased their emission reduction potential
in recent years, as well as Shanxi, Ningxia, Xinjiang, and other places have great potential for emission
reduction. In order to achieve the goal of emission reduction, we should focus on these areas.

Second, we should adjust and optimize the industrial structure and promote the green
development of industry. In terms of the northeast, we should focus on these key areas and optimize
industrial layout. At the same time, the prohibited or restricted industries, production technology,
and industrial catalogs should be clearly defined. We should revise and improve the entry conditions
for high energy consumption, high pollution, and resource-oriented industries. In addition, we
should accelerate adjusting the distribution of industries in different regions and relocate, transform,
or upgrade the enterprises with much pollution. Besides, we should strictly control the industrial
production capacity with large energy consumption and high pollution, thoroughly deal with the
industrial pollution, and strengthen comprehensive treatment of enterprises with a large amount of
pollution. In the end, we should expand the scale of green industries such as industries of energy
conservation, environmental protection, clean production, and clean energy, and new energy sources
also need to be developed.

Finally, we should accelerate energy restructuring and build a low-carbon energy system.
Especially, we should pay attention to the northeast of China as the focus. The specific measures are as
follows: We should optimize the energy structure and develop new energy sources to reduce the ratio
of coal and other fossil energy sources in total consumption. Moreover, we should improve energy
efficiency and accelerate the development of clean and new energy sources. As for some regions
with more private cars such as the eastern and southern, we should promote the use of vehicles with
new energy, for example the number of buses, taxis, private cars, and other vehicles with new energy
and clean energy should be increased and updated. In addition, we should take measures such as
economic compensation to restrict the use of old vehicles and supervise the excess emissions in key
areas. With respect to the northwestern region, we should optimize the energy structure and accelerate
the upgrading of rural areas from coal to electricity and from coal to natural gas. Besides, some new
energy such as nuclear energy, wind energy, solar energy, and other new energy sources should be
developed to replace fossil fuels in a safe and effective manner.

4. Conclusions

Under the background of advocating energy saving and emission reduction, how to allocate
carbon emission rights has become a hot research topic among global scholars. Especially in China, it
is urgent to formulate a reasonable and effective scheme of carbon emission right allocation. In recent
years, many researchers have applied DEA to the fixed cost allocation problem, among which carbon
emission right allocation has become one of the most important applications, but all of this literature
using traditional models considers each DMUs as a “black box” without taking the internal structure
into account. However, it is more accurate for formulating the scheme when considering the inner
operation of DMUs. This paper firstly adopts the two-stage DEA-network model to investigate the
allocation plan of carbon emission right, and the algorithm in solving the unique allocation scheme
is modified to make the result more accurate. Based on the result analysis, corresponding policy
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suggestions are given. First, we need to define the scope of key regions and evaluate their emission
reduction potential. Second, we should adjust and optimize the industrial structure and promote
the green development of industry. Finally, we should accelerate energy restructuring and build a
low-carbon energy system.

Although it is reasonable for this paper to firstly apply the two-stage DEA network model to
the research of carbon emission right allocation in China and the model established can be extended
to other countries in the world, it has some limitations at the same time. On the one hand, for the
treatment of undesirable output, we regard carbon emission as input; although policymakers hope the
undesirable output to be as small as the input, this is actually inconsistent with the actual production
process. On the other hand, this article does not consider the problems of the sharing of resources in the
two stages and the addition of new inputs in the second stage, while the process of production is more
realistic. Therefore, the above two points are our future research directions. Besides, the model adopted
in this paper takes the size of the operational units into account to formulate a unique allocation plan,
so it is also an improvement point to find a better method for dealing with the problem that allocation
schemes are not unique.
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Appendix A

Model (5) is a fractional model, so we need to transform it into a linear programming model by
C-C transformation. Let τ = 1

m
∑

i=1
υixid+υm+1R1d+

q
∑

p=1
ϕpzpd+υm+1R2d

, ur = τ · µr, φp = τ · ϕp, vi = τ · υi, u0 =

τ · µ0, φ0 = τ · ϕ0, vm+1 = τ · υm+1. Then, we have:

θ?d = Max(
q

∑
p=1

φpzpd + φ0 +
s

∑
r=1

uryrd + u0)

s.t.
q

∑
p=1

φpzpj + φ0 −
m

∑
i=1

vixij − vm+1R1j ≤ 0, ∀j = 1, 2, . . . , n

s

∑
r=1

uryrj + u0 −
q

∑
p=1

φpzpj − vm+1R2j ≤ 0, ∀j = 1, 2, . . . , n

m

∑
i=1

vixid + vm+1R1d +
q

∑
p=1

φpzpd + vm+1R2d = 1

n

∑
j=1

(R1j + R2j) = R, R1j, R2j ≥ 0, ∀j = 1, 2, . . . , n

ur, φp, vi ≥ 0, vm+1 > 0, ∀r = 1, . . . , s; p = 1, . . . , q; i = 1, . . . , m

(A1)

Model (A1) is still nonlinear due to vm+1R1j and vm+1R2j; in order to transform the model (A1)
into a linear model, let vm+1R1j = r1j, vm+1R2j = r2j, then Model (A1) can be rewritten as Model (6).
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Appendix B

Before calculating the operation size parameters, we use formula (A2) to normalize the original data.

x̂ij =
xij

∑n
j=1 xij

, ẑpj =
zpj

∑n
j=1 zpj

, ŷrj =
yrj

∑n
j=1 yrj

, ∀i, p, r, j (A2)

Suppose the size parameters of the first stage and second stage are αj and β j, respectively. The size
parameters are as follows:

αj =

q
∑

p=1
ẑpj ·

m
∑

i=1
x̂ij

n
∑

j=1
(

q
∑

p=1
ẑpj ·

m
∑

i=1
x̂ij +

s
∑

r=1
ŷrj ·

q
∑

p=1
ẑpj)

, β j =

s
∑

r=1
ŷrj ·

q
∑

p=1
ẑpj

n
∑

j=1
(

q
∑

p=1
ẑpj ·

m
∑

i=1
x̂ij +

s
∑

r=1
ŷrj ·

q
∑

p=1
ẑpj)

(A3)

where
n
∑

j=1
(αj + β j) = 1.

Appendix C

Since the model (8) is nonlinear, we need to do the following processing to change it into a
linear model.

Let
∣∣αjR− R1j

∣∣+ αjR−R1j = 2c1j,
∣∣αjR− R1j

∣∣− αjR+R1j = 2c2j,
∣∣β jR− R2j

∣∣+ β jR−R2j = 2d1j,∣∣β jR− R2j
∣∣− β jR + R2j = 2d2j, then the model (8) is transformed to Model (A4).

MinMax(c1k + c2k + d1k + d2k)

s.t. αjR− R1j = c1j + c2j ∀j = 1, 2, . . . , n

β jR− R2j = d1j − d2j, ∀j = 1, 2, . . . , n
q

∑
p=1

φpzpj −
m

∑
i=1

vixij − R1j + φ0 = 0, ∀j = 1, 2, . . . , n

s

∑
r=1

uryrj −
q

∑
p=1

φpzpj − R2j + u0, ∀j = 1, 2, . . . , n

n

∑
j=1

(R1j + R2j) = R, R1j, R2j ≥ 0, ∀j = 1, 2, . . . , n

c1j, c2j, d1j, d2j ≥ 0, ∀j = 1, 2, . . . , n

ur, φp, vi ≥ 0, ∀r = 1, 2, . . . , s; p = 1, 2, . . . , q; i = 1, 2, . . . , m

(A4)

Although the model (A4) is linear, it cannot be directly solved since this model involves multiple
objectives. Therefore, we let Max(c1k + c2k + d1k + d2k) = ρ, then the model (A4) can be rewritten as
the model (A5).
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MinMax ρ

s.t. c1j + c2j + d1j + d2j − ρj = 0, ∀j = 1, 2, . . . , n

ρj − ρ ≤ 0, ∀j = 1, 2, . . . , n

αjR− R1j = c1j + c2j ∀j = 1, 2, . . . , n

β jR− R2j = d1j − d2j, ∀j = 1, 2, . . . , n
q

∑
p=1

φpzpj −
m

∑
i=1

vixij − R1j + φ0 = 0, ∀j = 1, 2, . . . , n

s

∑
r=1

uryrj −
q

∑
p=1

φpzpj − R2j + u0, ∀j = 1, 2, . . . , n

n

∑
j=1

(R1j + R2j) = R, R1j, R2j ≥ 0, ∀j = 1, 2, . . . , n

c1j, c2j, d1j, d2j ≥ 0, ∀j = 1, 2, . . . , n

ur, φp, vi ≥ 0, ∀r = 1, 2, . . . , s; p = 1, 2, . . . , q; i = 1, 2, . . . , m

(A5)
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