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Abstract: Photovoltaic systems have become an important source of renewable energy generation.
Because solar power generation is intrinsically highly dependent on weather fluctuations, predicting
power generation using weather information has several economic benefits, including reliable
operation planning and proactive power trading. This study builds a model that predicts the amounts
of solar power generation using weather information provided by weather agencies. This study
proposes a two-step modeling process that connects unannounced weather variables with announced
weather forecasts. The empirical results show that this approach improves a base approach by wide
margins, regardless of types of applied machine learning algorithms. The results also show that
the random forest regression algorithm performs the best for this problem, achieving an R-squared
value of 70.5% in the test data. The intermediate modeling process creates four variables, which are
ranked with high importance in the post-analysis. The constructed model performs realistic one-day
ahead predictions.

Keywords: renewable energy; solar power generation prediction; smart grid; photovoltaic power;
machine learning

1. Introduction

A smart grid is an electrical grid system that manages energy-related operations, including
production, distribution, and consumption. Efficient smart grid operations are aided by reliable power
supply planning. Supply planning on renewable energy operations, such as sunlight, wind, tides,
and geothermal energy, involves a unique (unique class) class of prediction problem because these
natural energy sources are intermittent and uncontrollable, due to fluctuating weather conditions [1].
(This paper is the expanded version of the cited conference paper.)

The photovoltaic geographic information system (PVGIS) [2] provides climate data and the
performance assessment tools of photovoltaic (PV) technology mainly for Europe and Africa. Based on
historical averages, PVGIS offers a practical guideline for expected solar radiance in geological locations.
Also, many studies are conducted to predict the level of future solar irradiance or PV power generation
in solar plants using weather information.

Sources of weather information include both measured weather records and weather forecasts.
This study finds that most previous studies have focused on exploiting only single source and that
few studies have attempted to utilize both information sources. Thus, this study proposes a novel
two-step prediction process for PV power generation using both weather records and weather forecasts.
This study demonstrates the philosophy of data-driven modeling with as much relevant data as
possible to improve model performance.
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Popular prediction methods for solar irradiance or PV power generation can be largely divided
into three categories [3]. The first category is physical methods that predict the future solar position
and the resulting irradiance without relying on other climate data. Though the prediction of the
solar position can be significant, this approach is likely to overlook other relevant climatic conditions.
For example, the sky condition of clouds or rain blocks solar irradiance. The second category is
statistical methods, which can be further divided into classical methods and modern statistical-learning
based methods (also known as machine learning). With rapid developments of statistical learning
methods over the last decade, many studies have adopted this data-driven approach to developing PV
prediction models [4]. Lastly, hybrid methods [5,6] apply not only statistical methods but also other
methods, such as mathematical optimization or signal processing.

Since many studies using statistical learning methods have appeared, a paper reviewing these
studies is also published [4]. This review paper classifies the line of studies according to adopted
machine learning algorithms. However, no review study has attempted to discuss data sources of
the predictive studies in our knowledge. Needless to say, which data source is used in a data-driven
approach is crucial to the model performance, so this study briefly reviews the sources of predictors
used in existing papers.

First, there is a group of studies that use recorded weather observations as key predictors. In the
case of using current weather as predictors, an implied hypothesis is that future irradiance and
PV generation are related to the current weather. Studies in this stream adopt methods, such as
neural networks [7], heterogeneous regressions [8], and deep belief network [9]. When the time
span of recorded weather observations is expanded, time-series analysis approaches are adopted,
such as autoregressive moving average (ARMA) [10], autoregressive integrated moving average
(ARIMA) [11–13], and a few variants of recurrent neural networks (RNNs) [14,15]. These studies
have shown significant predictability. However, using only actual weather records is likely to be a
suboptimal strategy.

Instead, utilizing weather forecasts that reliable weather agencies announce in punctual manners
has certain benefits. Thus, a greater number of studies adopt weather forecasts as primary predictors.
These studies [16–23] model future PV power generation using announced weather forecasts targeted
for the future time. Nonetheless, weather forecasts have some issues in terms of data quality. First,
they are not exactly accurate, and the weather agencies typically announce values under concerns of
risk averseness [24]. It may limit the performance of resulting predictive models that rely only on
weather forecasts. Second, weather forecasts by weather agencies tend to include fewer variables
compared to weather records. For example, the Korea Meteorological Administration (KMA) (The
KMA is the central administrative body of the Republic of Korea that oversees weather-related affairs.)
announces forecasts only for the surface temperature of the ground, while the KMA observes and
records 10 cm-, 20 cm-, and 30 cm- underground temperatures as well. Lastly, due to the concerns
about inaccuracy, several variables in weather forecasts are announced in less fine units, often in the
form of categorical variables instead of numerical variables. Regarding the quality of data alone,
weather observation is, therefore, a richer and more accurate data source.

Due to the pros and cons of weather observations and weather forecasts, we believe that these
two data sources should be utilized in a complementary manner. In fact, a few studies [24,25] use
both observations and forecasts for prediction. Bacher et al. [25] propose an adaptive linear time series
model whose autoregressive component for recent solar irradiation is supplemented by an exogenous
input of weather forecasts. Interestingly, they report that recent weather records are more important
when the forecasting horizon is less than two hours. On the other hand, weather forecasts begin
contributing more when the forecasting horizon becomes longer than two hours. Detyniecki et al. [24]
adopt a fuzzy decision tree learning that takes both weather forecast and weather observation into
their input.

This study first built a base model that uses weather forecasts to predict solar power generation.
The focus was then moved to the existence of a set of the variables, which we call auxiliary variables,
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that are not included in weather forecasts but are observed by weather agencies. In particular,
the solar radiation among the auxiliary variables is known as a significant predictor for solar power
generation [8,26]. Therefore, an auxiliary model identifies the relationship between weather forecast
variables and the auxiliary variables, then the main model for solar power generation uses both weather
forecast variables and the auxiliary variables generated by the auxiliary model. In the language of
statistical learning, the base model aims to identify a regression function that relates the weather
forecast variables and the solar power generation. The main model additionally incorporates the
identified relationship between the weather forecast variables and the auxiliary variables into the
process of training another function. The auxiliary variables can be understood as latent variables—not
directly observable but can be inferred from attainable variables of weather forecasts.

Figure 1 presents a graphical abstract of the models proposed in this study. Suppose the prediction

target is for time t + 1 and the prediction is made at time t. Weather forecast
^
Ft+1|t contains weather

forecast variables announced by weather agency at time t, targeted for the weather at time t + 1.
The hat notation implies that this vector contains forecasted values. The base model f predicts

power generation at time t, yt+1, from the weather forecast
^
Ft+1|t. Weather observation Ot+1 contains

variables actually observed at time t + 1 but not forecasted by the weather agency prior to the time
t + 1. Therefore, the auxiliary model identifies the best regression function g∗ from a parametrized

family of g. Lastly, the main model uses
^
Ot+1 = g∗(

^
Ft+1|t) from the auxiliary model along with the

original forecast
^
Ft+1|t in order to predict power generation yt+1.
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Figure 1. The base model and the proposed two-step approach for solar power generation prediction
based on weather data.

In building the three prediction models, this study tests multiple machine learning algorithms that
have been frequently used for predictive analytics [4]. The tested algorithms include linear regression,
support vector regression (SVR) [27], classification and regression tree (CART) [28], k-nearest neighbors
(k-NN) [29,30], adaptive boosting (AdaBoost), random forest regression (RFR) [31], and artificial neural
network (ANN) [7,32,33].

The study contributes to the research lines in the following ways:

• This study proposes an approach to expanding predictors for the prediction of solar power
generation. It exemplifies a practical application to include relevant but delayed climatic data that
are not available in real-time.
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• Many practical applications, including renewable energy operations, call for predictions using
weather information as predictors. The proposed approach can be applied to predictions for
renewable energy operations, such as wind, tide, and geothermal power production.

• Generally, identifying latent variables and incorporating them in the prediction process often
enhance the model performance. The proposed two-step approach does so with various machine
learning algorithms.

• In applications of machine learning methods, identifying latent variable structures in prior
often enhances the performance of resulting models. This study indirectly investigates how
much each machine learning algorithm gains benefit from the intermediate latent variable
identification process.

2. Materials and Methods

This section describes the data set and methods used to develop the models. Section 2.1 describes
the sources of the data and the preprocessing steps and Section 2.2 briefly explains the machine
learning algorithms used in this study. Section 2.3 finally formulates the prediction problems that the
three proposed models aim to solve.

2.1. Data Collection and Preprocessing

A solar power generation data from the Yeongam Photovoltaic Power Plant in South Korea were
collected from a publicly available database (http://www.data.go.kr) provided by the government.
The weather-related data were provided by the KMA. Solar elevation information was obtained from
a database by the Stellarium®.

The variables in the dataset can be divided into four categories as listed in Table 1. First, hourly
power generation data were collected. The hourly data excluded daylight-free hours (00:00–08:00
and 20:00–24:00) and were collected over three years from 2013-01-01 to 2015-12-31. Second,
weather forecast data were collected. This study collected all available variables for the same period
where power generation data were available during the corresponding period announced for the
same period. The constructed models predicted future power generation amounts using weather
forecast data announced for the future period. The KMA announced short-term weather forecasts
at the city or district level for each three-hour period from 02:00 each day. We used the forecast data
announced at 11:00 targeted for 09:00, 12:00, 15:00, and 18:00 of the following day (corresponding to 22,
25, 28, and 31 hours after the announcement, respectively). Solar elevation data were collected from
an open source program called Stellarium (www.stellarium.org). Specifically, we estimated the solar
elevation (0◦–90◦) for the same period using the latitude 34.751702 and longitude 126.458533, which is
the geographical location of the power plant. The position of solar affects how much solar radiation
energy is collected at the ground, along with other weather conditions, such as rain, snow, cloud,
and the density of air. Third, actual weather records were obtained. This study included all-weather
observation variables that were not included in weather forecasts. In the step of auxiliary modeling,
this study built a prediction model for the weather observation variables (Radiation, VaporPressure,
SurfaceTemperature, and AtmosphericPressure) using weather forecast data, called auxiliary variables
in this research.

The preprocessing task prepared the data into the structure suitable for quantitative modeling.
Categorical variables in the weather forecasts, such as RainfallType, SkyType, and WindDirection,
were converted to multiple binary variables through one-hot coding. A week index variable (Weeknum)
was created to reflect seasonal changes. This variable assigns index sequentially from the first week to
the last week of each year. To include information about the time of the day, the variable TimeZone
was used to indicate three-hour intervals.

http://www.data.go.kr
www.stellarium.org
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Table 1. Dependent and Independent Variables 1.

Source Variable Name Description

Dependent variable Power plant (y) Generation Solar power generation (kWh)

Independent variable

Weather forecast (
^
F)

RainfallType 0: none, 1: rain, 2: rain/snow, 3: snow

SkyType 1: sunny, 2: a little cloudy, 3: cloudy, 4: overcast

WindDirection 1: west, 2: east, 3: south, 4: north

WindSpeed Wind speed (m/s)

Humidity Humidity (%)

Temperature Temperature (◦C)

Elevation Solar Elevation (0◦–90◦) by Stellarium®

Weather observation (O)

Radiation Radiation (MJ/m2)

VaporPressure Vapor pressure (hPa)

SurfaceTemperature Surface temperature (◦C)

AtmosphericPressure Atmospheric Pressure (hPa)

Derived variables
Weeknum Weekly index (1–53)

TimeZone 1: 09:00–12:00, 2: 12:00–15:00,
3: 15:00–18:00, 4: 18:00–21:00

1 The total number of available observations is 4380 (1095 days × 4 observations/day).

2.2. Machine Learning Methods

This subsection briefly describes the machine learning methods tested in this study. The methods
include popular supervised learning methods in the research line [4]. Linear regression is a simple
but effective modeling technique where the linear relationship between independent variables and a
dependent variable is to be identified. SVR is a variant of linear regression where prediction error that
is smaller than some threshold is ignored in order to minimize the effect of outliers. Kernel functions,
such as polynomial and radial basis functions, help the SVR perform the non-linear separation [26,34].
ANN is becoming an increasingly popular method for non-linear regression due to its effectiveness in
data prediction. To find the relationship between input and output nodes, multi-layered hidden nodes
are connected and their weights are updated through the error backpropagation algorithm [6,31,32,35,36].
CART, also known as recursive partitioning, splits an entire data set into two groups by searching for
the best split condition that can reduce the sum of squared errors (SSE) mostly. This binary partitioning
occurs recursively until each leaf node reaches to have enough impurity [27,37]. k-NN is a non-parametric
method used for classification and regression [28,29]. For each instance, the predicted value is based
on the weighted average value of the k neighborhood instances where each of the weight is commonly
given as an inverse value of the distance between the target instance and each instance of the k nearest
neighbors. Since k-NN treats input variables indiscriminately, this study scales and normalizes all the
input instances in a preprocessing step.

As a representative ensemble learning method, AdaBoost fits additional copies of the decision
tree but with the weights adjusted to the error of the current prediction. By subsequently focusing
more on difficult instances, the learning mechanism boosts weaker learners to produce powerful
“committees” [3]. Another powerful ensemble implementation is RFR, which consists of a collection of
decision trees that are built from each bootstrapping sampling of the entire data set [30]. Averaging
values from each tree, RFR generates a prediction value.

In the post-analysis, this study measures the Gini importance or the mean decrease in impurity
(MDI) as an important measure to investigate the effect of each predictor. The Gini importance is
defined as the total decrease in node impurity, averaged over all trees of the ensemble. By sorting the
predictors using the Gini importance, the contribution of each predictor can be evaluated.
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2.3. Problem Statements

In this study, we aimed to build a model that predicts solar power generation one day ahead
of the actual operation. The base model identified the best function f ∗ in which the predictors were
limited to the weather forecast variables.

f ∗ = argmin f L(yt+1, ŷt+1)s.t. ŷt+1 = f (
^
Ft+1|t) (1)

where
^
Ft+1|t is a vector of weather forecast variables available at day t and targeted for day t + 1 (The

hat notation emphasizes that this quantity is forecasted.), yt+1 is a quantity of power generation at day
t + 1, and L is a cost function where this study adopted the measure of mean squared error (MSE) as a
popular choice.

Though a few variables in weather observation were missing in weather forecasts, this study
aimed to fully exploit weather information for building prediction process. That is, the weather
observation variables were predicted using weather forecast variables. This auxiliary model aimed to
find the best performing function g∗, such as

g∗ = argming L(Ot+1,
^
Ot+1)s.t.

^
Ot+1 = g(

^
Ft+1|t) (2)

where Ot+1 is a vector of weather observation variables that are known to be related to solar power
but not included in weather forecast [7,25].

Finally, the main model aimed to exploit the two previous models by including both
^
Ot+1 =

g∗(
^
Ft+1|t) and

^
Ft+1|t as predictors. The main model identified the best function h∗ such that

h∗ = argminh L(yt+1, ŷt+1)s.t. ŷt+1 = h(
^
Ft+1|t, g∗(

^
Ft+1|t)) (3)

where g∗ is obtained from the auxiliary model.
The base model provides a baseline for comparisons to the main model, which includes generated

predictors. Since predictive relationships are complex and difficult to grasp, this study tests several
machine learning algorithms, such as linear regression, SVR, CART, k-NN, AdaBoost, and RFR,
which are suitable for the structure of the data and the problem. Before applying the machine learning
algorithms, proper scaling is performed. Specifically, distance-based methods, including k-NN and
SVR, need standardization so-called z-score normalization, in order to carry comparable importance
in model generation process [34]. To calculate z-score, each variable x is subtracted by its mean µ

and divided by its standard deviation σ, that is, z = (x − µ)/σ. ANN needs a min-max scaling to a
bounded range, such as between 0 and 1, in these experiments. The normalized value can be calculated
by (x − min(x))/(max(x) − min(x)). This step is necessary so that all variables are in a comparable
range before fed into a network [34]. Tree-based methods, such as AdaBoost, CART, and RFR, do not
need scaling since they bisect each variable in a non-parametric manner [34]. Linear regression does
not need to scale the data, either. By optimizing parameters under the train set, prediction models
based on each machine learning algorithm are built with the machine learning package in Python,
scikit-learn [38].

3. Results

This section presents the results of the methods described in the previous section. The results
identify (1) which machine learning method produces the best-performing model, (2) whether the
predicted values for auxiliary variables created during the auxiliary modeling step have significant
forecasting performance for solar power generation, and (3) how much each independent variable
among weather forecast and weather observation contributes to prediction performance. Section 3.1
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explains the setting of experiments, Section 3.2 presents the performance of the auxiliary model
formulated as Equation (2), and Section 3.3 compares performances of the base model in Equation (1)
and the main model in Equation (3).

3.1. Measures for Model Comparison

To build models, the data for three years were split to a training set (30 months; from 2013-01-01
to 2015-06-30) and a test set (6 months; from 2015-07-01 to 2015-12-31). Using the train set, five-fold
cross-validation was performed to find the best model for each prediction algorithm. The random
search technique was adopted to search the proper parameter set of the best model.

An error measure of the mean squared error (MSE) was employed in choosing the best model among
candidates. Specifically, the MSE measures an average value of squares of errors, formulated as:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 = RMSE2 (4)

where yi is the i-th actual value, ŷi is the predicted value for yi, N is the number of samples, and RMSE
implies the square root of MSE. Along with the MSE, this paper presents two other error measures,
the R-squared value and the adjusted R-squared value. The R-squared value R2, also known as
the coefficient of determination, is the proportion of the variance of the dependent variable that is
explained by the independent variables.

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (5)

where y is the mean of the actual values of y. The adjusted R-squared value, denoted R2
adj, penalizes the

number of independent variables used to generate the predicted value, after measuring the proportion
of the variance explained by independent variables.

R2
adj = 1− (1− R2)

N − 1
N − p− 1

(6)

where p is the total number of the independent variables in the model.

3.2. Performance of Auxiliary Model

The proposed approach of this study features a two-step process, of which the first step predicts

the observed variables (O) using the forecast variables (
^
F). The intermediate result created by this

auxiliary model with RFR is presented in Table 2. Among four auxiliary variables, the prediction made
on the first three variables, Radiation, VaporPressure, and SurfaceTemperature, are highly accurate
with R2 higher than 97%. The other variable AtmosphericPressure also has generally acceptable
accuracy. Having these auxiliary variables is equivalent to having another set of weather forecast when
predicting the future solar power generation.

Table 2. Performance of the auxiliary model on the test set.

RMSE R2

Radiation 0.128 97.0
VaporPressure 0.743 99.3
SurfaceTemperature 1.252 98.7
AtmosphericPressure 4.288 72.4

1 See Table A2 for selected hyperparameters to generate the models.
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3.3. Performance of Base and Main Models

For the base model and the main model, popular machine learning algorithms in the line of
studies are applied. Table 3, sorted by MSE in the main model, presents performances in the test set.
It can be seen that R2 for the test ranges from 57.9% to 70.1% in the base model, and from 67.2% to
70.5% in the main model. In the base model, RFR outperforms the others by large margins. Other
methods exhibit similar performance except that k-NN performs poorly. In the main model, RFR
still performs the best, but the margin is narrowed as other methods gain more from the two-step
prediction process employed in the main model.

Table 3. Performance of the base model and the main model in the test set.

Algorithm Base Model Main Model Improvement
RMSE R2 RMSE R2 RMSE R2

AdaBoost 669.5 0.604 609.2 0.672 60.3 (9.0%) 0.068
Linear Reg. 635.5 0.643 608.6 0.673 26.9 (4.2%) 0.030

CART 619.2 0.661 607.9 0.673 11.3 (−1.8%) 0.012
SVR 689.9 0.579 605.7 0.676 84.2 (12.2%) 0.097

ANN 606.0 0.675 597.4 0.684 −8.6 (1.4%) 0.009
k-NN 630.2 0.649 596.4 0.686 −35.8 (5.7%) 0.037
RFR 581.5 0.701 577.5 0.705 4.0 (−0.7%) 0.004

2 Algorithms are ordered by R2 of the main model, 3 See Tables A1 and A3 for selected hyperparameters to generate
the models.

Figure 2 emphasizes the improvements in accuracy from utilizing the two-step process.
By incorporating auxiliary variables (O), each algorithm experiences an improvement as much as 9.7%
(R2 of SVR). The best performing algorithm, RFR, gains 0.4% improvement in R2.
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Figure 2. Improved prediction performance in terms of R2 from the base model to the main model.

Figure 3 presents a time-series plot of predicted and actual values in a month (August 2015) of
the test set. The predicted values are produced by the best RFR model with a parameter fitted by
learning the train set. Overall, the predicted values track the fluctuations of actual power generation
well, except for a series of under-predictions for the peak hour in early days in August and a big
over-prediction on the peak hours on 22 August which is unavoidable by an unpredicted weather
event. The day was unexpectedly foggy and heavily clouded (the maximally clouded day in August).



Sustainability 2019, 11, 1501 9 of 16Sustainability 2018, 10, x FOR PEER REVIEW  9 of 16 

 

Figure 3. Actual values and predicted values by RFR from August 1 to August 31, 2015. 

In the experiments on prediction models so far, all available variables in Table 1 are used. The 
advantages of the two-step approach are validated under this untouched setting. As a post analysis, 
the necessity of each predictor is assessed using a classical variable selection method, called backward 
elimination. Backward elimination starts with all variables, and a single variable is removed in each 
step until doing so would reduce the overall performance of the model. A performance measure ܴௗଶ  
is used for this process, which penalizes the number of predictors so that a more concise model is 
promoted. Figure 4 presents which predictor is removed at each step. 

All of 25 
variables ܴௗଶ  = 0.695 

 

 
Exclude 

AtmosphericPressure ܴௗଶ  = 0.703 
 

 
Exclude 

WindDirection1 ܴௗଶ  = 0.711 
 

 
Exclude 

WindDirection2 ܴௗଶ  = 0.713 
 

Figure 4. Backward elimination process with the RFR model. 

The process begins with 25 predictors, including binary dummy variables, generated from 
categorical variables. This original model has a ܴௗଶ  value of 0.695. Excluding AtmosphericPressure 
would enhance the ܴௗଶ  value to 0.703, yielding a prediction model with 24 predictors. This weather 
variable for sea-level pressure turns out to be secondary to direct weather variables. Then, excluding 
WindDirection1 (West) and WindDirection2 (East) would enhance the ܴௗଶ  value to 0.711 and 0.713, 
respectively. Winds blowing from North or South carry more information compared to the winds 
blowing from East or West. No further removal is beneficial in terms of ܴௗଶ . This process ensures 
some redundant, highly correlated or ineffective predictors to be removed. After the backward 
elimination process, the final model contains the smallest number of essential variables, but still 
achieves high prediction accuracy.  

3.4. Importance of Variables 

The above experiments demonstrate that the proposed two-step approach to solar power 
generation prediction improves the performance compared to the base model, regardless of the tested 
algorithms. Another way to validate its benefits is to measure whether the auxiliary variables are 
indeed pivotal components in the main model. Determining the necessary predictors, the importance 
of each variable in the final model is examined in the next subsection. Because the RFR model 
performs best, we adopt the Gini importance or mean decrease in impurity (MDI) as an important 

Figure 3. Actual values and predicted values by RFR from 1 August to 31 August 2015.

In the experiments on prediction models so far, all available variables in Table 1 are used.
The advantages of the two-step approach are validated under this untouched setting. As a post
analysis, the necessity of each predictor is assessed using a classical variable selection method, called
backward elimination. Backward elimination starts with all variables, and a single variable is removed in
each step until doing so would reduce the overall performance of the model. A performance measure
R2

adj is used for this process, which penalizes the number of predictors so that a more concise model is
promoted. Figure 4 presents which predictor is removed at each step.
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Figure 4. Backward elimination process with the RFR model.

The process begins with 25 predictors, including binary dummy variables, generated from categorical
variables. This original model has a R2

adj value of 0.695. Excluding AtmosphericPressure would enhance

the R2
adj value to 0.703, yielding a prediction model with 24 predictors. This weather variable for sea-level

pressure turns out to be secondary to direct weather variables. Then, excluding WindDirection1 (West) and
WindDirection2 (East) would enhance the R2

adj value to 0.711 and 0.713, respectively. Winds blowing from
North or South carry more information compared to the winds blowing from East or West. No further
removal is beneficial in terms of R2

adj. This process ensures some redundant, highly correlated or ineffective
predictors to be removed. After the backward elimination process, the final model contains the smallest
number of essential variables, but still achieves high prediction accuracy.

3.4. Importance of Variables

The above experiments demonstrate that the proposed two-step approach to solar power
generation prediction improves the performance compared to the base model, regardless of the tested
algorithms. Another way to validate its benefits is to measure whether the auxiliary variables are
indeed pivotal components in the main model. Determining the necessary predictors, the importance
of each variable in the final model is examined in the next subsection. Because the RFR model performs
best, we adopt the Gini importance or mean decrease in impurity (MDI) as an important measure.
The MDI is defined as the total decrease in node impurity, averaged over all trees of the ensemble.
By sorting the predictors using the important measure, the contribution of each predictor is ranked.
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Figure 5 presents the Gini importance of each variable in the main model with RFR. This figure
supports the hypothesis for the benefit in the two-step process. One of the auxiliary variable, Radiation,
is the most important variable with the importance of 43.7%. Other auxiliary variables, such as
SurfaceTemperature and VaporPressure, are ranked in the upper half among all variables. The top
four important variables consist of how much solar radiation is emitted (Radiation), from which
solar position (Elevation), at what time of the day (TimeZone5 and TimeZone3). The condition of the
air (Humidity) and temperatures (SurfaceTemperature and Air-Temperature) also affect solar power
generation. Sky condition of overcast (SkyType4) also plays a role.
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4. Discussion

For the prediction of solar power generation during operations, weather forecast variables are
readily available. On the other hand, the auxiliary variables are not available to use. The auxiliary
modeling step utilizes the historical data to identify the relationship between available forecasts and
suitable predictions for the auxiliary variables. The generated predictions for the auxiliary variables
using available forecasts are highly accurate (see Table 2). The main model utilizes the predicted values
for the auxiliary variables along with available forecasts. On comparing the base models and the main
models with popular machine learning algorithms, it is shown that the main models successfully
improved the performance of the base models (see Table 3, Figure 2, and Figure 3). Among the tested
machine learning algorithms, the models generated by RFR outperform the other models. The relative
importance for each predictor is identified (see Figure 5) after the removal of a few variables (see
Figure 4).

The results can be interpreted as follows:

• For predicting the solar power generation, the forecasts for the amount of solar radiation is the
most important among the others, in terms of the Gini importance. The forecast for solar radiation
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is not directly available from the weather agency but can be indirectly generated by the proposed
auxiliary model. Next, the position of the solar relative to the ground (Elevation) carries important
information, and the operation time of the day affects the power generation. Since solar elevation
can be accurately forecasted by astrophysics and the time of the day (TimeZone) is deterministic,
the future information for these two variables are attainable accurately. The condition of the
atmosphere (Humidity and VaporPressure) and the temperatures (SurfaceTemperature and
Air-Temperature) also affect the power generation.

• Forecasts for auxiliary variables are not readily available during actual power generation
operations, but their values are later realized and highly correlated to the solar power generation.
This relationship is captured by the auxiliary model, and the main model exploits this information
to outperform the base model regardless of the machine learning methods applied. This approach,
regarded as identification of latent variables, enhances the performances of solar power prediction.

• On comparing the different machine learning methods, models with higher capacity, such as RFR,
k-NN, and ANN, perform relatively well. RFR, the best performing method, is characterized by
its ensemble approach with multiple randomized trees and known for its robustness in the test
data set. It is generally known that RFR is especially suitable when multiple categorical variables
are involved, as in our case. The main results support the robustness and good performance
of RFR.

5. Conclusions

This study proposes a two-step approach to solar power generation prediction to fully exploit the
information contained in the weather data. Specifically, the predicted values for auxiliary variables
contribute greatly to enhancing prediction performance.

Studies in this line present a wide range of errors from 3% to 38% [4]. The large over-prediction on
22 August due to an unexpected weather event (see Figure 3) indicates how the error distribution can
be highly skewed. Skewed errors result in lower overall accuracy, especially for the power plant located
in areas of unpredictable weather. In particular, the power plant of this study is located in a landfill
area in the southwestern part of the Korean peninsula, which is surrounded by three seas and 70% of
whose total area is mountainous, making weather predictions very difficult. To aid actual operations,
it would be meaningful in future studies, especially for areas with low weather predictability, to present
confidence intervals of the predicted value, as well as the predicted values themselves.

This paper exemplifies a practical application of feature extraction such that latent variables,
relevant but delayed weather data in this study, are identified prior to the main modeling. This study
validates that the process of latent structure identification improves the solar power generation problem
and aids PV plant operations.

Furthermore, other renewable energy operations, such as wind, tide, and geothermal power
production, can also be benefitted from the proposed approach. More generally, it can also be applied
to other fields that require predicting future weather conditions.
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Appendix A Candidates and Optimal Values of Proposed Models

This appendix section presents tables for illustrating hyperparameter tuning process for each
model proposed in this study.
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Table A1. Hyperparameter candidates and optimal values for the base model.

Method Set of Considered Hyperparameters (The
Selected Value is in the Gray Box) Description

AdaBoost
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Table A2. Hyperparameter candidates and optimal values for the auxiliary models with the random
forest regression method.

Radiation Vapor Pressure
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Table A3. Hyperparameter candidates and optimal values for the main model.

Method Set of Considered Hyperparameters (The
Selected Value is in the Gray Box) Description

AdaBoost
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