Spatial and Temporal Variations of Forest Cover in Developing Countries
Abstract
:1. Introduction
- Analyze the spatial and temporal variations in forest cover between 1992 and 2015 in developing countries on the global, continental, and country scales; and
- Determine the driving factors for FT occurrence based on the binary logistic model.
2. Materials and Methods
2.1. Data
2.1.1. Developing Countries
2.1.2. Forest Cover
2.1.3. Other Data
2.2. Methods
2.2.1. Changes in Forest Area
2.2.2. Forest Transition
2.2.3. Binary Logistic Regression Model
3. Results
3.1. Changes in Forest Cover at the Global, Continental, and Country Scales
3.2. FT Conditions in Developing Countries
3.3. Results of the Binary Logistic Regression Model
4. Discussion
4.1. Reasons for the Increase in Forest Area in Africa
4.2. Analysis of the Driving Forces of FT
4.2.1. Forest Coverage
4.2.2. Urbanization Level and GDP per Capita
4.2.3. Trade Ratio of Forest Products
4.3. Comparison of ESA-CCI LC v2 with Other Forest Cover Datasets
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Africa | Asia | North America | South America | ||
---|---|---|---|---|---|
Senegal | South Sudan | Lebanon | Papua New Guinea | El Salvador | Guyana |
Ethiopia | Burundi | Pakistan | Republic of Korea | Nicaragua | Ecuador |
Cameroon | Congo | Mexico | Paraguay | ||
Chad | United Republic of Tanzania | Nepal | Indonesia | Honduras | Argentina |
Togo | Malawi | Bangladesh | Thailand | ||
Sierra Leone | Zambia | Philippines | Viet Nam | Guatemala | Uruguay |
Liberia | Zimbabwe | Myanmar | Turkey | Costa Rica | Chile |
Benin | Namibia | India | Sri Lanka | Panama | Venezuela |
Nigeria | Botswana | China | Malaysia | Jamaica | Peru |
Sudan | South Africa | Singapore | Brunei Darussalam | Haiti | Bolivia |
Somalia | Lesotho | Cuba | Brazil | ||
Equatorial Guinea | Côte d’Ivoire | Colombia | |||
Uganda | Madagascar | ||||
Kenya | Angola | ||||
Gabon | Mozambique | ||||
Rwanda | Guinea | ||||
Democratic Republic of the Congo | Central African Republic | ||||
Guinea-Bissau | Ghana | ||||
Morocco | Comoros | ||||
Gambia |
Types | Qualification |
---|---|
Tree cover, broadleaved, evergreen | Closed to open (>15%) |
Tree cover, broadleaved, deciduous | Closed to open (>15%) |
Tree cover, needleleaved, evergreen | Closed to open (>15%) |
Tree cover, needleleaved, deciduous | Closed to open (>15%) |
Tree cover, mixed leaf type (broadleaved and needleleaved) | - |
Mosaic tree and shrub / herbaceous cover | (>50%)/(<50%) |
Tree cover, flooded, fresh or brakish water | - |
Tree cover, flooded, saline water | - |
References
- Aleixandre-Benavent, R.; Aleixandre-Tudó, J.L.; Castelló-Cogollos, L.; Aleixandre, J.L. Trends in global research in deforestation. A bibliometric analysis. Land Use Policy 2018, 72, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Leblois, A.; Damette, O.; Wolfersberger, J. What has Driven Deforestation in Developing Countries Since the 2000s? Evidence from New Remote-Sensing Data. World Dev. 2017, 92, 82–102. [Google Scholar] [CrossRef]
- Hosonuma, N.; Herold, M.; de Sy, V.; de Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7, 4009. [Google Scholar]
- Ehrhardt-Martinez, K.; Crenshaw Edward, M.; Jenkins, J.C. Deforestation and the Environmental Kuznets Curve: A Cross-National Investigation of Intervening Mechanisms. Soc. Sci. Q. 2003, 83, 226–243. [Google Scholar] [CrossRef]
- Achard, F.; Eva, H.D.; Stibig, H.-J.; Mayaux, P.; Gallego, J.; Richards, T.; Malingreau, J.-P. Determination of Deforestation Rates of the World’s Humid Tropical Forests. Science 2002, 297, 999–1002. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Carvajal-Lara, C.; Urgilés-Sanchez, R.; Ruano, M.A. Deforestation as an indicator of environmental degradation: Analysis of five European countries. Ecol. Indic. 2018, 90, 1–8. [Google Scholar] [CrossRef]
- Bakkegaard, R.K.; Hogarth, N.J.; Bong, I.W.; Bosselmann, A.S.; Wunder, S. Measuring forest and wild product contributions to household welfare: Testing a scalable household survey instrument in Indonesia. For. Policy Econ. 2017, 84, 20–28. [Google Scholar] [CrossRef]
- Ros-Tonen, M.; Wiersum, K.F. The Importance of Non-Timber Forest Products for Forest-Based Rural Livelihoods: Agenda. In Proceedings of the The International Conference on Rural Livelihoods, Forests and Biodiversity, Bonn, Germany, 19–23 May 2003. [Google Scholar]
- Chao, S. Forest Peoples: Numbers across the World; Forest Peoples Programme: Moreton-in-Marsh, UK, 2012. [Google Scholar]
- Rudel, T.K.; Coomes, O.T.; Moran, E.; Achard, F.; Angelsen, A.; Xu, J.; Lambin, E. Forest transitions: Towards a global understanding of land use change. Glob. Environ. Chang. 2005, 15, 23–31. [Google Scholar] [CrossRef]
- Cunningham, S.C.; Mac Nally, R.; Baker, P.J.; Cavagnaro, T.R.; Beringer, J.; Thomson, J.R.; Thompson, R.M. Balancing the environmental benefits of reforestation in agricultural regions. Perspect. Plant Ecol. Evol. Syst. 2015, 17, 301–317. [Google Scholar] [CrossRef] [Green Version]
- Kramer, R.A.; Richter, D.D.; Pattanayak, S.; Sharma, N.P. Ecological and Economic Analysis of Watershed Protection in Eastern Madagascar. J. Environ. Manag. 1997, 49, 277–295. [Google Scholar] [CrossRef]
- Ammer, U.; Breitsameter, J.; Zander, J. Contribution of Mountain Forests Towards The Prevention of Surface Runoff And Soil-Erosion. Forstwiss. Cent. 1995, 114, 232–249. [Google Scholar] [CrossRef]
- Houghton, R.A.; Skole, D.L.; Nobre, C.A.; Hackler, J.L.; Lawrence, K.T.; Chomentowski, W.H. Annual fluxes or carbon from deforestation and regrowth in the Brazilian Amazon. Nature 2000, 403, 301–304. [Google Scholar] [CrossRef]
- Lugo, A.E. The apparent paradox of reestablishing species richness on degraded lands with tree monocultures. For. Ecol. Manag. 1997, 99, 9–19. [Google Scholar] [CrossRef]
- Li, L.; Liu, J. Forest Transiton—A Literature Review. For. Econ. 2012, 10, 98–103. [Google Scholar]
- Mather, A.S. The forest transition. Area 1992, 24, 367–379. [Google Scholar]
- Redo, D.J.; Grau, H.R.; Aide, T.M.; Clark, M.L. Asymmetric forest transition driven by the interaction of socioeconomic development and environmental heterogeneity in Central America. Proc. Natl. Acad. Sci. USA 2012, 109, 8839–8844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youn, Y.-C.; Choi, J.; de Jong, W.; Liu, J.; Park, M.S.; Camacho, L.D.; Tachibana, S.; Huudung, N.D.; Bhojvaid, P.P.; Damayanti, E.K.; et al. Conditions of forest transition in Asian countries. For. Policy Econ. 2017, 76, 14–24. [Google Scholar] [CrossRef]
- Mather, A.S. Recent Asian Forest Transitions in Relation to Forest-Transition Theory. Int. For. Rev. 2010, 9, 491–502. [Google Scholar]
- Park, M.S.; Youn, Y.-C. Reforestation policy integration by the multiple sectors toward forest transition in the Republic of Korea. For. Policy Econ. 2017, 76, 45–55. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.; Long, H.; de Jong, W.; Youn, Y.-C. Economic globalization, trade and forest transition-the case of nine Asian countries. For. Policy Econ. 2017, 76, 7–13. [Google Scholar] [CrossRef]
- Rudel, T.K. Paths of destruction and regeneration: Globalization and forests in the tropics. Rural Sociol. 2002, 67, 622–636. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Rudel, T.K.; Lambin, E.F. Forest transitions, trade, and the global displacement of land use. Proc. Natl. Acad. Sci. USA 2010, 107, 20917. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Zhai, D.; Xu, J.; Dai, Z.; Schmidt-Vogt, D. Lost in transition: Forest transition and natural forest loss in tropical China. Plant Divers. 2017, 39, 149–153. [Google Scholar] [CrossRef]
- Singh, M.P.; Bhojvaid, P.P.; de Jong, W.; Ashraf, J.; Reddy, S.R. Forest transition and socio-economic development in India and their implications for forest transition theory. For. Policy Econ. 2017, 76, 65–71. [Google Scholar] [CrossRef]
- Heilmayr, R.; Echeverría, C.; Fuentes, R.; Lambin, E.F. A plantation-dominated forest transition in Chile. Appl. Geogr. 2016, 75, 71–82. [Google Scholar] [CrossRef]
- Bae, J.S.; Joo, R.W.; Kim, Y.-S. Forest transition in South Korea: Reality, path and drivers. Land Use Policy 2012, 29, 198–207. [Google Scholar] [CrossRef]
- Ashraf, J.; Pandey, R.; de Jong, W. Assessment of bio-physical, social and economic drivers for forest transition in Asia-Pacific region. For. Policy Econ. 2017, 76, 35–44. [Google Scholar] [CrossRef]
- Wolfersberger, J.; Delacote, P.; Garcia, S. An empirical analysis of forest transition and land-use change in developing countries. Ecol. Econ. 2015, 119, 241–251. [Google Scholar] [CrossRef]
- MacDicken, K.G. Global Forest Resources Assessment 2015: What, why and how? For. Ecol. Manag. 2015, 352, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Cao, X.; Peng, S.; Ren, H.R. Analysis and Applications of GlobeLand30: A Review. ISPRS Int. J. Geo-Inf. 2017, 6, 17. [Google Scholar] [CrossRef]
- Jun, C.; Anping, L.; Jin, C.; Shu, P.; Lijun, C.; Hongwei, Z. 30-Meter Global Land Cover Data Product- GlobeLand30. Geomat. World 2017, 24, 8. [Google Scholar]
- Feng, M.; Sexton, J.O.; Huang, C.; Anand, A.; Channan, S.; Song, X.-P.; Song, D.-X.; Kim, D.-H.; Noojipady, P.; Townshend, J.R. Earth science data records of global forest cover and change: Assessment of accuracy in 1990, 2000, and 2005 epochs. Remote Sens. Environ. 2016, 184, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; MacBean, N.; Ciais, P.; Defourny, P.; Lamarche, C.; Bontemps, S.; Houghton, R.A.; Peng, S. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 2018, 10, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Rudel, T.K.; Schneider, L.; Uriarte, M. Forest transitions: An introduction. Land Use Policy 2010, 27, 95–97. [Google Scholar] [CrossRef]
- UCL-Geomatics. Land Cover Cci Product User Guide Version 2.0; UCL-Geomatics: London, UK, 2017; p. 10. [Google Scholar]
- Binary, F.E.H. Logistic Regression. In Regression Modeling Strategies; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Xiao, R.; Liu, Y.; Huang, X.; Shi, R.; Yu, W.; Zhang, T. Exploring the driving forces of farmland loss under rapidurbanization using binary logistic regression and spatial regression: A case study of Shanghai and Hangzhou Bay. Ecol. Indic. 2018, 95, 455–467. [Google Scholar] [CrossRef]
- Foster, A.D.; Rosenzweig, M.R. Economic Growth and the Rise of Forests. Q. J. Econ. 2003, 118, 601–637. [Google Scholar] [CrossRef]
- Doran, F.S.; Dangerfield, C.W.; Cubbage, F.W.; Johnson, J.E.; Pease, J.W.; Johnson, L.A.; Hopper, G.M. Tree Crops for Marginal Farmland: Loblolly Pine; Virginia Cooperative Extension (VCE): Blacksburg, VA, USA, 2005. [Google Scholar]
- Gorsevski, V.; Kasischke, E.; Dempewolf, J.; Loboda, T.; Grossmann, F. Analysis of the Impacts of armed conflict on the Eastern Afromontane forest region on the South Sudan—Uganda border using multitemporal Landsat imagery. Remote Sens. Environ. 2012, 118, 10–20. [Google Scholar] [CrossRef]
- Gorsevski, V.; Geores, M.; Kasischke, E. Human dimensions of land use and land cover change related to civil unrest in the Imatong Mountains of South Sudan. Appl. Geogr. 2013, 38, 64–75. [Google Scholar] [CrossRef]
- Kaimowitz, D.; Fauné, A. Contras and Comandantes. J. Sustain. For. 2003, 16, 21–46. [Google Scholar] [CrossRef]
- Zou, D.; Zhang, P.; Chen, S.; He, Y.; Wang, Y. Overview on Forestry Development in Ethiopia. World For. Res. 2014, 27, 83–88. [Google Scholar]
- Takahashi, R.; Todo, Y. Coffee Certification and Forest Quality: Evidence from a Wild Coffee Forest in Ethiopia. World Dev. 2017, 92, 158–166. [Google Scholar] [CrossRef]
- Takahashi, R.; Todo, Y. The impact of a shade coffee certification program on forest conservation: A case study from a wild coffee forest in Ethiopia. J. Environ. Manag. 2013, 130, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Bishop, J.T. Valuing Forests: A Review of Methods and Applications in Developing Countries; IIED: London, UK, 1999. [Google Scholar]
- Binswanger-Mkhize, H.P.; Johnson, T.; Samboko, P.C.; You, L. The Impact of Urban Growth on Agricultural and Rural Non-Farm Growth in Kenya. Tata-Cornell Institute for Agriculture and Nutrition (TCI). Available online: https://ageconsearch.umn.edu/bitstream/249274/2/329.%20Urban%20 growth%20on%20agricultural%20and%20non-farm%20income%20in%20Kenya.pdf (accessed on 5 March 2019).
- Izquierdo, A.E.; De Angelo, C.D.; Aide, T.M. Thirty years of human demography and land-use change in the Atlantic Forest of Misiones, Argentina: An evaluation of the forest transition model. Ecol. Soc. 2008, 13, 3. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2015; Desk Reference; FAO: Rome, Italy, 2015. [Google Scholar]
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef] [Green Version]
Code of Variable | Unit | Meaning and Definition | |
---|---|---|---|
Dependent variable | Binary variable: 1 for countries that experienced FT; 0 for countries that did not experienced FT | ||
Independent variables | |||
1 | Forest_r | percent | Forest coverage (percentage of forest area to total land area) |
2 | GDP_per | $/person | GDP per capita |
3 | Urbanization_r | percent | Urbanization level (percentage of urban population to total population) |
4 | Trade_r | percent | Trade ratio (ratio of export value to import value of forest products) |
Variable | (1) All Developing Countries | (2) Africa | (3) Asia | (4) North America | (5) South America |
---|---|---|---|---|---|
Forest_r | −0.078 (0.000 **) | −1.192 (0.000 **) | −0.031 (0.478) | 0.247 (0.004 **) | 0.569 (0.000 **) |
GDP_per | 7.22e−5 (0.152) | −0.004 (0.030 *) | 0.001 (0.000 **) | 0.001 (0.299) | 0.002 (0.000 **) |
Urbanization_r | .764 (0.000 **) | 2.478 (0.000 *) | 0.357 (0.000 **) | 0.615 (0.003 **) | 1.013 (0.000 **) |
Trade_r | −0.024 (0.002 **) | −0.020 (0.085) | −0.087 (0.002 **) | 5.033 (0.230) | 0.571 (0.092) |
Constant | −7.605 (0.000 **) | −28.096 (0.000 **) | −15.790 (0.000 **) | −54.302 (0.000 **) | −101.584 (0.000 **) |
Number of groups | 75 | 35 | 19 | 10 | 11 |
Log likelihood | −400.17 | −115.23 | −143.96 | −21.67 | −42.62 |
Wald chi2 | 10686.92 | 263.81 | 1114.14 | 89.54 | 484.19 |
Prob>chi2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Q.; Tan, M. Spatial and Temporal Variations of Forest Cover in Developing Countries. Sustainability 2019, 11, 1517. https://doi.org/10.3390/su11061517
Duan Q, Tan M. Spatial and Temporal Variations of Forest Cover in Developing Countries. Sustainability. 2019; 11(6):1517. https://doi.org/10.3390/su11061517
Chicago/Turabian StyleDuan, Qianwen, and Minghong Tan. 2019. "Spatial and Temporal Variations of Forest Cover in Developing Countries" Sustainability 11, no. 6: 1517. https://doi.org/10.3390/su11061517
APA StyleDuan, Q., & Tan, M. (2019). Spatial and Temporal Variations of Forest Cover in Developing Countries. Sustainability, 11(6), 1517. https://doi.org/10.3390/su11061517