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Abstract: To adhere to the green growth strategy, it is urgently needed to identify the vegetation
degradation zone in the farming–pastoral ecotone (FPE) over the countries along the “Belt and
Road Initiative (BRI)”. In this study, we monitored vegetation degradation and analyzed climatic
factors and anthropogenic contributions on vegetation change in the FPE during 2000–2016 using
the growing season annual accumulative normalized difference vegetation index (NDVIaccu) and
climatic variables. The Theil-Sen’s trend results revealed that 74.11% of NDVIaccu in FPEs showed
a significant increasing trend for the period 2000–2016, only 1.64% of NDVIaccu were significantly
decreasing. However, we detected that 21.29% degradation of NDVIaccu had occurred based on
enhanced Theil-Sen and Mann-Kendall (ETheil-Sen-MK) method. Spatial statistics for significant
correlations between climatic variables and NDVIaccu showed that precipitation was positively
correlated with NDVIaccu; yet, the relationship between NDVIaccu and temperature was more
complex, which was closely related to the intensity of increasing in temperature. Importantly,
this study found that anthropogenic contributions dominated the trends in NDVIaccu over the
FPE. The findings suggested that agricultural activities play a mainly positive role in overall
vegetation vigor. However, continually increasing disturbance by livestock grazing risks further
vegetation degradation.

Keywords: vegetation degradation; remote sensing monitoring; farming–pastoral ecotone; Belt and
Road Initiative (BRI)

1. Introduction

While there was no internationally accepted definition of vegetation degradation, it can generally
be defined as “the decline process of potential vegetation production in landscape variability under
natural or artificial disturbances” [1]. Compared to intact plants, degraded vegetation was often lower
in biomass, less ecologically productive, fragmented, and lower in canopy cover [2,3]. It has been of
great importance to the scientific community to monitor vegetation degradation. Many studies have
attempted to use various methods to monitor vegetation degradation. For instance, measurement
of changes in species diversity, which had certain advantages in indicating changes in vegetation,
but such measurements were based mainly on repeated surveys in the field, focusing on small-scale
and long-term vegetation changes [4]. However, difficulties still existed in monitoring large-scale

Sustainability 2019, 11, 1590; doi:10.3390/su11061590 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://www.mdpi.com/2071-1050/11/6/1590?type=check_update&version=1
http://dx.doi.org/10.3390/su11061590
http://www.mdpi.com/journal/sustainability


Sustainability 2019, 11, 1590 2 of 16

species diversity indicators using remote-sensing technologies. In addition, changes in land cover were
used to characterize the process of vegetation degradation [5,6]. If natural vegetation was changed to
either artificial vegetation or non-vegetation, it was considered as vegetation degradation, the degree
of which was difficult to define, however. The most direct manifestation of vegetation degradation
was the decline in vegetation parameters such as normalized difference vegetation index (NDVI),
net primary productivity (NPP), fractional vegetation coverage (FVC) or leaf area index (LAI) [7–9].
Satellite monitoring had advantages in observing and assessing large-scale and mesoscale vegetation
degradation, compared with traditional field-based studies. As a surrogate for measurement of
vegetation coverage or productivity, NDVI was one of the most widely used vegetation indices (VIs)
in examining vegetation activity at regional and global scales [10,11].

Generally, if there were significantly increasing or decreasing trends for the pixel in VIs, we can
determine exactly whether this part of coverage area was either a vegetation restoration area or a
vegetation degradation zone [9,12–14]. Previous studies tended to use the parametric (modified least
squares, MLS) regression method [15], which was unbiased but required additional information related
to either measurement errors or intercept. Therefore, the non-parametric (Theil–Sen) linear regression
method [16,17] was widely used, because it easily satisfied the model requirement that measurements
were performed by the same instrument and the data follow an underlying model that was close
to linear. The trends analysis combined with significance test methods, for instance, Mann-Kendall
(MK) test was commonly used to assess vegetation greenness characteristic. But such an integrated
approach can only determine areas where significant changes of vegetation have occurred [18–20].
As a consequence, for areas where changes in the VIs were nonsignificant but with high coefficient
of variation, the state of the vegetation remains unknown, which was source of error in judging the
characteristics of vegetation variation and estimating the extent of degradation. There are few research
studies that explore the state of vegetation in regions of no significant changes. Sun (2017) defined a
processing procedure which eliminated the effect of precipitation of arid area and took the region of
nonsignificant change of vegetation into consideration to detect the land degradation in Inner Mongolia
region in China, and the result showed that 3.50% of land was degenerated, which found more 1.14% of
degradation land than Theil-Sen and Mann-Kendall (Theil-Sen-MK) method (2.36%, p < 0.1) [5].

FPE is a critically fragile ecosystem in the ‘Belt and Road Initiative (BRI)’ economic corridor,
also known as the Silk Road Economic Belt in which 129 countries are involved across East Asia, South
Asia, West Asia, Central Asia and parts of Europe and North Africa (http://eng.yidaiyilu.gov.cn/).
FPE vegetation possessed crucial demands on energy budgets, water cycles, and biogeochemical cycles
in ecosystems through vegetation activities (e.g., photosynthesis, respiration, and transpiration) [11],
and therefore affected Earth’s climate systems [21,22]. Due to the arid climate, the vegetation activities
in FPE were affected seriously by precipitation, and the degree and extent of vegetation degradation
was often underestimated [23]. Therefore, to find out the region of vegetation degradation more
reasonably, this paper attempted to combine multiple indicators and synthesized the Theil-Sen, MK test
and Pearson correlation analysis methods to grub the region of vegetation degradation.

FPE vegetation suffered from the impacts of both climate change and human activities.
Frequent droughts and overgrazing resulted in significant negative changes to the vegetation in
FPEs. Since 2016, to protect fragile ecosystems, the concept of the “Green Silk Road” had been
advocated, and more studies have focused on the ecosystem environment problems of these areas [24].
However, there are few studies quantifying anthropogenic contributions to vegetation degradation in
FPE region. The impact of anthropogenic disturbance on the vegetation activities of FPEs was still
unclear. Excitingly, long-term remote sensing data, climatic variables, and the residual analysis method
provide the utilities to separate anthropogenic contributions from actual vegetation changes.

Thus, the main objectives of this study were (1) to monitor and identify more subtly the trends of
vegetation degradation in FPE over BRI from 2000 to 2016, (2) to investigate the impacts of climate
factors and anthropogenic contributions on vegetation changes, and to explain their potential causes
and mechanism.

http://eng.yidaiyilu.gov.cn/
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2. Study Area

The FPE located in the semi-arid and dry sub-humid zone, between 0◦–60◦ N, 10◦ W–85◦ E,
with area of ~2.6 × 106 km2 (Figure 1), is regarded as typical fragile ecological area in BRI region in
view of its sensitivity to climate change and human activities. The FPE spans multiple climate regimes,
including a tropical monsoon climate zone, a tropical desert climate zone, a temperate continental
climate zone, and a plateau climate zone. According to Shi, the FPE was defined as one with aridity
between 0.20 and 0.50 (semi-arid), 0.51 and 0.65 (dry sub-humid), and the average annual precipitation
ranging from 300 to 450 mm [25,26]. The average elevation of the FPE is ~1000 m, but there is a
huge variation in altitude, with the elevation increasing from 0 to 7050 m, and 50% of the area has an
elevation below 450 m. Cropland and grassland were the major land use types, accounting for 22.13%
and 53.44%, respectively, of the entire study area according to the land use data of 2015 [27].
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3. Data and Methods

3.1. Data

Data used in this study include NDVI, temperature, precipitation, and potential
evapotranspiration and land cover data. The monthly MOD13A3 NDVI data were downloaded
from NASA (https://ladsweb.modaps.eosdis.nasa.gov) [28] and span the period from 2000 through
2016 on a 1 km grid. All images downloaded were mosaicked and re-projected to Albers using
the MODIS Reprojection Tools (MRT). Noise induced by poor atmospheric conditions and cloud
contamination was inevitable in remote-sensing data. So, we adopted the more robust model of
modified Savitzky–Golay (mSG) filter which was verified by most research result to reconstruct a
high-quality NDVI [29,30]. Furthermore, in order to lessen the deviations in results due to outlier
values of certain month in growing season, we used the NDVIaccu to replaced common NDVI by using
maximum value composite (MVC) of the fortnightly data set. Monthly gridded data with 0.5◦ spatial
resolution, including precipitation (P), temperature (T), and potential evapotranspiration (PE) for the
period 2000 to 2016, were obtained from CRU TS 3.23 data (http://www.cru.uea.ac.uk/data) [31].
The meteorological data set was based on observations from 4000 meteorological stations around the
world and was interpolated using spatial autocorrelation functions [32,33]. The land use data were
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downloaded from ESA (http://maps.elie.ucl.ac.be/CCI/) [27] for the period 1992 to 2015 at 300 m
spatial resolution. The land cover data was reclassified into 9 classes, e.g., forest, shrub, grassland,
cropland, wetland, rivers and lakes, artificial land, glacier and snow and barren. To fit the uniform
resolution, the gridded meteorological data sets were re-projected and resampled to a resolution
of 1 km. Besides, in order to further investigate the relationship between human activities and
vegetation, we used the statistical data of population, fertilizers, the value of agricultural production,
and livestock from the Food and Agriculture Organization of the United Nations (FAO) from 2000 to
2016. These data were preprocessed using the area weighting method for matching study area of FPE.
In addition, the aridity and precipitation data used to define the scope of FPE was download from
http://www.fao.org/geonetwork/ [34].

3.2. Methods

There were four steps to detect the region of vegetation degradation. Step 1, three factors
related to vegetation were built, e.g., moisture index (MI), NDVIaccu, and NDVIaccu under unite
conditions of MI (MNDVIaccu). Step 2, the changing trend of NDVIaccu and MNDVIaccu were
calculated, respectively, using statistics and analyses method of Theil-Sen’s trend and MK test. Step 3,
the relationship between MNDVIaccu and MI was computed to further acquire the region of no
significant change. Step 4, the region of degradation was detected based on the condition and standard
of ETheil-Sen-MK for vegetation degradation. In addition, the residual analysis method was used to
analyze the anthropogenic contributions on vegetation degradation.

3.2.1. Statistics and Analyses Method

The Theil-Sen regression was a non-parametric method and focused on the change of long time
series data, which usually easily satisfied the application requirement when measurements were
performed by the same instrument and the data followed an underlying model that was close to linear.
This was a widely used methodology in environmental time-series data [5,13,35–37]. So, we employed
it to calculate the spatial trends (or slope values) of NDVIaccu during the periods of 2000–2016.
Theil-Sen’s trend β is calculated as follows:

β = median
xj − xi

j − i
(1)

where 1 < j < i < n, n is the total number of years, xi and xj is the NDVIaccu of ith and jth year.
When β > 0, meaning that the trend of the time series data is increasing; when β < 0, the trend of the
time series data is decreasing.

Statistical significance is defined by the p-value of a MK test [38,39]. A significant difference is
attained when the observed p-value is less than 0.05 (the significance level). Conversely, when the
p-value is greater than 0.05, the difference is of no statistical significance.

In order to investigate the relationship between the change tendency of vegetation and driving
factors, we used the Pearson correlation coefficient which was sensitive to a linear relationship between
two continuous variables with the normal distribution. The value of Pearson correlation is between
[−1,1], the larger the value, the stronger the relationship between vegetation and driving factors,
the positive value indicates positive correlation, and the negative value means negative correlation.
The formula is:

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 × ∑n
i=1(yi − y)2

(2)

where rxy is the correlation coefficient between NDVIaccu and climatic variables, xi represents the
NDVIaccu value of the ith year, yi represents the climatic variables of the ith year, and x, y represent
the averages of NDVIaccu and climatic variables, respectively. rxy > 0 means that NDVIaccu and
the influencing factor are positively correlated, and rxy < 0 indicates a negative correlation between

http://maps.elie.ucl.ac.be/CCI/
http://www.fao.org/geonetwork/
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NDVIaccu and the influencing factors. The significance of rxy can be found from the correlation
coefficient threshold table.

3.2.2. Vegetation Degradation Detection

Generally, a significant reduction in the value of NDVIaccu indicates vegetation degradation, but
how is vegetation degradation monitored when vegetation NDVIaccu shows nonsignificant feature but
with high trends of decrease? Referring to the work of Sun et al. [40], from the areas where NDVIaccu
was not significantly changed, we can further extract the degradation region based on ETheil-Sen-MK
by synthesizing the parameters of NDVIaccu, MNDVIaccu and MI. They are defined and constructed
as follows:

MI =
P

PE
(3)

NDVIaccu =
10

∑
i=5

NDVIi (4)

MNDVIaccu =
NDVIaccu

MI × 100
(5)

where, NDVIaccu is the growing season from May to October annual cumulative NDVI value and
NDVIi is the ith month NDVI value, MI is the annual moisture index, MNDVIaccu is NDVIaccu
under unite conditions of MI, P is the precipitation, and PE is the potential evaporation. P and PE are
resampled to the same spatial resolution as the NDVI data, i.e., 1 km.

There are two types of vegetation degradation states including significant degradation and
fluctuation degradation. Significant degradation means that NDVIaccu decreased significantly,
and MNDVIaccu and MI show a significant negative correlation. Fluctuation degradation indicates
that NDVIaccu did not change significantly, but MNDVIaccu decreased significantly or there was a
nonsignificant change, and MNDVIaccu and MI show negative correlation. In addition, if NDVIaccu
increased positively, the vegetation would show no degradation (Table 1).

Table 1. Monitoring standard of ETheil-Sen-MK for vegetation degradation [40].

Indicators and Trends
NDVIaccu

Significant
Decrease

Not
Significant

Significant
Increase

MNDVIaccu

Significant
decrease

Significant
negatively

correlated with MI

Significant
degradation

Fluctuation
degradation No degradation

Others Significant
degradation

Significant
degradation No degradation

No significant Significant
degradation

Fluctuation
degradation No degradation

Significant
increase

Significant
negatively

correlated with MI

Significant
degradation

Fluctuation
degradation No degradation

Others Significant
degradation No degradation No degradation

3.2.3. Residual Trend Analysis

The residual analysis method was used to divide human-induced NDVIaccu (also termed residual
NDVIaccu, RNDVIaccu) and climate-based NDVIaccu (termed potential NDVIaccu, PNDVIaccu) from
satellite-based observed NDVIaccu [41]. The method was based on the assumption that vegetation
growth was caused mainly by climate change, and it was the impact of human activities on vegetation
after segregating the climatic factors.
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Due to the linear model can only show independent contributions and superimposed relationship
between the variables. However, precipitation and temperature should tend to interact with
vegetation. In order to reflect the interaction effect between precipitation, temperature and
PNDVIaccu, the quadratic polynomial regression model was employed in our model. At the pixel
scale, using assembled annual average temperature (T) and annual total precipitation (P) values in the
period 2000–2016, PNDVIaccu model was then constructed. Based on PNDVIaccu, the RNDVIaccu
can be easily simulated. Specifically, the method is given as follows:

PNDVIaccu = a0 + a1 × T2 + a2 × P2 + a3 × T × P + a4 × T + a5 × P (6)

RNDVIaccu = NDVIaccu − PNDVIaccu (7)

where a0~a5 are the regression coefficients. Specifically, this study employed the least squares method
to obtain the regression coefficients of each pixel [30,42]. The RNDVIaccu residual trend changes denote
vegetation changes resulting from human disturbance. Positive residual values indicate that human
activities have a positive effect on vegetation changes, while negative values indicate a corresponding
negative effect.

4. Results and Analysis

In this part, vegetation degradation were investigated based on two methods of Thiel-Sen-MK
and ETheil-Sen-MK and the difference in results between them were compared. Then we discussed
the relationship between NDVIaccu and precipitation, temperature, evaporation and moisture index.
In addition, the effect of human disturbance on vegetation was analyzed.

4.1. Monitoring of Vegetation Degradation

As the total NDVI value for May to October each year in the northern hemisphere, NDVIaccu
indicates the state of vegetation growth. The Theil-Sen’s trends result of NDVIaccu from 2000 to
2016 are shown in Figure 2. Approximately 74.11% of the grid cells show significant (p < 0.05)
increasing trends, including the border region between Russia and Kazakhstan, the surrounding areas
of the China–Central Asia–West Asia Economic Corridor, most of North Africa, and parts of Iran.
Only about 1.64% of the cells showed significant (p < 0.05) decreasing trends, mainly over parts of
Russia and Kyrgyzstan.

The NDVIaccu showed significant (p < 0.01) upward trend over FPE, with increasing rate of
0.70 per decade during 2000–2016, which was consistent with the values for global vegetation activities
reported previously [20,43]. The increasing rate was more noticeable after 2009 (trend = 0.96 or 1.70%
per decade, p < 0.01) than prior to that (trend = 0.26 or 1.10% per decade, p < 0.01). The increasing trends
of grassland NDVIaccu and cropland NDVIaccu are showed in Figure S1, which was synchronized
with NDVIaccu over FPE, reaching their lowest value in 2009. But the higher cropland NDVIaccu
value indicated a greater contribution than grassland NDVIaccu under the same conditions of
increasing trend.

From figure of identification of vegetation degradation during 2000–2016 (Figure 3), we found that
the area of degraded vegetation was 4.83 × 105 km2 (about 25.43%) during 2000–2016. Approximately
21.29% of the grid cells showed significant (p < 0.05) degradation, which signified that more than
19.65% degradation zone was concealed by Theil-Sen’s trend results (Figure 2). About 4.14% of the
cells showed fluctuant degradation, mainly over the border region between Russia and Kazakhstan.
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Typical regions of vegetation degradation mainly appeared in the New Continental Bridge
Economic Corridor, the largest scope of significant degradation occurred in the border region between
Russia and Kazakhstan (4.78%). Syria in the eastern Mediterranean, as well as Iraq in the southern
part of the China-Central Asia-West Asia Economic Corridor had also incurred significant degradation
(3.17%). In addition, the north of part of Kazakhstan degraded by 2.31% (Figure 3, Table 2).

From the figure of vegetation degradation of different vegetational types (Figures S2 and S3),
we knew that cropland (10.03%) was the main type of degradation, followed by desert vegetation
(4.00%) and grassland (3.71%) in the FPE during 2000–2016. From the perspective of three typical
regions, 5.46% of cropland area depredated, which was larger than grassland (2.32%). Specifically,
1.05%, 3.19% and 1.22% of cropland depredated in region 1, region 2 and region3, respectively.
However, depredated desert vegetation (1.68%) was larger than cropland in region 3.
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Table 2. Statistics of the vegetation degradation in typical area.

Region Significant Degradation Fluctuant Degradation No Degradation Summary

Area/106 km2 Percentage/% Area/106 km2 Percentage/% Area/106 km2 Percentage/% Area/106 km2 Percentage/%

Region 1 52,408 2.31 4518 0.2 89,682 3.95 146,608 6.46
Region 2 108,611 4.78 48,256 2.12 66,971 2.95 223,838 9.85
Region 3 71,951 3.17 13,938 0.61 184,659 8.13 270,548 11.91
Summary 232,970 10.26 66,712 2.93 341,312 15.03 640,994 28.22Sustainability 2019, 11, x FOR PEER REVIEW 8 of 17 
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4.2. Vegetation Degradation Under the Impact of Climate Conditions

Analysis of the Figure S4 of the changes of P, T and PE showed that the annual P (377 mm) was
higher than PE (40 mm) in the period 2000–2016. During the 17 years, T, P, and PE in the growing
season record that most FPEs showed rapidly increased T, moderately increased P, and consistently
increased PE at the 0.05 significance level. Furthermore, the increasing trend of P (1.58 mm/a) was
greater than that of PE (0.04 mm/a) (Figure S4). Therefore, the moisture index controlled by P and PE
also increased. The rate of increasing in T in this area was 0.18 ◦C per decade, slightly lower than the
global average (~0.20 ◦C per decade) [44].

The Figure S5a of the changes of NDVIaccu under disparate scenario of P showed that the
changes of NDVIaccu were discrepant under a disparate scenario of variations in P in FPE, but it was
an evidently positive relationship. NDVIaccu increased significantly, while P increased moderately.
However, NDVIaccu decreased significantly, while P decreased slightly (Figure S5a). Figure 4 shows
the correlation coefficients between NDVIaccu and P during 2000–2016. These correlations revealed
that the coupling intensity of the interannual variations. A total of 76.07% of regions showed significant
positive correlations, and 3.92% displayed a negative relationship (p < 0.05) between NDVIaccu and P.Sustainability 2019, 11, x FOR PEER REVIEW 10 of 17 
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The Figure S5b of changes of NDVIaccu under disparate scenario of temperature showed that the
correlations between NDVIaccu and temperature were complex in the context of diversely increased
intensity in T. Against a background of weakly increasing trends for T, NDVIaccu showed a significant
increasing trend, whereas for strongly increasing trends for T, NDVIaccu displayed a significant
decreasing trend (Figure S5b). From Figure 5, we acquired that a total of 42.56% of NDVIaccu was
negatively correlated with T across the border region between Russia and Kazakhstan, and 34.16% of
the region showed significant positive correlations between NDVIaccu and T (p < 0.05), which were
found at relatively high northern latitudes in Kazakhstan and in the western and eastern areas of the
Mediterranean, indicating that vegetation growth over these areas was T-controlled (Figure 5).
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From Figure 6, we confirm the notion that water was the limiting factor for vegetation growth
in arid and semi-arid regions [45], where T increased as the surface dries up, leading to negative
NDVIaccu–T correlations. A total of 44.56% of area NDVIaccu showed significant positive correlations
between NDVIaccu and MI, and the correlation coefficients in most of the region were medium to
low (~0.50) (Figure 6), mainly including the border region between Russia and Kazakhstan. A total of
43.42% of the cells were also positively correlated between NDVIaccu and MI, but the correlation was
not significant (p > 0.05), covering pars of the eastern and western Mediterranean and North Africa.
NDVIaccu also showed significant increasing trends in this region.Sustainability 2019, 11, x FOR PEER REVIEW 11 of 17 

 

Figure 6. Correlation coefficients between NDVIaccu and moisture index: (a) Correlation coefficients; 
(b) Correlations significant at 0.05 level. 

4.3. The Effect of Human Disturbance on Vegetation Degradation 

Figure 7 shows that averaged RNDVIaccu was 0.37 for the entire study area, suggesting that 
human activities had a positive effect at the regional scale. In addition, the annual RNDVIaccu 
showed similar characters of increasing trend with that of annual NDVIaccu at the corresponding 
period (Figure S6), demonstrating the major role of trends of RNDVIaccu for trends of NDVIaccu 
(0.07, p < 0.000). Nevertheless, PNDVIaccu trend decreased significantly (−0.02 × 10−4, p = 0.006), which 
indicated an inverse trend with NDVIaccu, implying that climate factors had less influence on the 
change of vegetation. 

From the RNDVIaccu changing trends (Figure 7), we knew that trends in RNDVIaccu showed 
similar spatial distributions with NDVIaccu during the corresponding period 2000–2016, suggesting 
a major role for trends in RNDVIaccu. For 17-year period, the RNDVIaccu of most regions (31.47%) 
indicated significant increased trends, including most parts of the eastern and western Mediterranean 
(p < 0.05). There were some regions with negative trends, concentrated mainly on the border region 
between Russia and Kazakhstan. However, the trends for most regions were nonsignificant (p > 0.05). 
Regions with significantly decreased trends accounted for only 2.90% of the entire study area. These 
significantly decreased pixels were centralized across the border areas of Russia and Kazakhstan in 
the southwestern part of the New Continental Bridge Economic Corridor (Figure 7). 

Overlying the land use type and RNDVIaccu (Figure S7), we knew that NDVIaccu impacted by 
human activities mainly owing to cropland. Further founding was that 1.82% of NDVIaccu 
decreasing be attributed to cropland area reduction and 12.05% of NDVIaccu increasing be due to 
fertilizer increasing (Figure S8, Table S1). In addition, grassland NDVIaccu may also be affected by 
anthropogenic activities, and ended up with 0.65% decreasing and 3.41% increasing (Figure S7), 
which is most likely related to increase of livestock and grassland area (Figure S8, Table S1). 

Figure 6. Correlation coefficients between NDVIaccu and moisture index: (a) Correlation coefficients;
(b) Correlations significant at 0.05 level.



Sustainability 2019, 11, 1590 11 of 16

4.3. The Effect of Human Disturbance on Vegetation Degradation

Figure 7 shows that averaged RNDVIaccu was 0.37 for the entire study area, suggesting that
human activities had a positive effect at the regional scale. In addition, the annual RNDVIaccu
showed similar characters of increasing trend with that of annual NDVIaccu at the corresponding
period (Figure S6), demonstrating the major role of trends of RNDVIaccu for trends of NDVIaccu
(0.07, p < 0.000). Nevertheless, PNDVIaccu trend decreased significantly (−0.02 × 10−4, p = 0.006),
which indicated an inverse trend with NDVIaccu, implying that climate factors had less influence on
the change of vegetation.Sustainability 2019, 11, x FOR PEER REVIEW 12 of 17 

 
Figure 7. RNDVIaccu changing trends and significance levels: (a) RNDVIaccu changing trends; (b) 
Trends significant at 0.05 trends. 

5. Discussion 

The FPE is a spatial domain in which the main behavior and structural characteristics of the 
system are “bursting” during the transition zone between the two ecosystems of cropland and 
grassland [20,43]. Vegetation changes were particularly susceptible to climate factors in FPE 
[19,20,46]. T, P, and PE in the growing season recorded that most FPEs rapidly increased in T, 
moderately increased in P, and consistently increased in PE during the 17 years (Figure S4). 
Increasing trends of T and P in FPEs can induce much stronger plant evaporation and soil 
transpiration [47]. Trends in PE likely result in insufficient soil moisture supplement, which further 
affects vegetation growth to some extent. Furthermore, under disparate scenarios of variations in P 
and T, the changes in NDVIaccu were discrepant, and both T and PE move in a direction that was 
not conducive to vegetation activities (Figure S4). 

P displayed strong correlations with NDVIaccu, and 76.07% of region displayed significant 
positive correlations between NDVIaccu and P over entire FPE. In contrast, the statistic results of the 
relationship between the NDVIaccu and T indicated that 42.56% regions of FPE were negative 
correlations, and 34.16% regions of FPE were positive correlations, suggesting the relationship 
between NDVIaccu and T varied with complex topography, climate conditions, and vegetation types. 

Furthermore, for increasing T, in contrast, NDVIaccu showed a significant decreasing trend. This 
could be due to the fact that the impact of warming T varies depending on regional differences. In 
cold regions, moderate warming was conducive to vegetation vigor, but in arid or high T regions, 
warming may be inimical to vegetation activities. 

Comparing the contributions of climate and anthropogenic activities on vegetation, we analyzed 
the trends in PNDVIaccu and RNDVIaccu, which indicate that the comprehensive effects of current 
climate change had only relatively little contributions to vegetation greening or degradation trends 
in general, but anthropogenic activities oriented the changing trend of vegetation. Other studies of 
specific regions also supported our findings [48]. Previous studies from some other regions stated 
that vegetation growth was mainly controlled by climatic fluctuations and human activities 
[12,49,50]. Quantifying the contribution of each driving factor was thus crucial for understanding 
their relative importance for determining changes in regional vegetation cover. In this study, we have 
found that mainly anthropogenic contributions dominate the greening and degradation trends of 

Figure 7. RNDVIaccu changing trends and significance levels: (a) RNDVIaccu changing trends;
(b) Trends significant at 0.05 trends.

From the RNDVIaccu changing trends (Figure 7), we knew that trends in RNDVIaccu showed
similar spatial distributions with NDVIaccu during the corresponding period 2000–2016, suggesting
a major role for trends in RNDVIaccu. For 17-year period, the RNDVIaccu of most regions (31.47%)
indicated significant increased trends, including most parts of the eastern and western Mediterranean
(p < 0.05). There were some regions with negative trends, concentrated mainly on the border region
between Russia and Kazakhstan. However, the trends for most regions were nonsignificant (p > 0.05).
Regions with significantly decreased trends accounted for only 2.90% of the entire study area. These
significantly decreased pixels were centralized across the border areas of Russia and Kazakhstan in the
southwestern part of the New Continental Bridge Economic Corridor (Figure 7).

Overlying the land use type and RNDVIaccu (Figure S7), we knew that NDVIaccu impacted
by human activities mainly owing to cropland. Further founding was that 1.82% of NDVIaccu
decreasing be attributed to cropland area reduction and 12.05% of NDVIaccu increasing be due to
fertilizer increasing (Figure S8, Table S1). In addition, grassland NDVIaccu may also be affected by
anthropogenic activities, and ended up with 0.65% decreasing and 3.41% increasing (Figure S7), which
is most likely related to increase of livestock and grassland area (Figure S8, Table S1).

5. Discussion

The FPE is a spatial domain in which the main behavior and structural characteristics of the system
are “bursting” during the transition zone between the two ecosystems of cropland and grassland [20,43].
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Vegetation changes were particularly susceptible to climate factors in FPE [19,20,46]. T, P, and PE
in the growing season recorded that most FPEs rapidly increased in T, moderately increased in P,
and consistently increased in PE during the 17 years (Figure S4). Increasing trends of T and P in
FPEs can induce much stronger plant evaporation and soil transpiration [47]. Trends in PE likely
result in insufficient soil moisture supplement, which further affects vegetation growth to some extent.
Furthermore, under disparate scenarios of variations in P and T, the changes in NDVIaccu were
discrepant, and both T and PE move in a direction that was not conducive to vegetation activities
(Figure S4).

P displayed strong correlations with NDVIaccu, and 76.07% of region displayed significant
positive correlations between NDVIaccu and P over entire FPE. In contrast, the statistic results of
the relationship between the NDVIaccu and T indicated that 42.56% regions of FPE were negative
correlations, and 34.16% regions of FPE were positive correlations, suggesting the relationship between
NDVIaccu and T varied with complex topography, climate conditions, and vegetation types.

Furthermore, for increasing T, in contrast, NDVIaccu showed a significant decreasing trend.
This could be due to the fact that the impact of warming T varies depending on regional differences.
In cold regions, moderate warming was conducive to vegetation vigor, but in arid or high T regions,
warming may be inimical to vegetation activities.

Comparing the contributions of climate and anthropogenic activities on vegetation, we analyzed
the trends in PNDVIaccu and RNDVIaccu, which indicate that the comprehensive effects of current
climate change had only relatively little contributions to vegetation greening or degradation trends
in general, but anthropogenic activities oriented the changing trend of vegetation. Other studies of
specific regions also supported our findings [48]. Previous studies from some other regions stated
that vegetation growth was mainly controlled by climatic fluctuations and human activities [12,49,50].
Quantifying the contribution of each driving factor was thus crucial for understanding their relative
importance for determining changes in regional vegetation cover. In this study, we have found that
mainly anthropogenic contributions dominate the greening and degradation trends of NDVIaccu in
FPEs. Note that RNDVIaccu in most FPEs, especially in western and southeastern FPEs, showed
significantly increasing trends (p < 0.05), suggesting that human activities played a positive role in
vegetation changes in these regions. From Figure S1, the average NDVIaccu of cropland continues to
increase, and population, fertilizers and the value of agricultural production all showed a significant
increasing trend and positive relationship with NDVIaccu in FPEs (Table S1). Therefore, agricultural
activities made the greatest contribution to the greening of vegetation. Most notably, 4.78% of the
grid cells maintain significant degradation, including mainly the border region between Russia and
Kazakhstan, where RNDVIaccu also showed decreasing trends (2.90% significant decrease and 24.14%
nonsignificant decrease), which was likely related to unreasonable anthropogenic activities for cropland
use, causing the continuous decreasing in cropland area (Figure S8). Besides, many previous studies
have reported that livestock grazing can remove biomass by means of the long-term destruction of
grassland [32]. The degradation of vegetation was mainly related to increases in the numbers of
livestock (Table S1), especially in Pakistan.

On the whole, under the coupled effects of climate factors and human activities in FPEs, 21.29% of
vegetation degraded, which was more serious than the global average level of vegetation degradation
of 8% [20]. Therefore, extraordinary attention should be paid to the areas of vegetation that showed
significant degradation in the border region between Russia and Kazakhstan. Against the background
of mitigation of increases in P and acceleration of increases in T, we should pay more attention to
ecological environment protection in areas affected by P and T and minimize the negative impact of
human factors on the ecological environment. Such measures would include using the land rationally
according to its suitability for different functions, limiting the growth of artificial land, halting the
reduction in natural vegetation and water bodies, and focusing on preventing the intensive use of
agricultural land and its associated ecological problems such as agricultural nonpoint source pollution.
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In addition, it should be noted that there are clearly some flaws in the climate-based
NDVIaccu model since it was difficult to determine the regions that are completely unaffected
by human disturbance and to separate out the years in which no anthropogenic activity happens.
Therefore, the PNDVIaccu prediction model proposed in this paper was based on the entire study
region for the period from 2000 to 2016, which must result in estimation error. Furthermore, the effect
of human activities and climate factors on NDVIaccu was not a simple linear relationship as our
hypothesis in the residual analysis; therefore, we need to explore their complex relationships and
mechanisms in the further work. Besides, the impact of light plays a key role in vegetation activities by
affecting plant photosynthesis [20]. Thus, we need to comprehensively consider the interactions of
light, temperature, and water over the course of a more restricted period in further analysis.

6. Conclusions

We have found that NDVIaccu showed enhanced trends in FPEs during 2000–2016, and only
1.64% of the areas with significantly reduced NDVIaccu. However, ~30% significant degradation
occurred based on ETheil-Sen-MK and 21.29% of area vegetation showed significant degradation in
the border region between Russia and Kazakhstan over the periods 2000–2016. Therefore, more than
19.65% degradation area was overlooked by Theil-Sen’s trend as for no significance omit.

The relationship between P and NDVIaccu was straightforward and NDVIaccu was sensitive
and responsive in the face with the change of precipitation. There was 76.07% of region displayed
significant positive correlation. However, correlations between NDVIaccu and T varied with complex
topography, climate conditions, and land use types. For instance, negative correlations observed
across the border region between Russia and Kazakhstan. However, correlation between vegetation
growth and T was found to be positive in relatively high latitudes in the western and eastern areas of
the Mediterranean.

In addition, trends in PNDVIaccu indicated that the comprehensive effect of current climate
change had less impact on vegetation change and NDVIaccu increasing trends were primarily
attributable to anthropogenic forcing (direct or indirect). The RNDVIaccu of most regions (31.47%)
indicated significant increasing trends, which were driven mainly by cropland NDVIaccu affected by
human activities and economic factors such as population, agricultural fertilization, and the value
of agricultural production. A few areas in Kazakhstan showed a negative effect of anthropogenic
activities, which was likely related to unreasonable anthropogenic activities for cropland use, causing
the continuous decreasing in cropland area and decreasing in grassland NDVIaccu as a result of an
increase in the intensity of grazing by livestock.

By investigating the extent of vegetation degradation and its driver factors in FPE over the
countries along BRI, we found that the degree of vegetation degradation of this fragile area was more
serious than the global average level, thence we suggest that in the implementation of BRI in the future
over this region, more attention should be paid to the ecological environment, especially for 21.29% of
degraded vegetation region. For areas where human activities have had significant negative effects
(2.90%), further specific reasons need to be found out to help us use the land rationally according to its
suitability for different functions.
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degradation of different land use types, Figure S3: Vegetation degradation of different land use types in typical
region, Figure S4: Changes of precipitation, temperature and potential evaporation, Figure S5: Changes of
NDVIaccu under disparate scenario disparate scenario of precipitation (a) and temperature (b), respectively,
Figure S6: Changes of NDVIaccu, PNDVIaccu and RNDVIaccu, Figure S7: The impact of RNDVIaccu on different
vegetational types, Figure S8: Area change of cropland and grassland, Table S1: The Change trends of population,
agricultural production and fertilizer in FPE.
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